First Order Logic vs Propositional Logic CS477 Formal Software Development Methods First Order Logic extends Propositional Logic with • Non-boolean constant Elsa L Gunter Variables 2112 SC, UIUC egunter@illinois.edu • Functions and relations (or predicates, more generally) http://courses.engr.illinois.edu/cs477 • Quantification of variables Sample first order formula: $\forall x. \exists y. x < y \land y \le x + 1$ Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha Reference: Peled, Software Reliability Methods, Chapter 3 February 2, 2013 Elsa L Gunter () CS477 Formal Softy inter () CS477 Formal Soft Signatures Terms over Signature Start with signature: Terms t are expressions built over a signature (V, F, af, R, ar) $\mathcal{G} = (V, F, af, R, ar)$ $v \in V$ t ::= v $f(t_1,\ldots,t_n) \quad f \in F \text{ and } n = af(f)$ • V a countably infinite set of variables • *F* finite set of function symbols • **Example**: add(1, abs(x)) where $add, abs, 1 \in F$; $x \in V$ • *af* : $F \to \mathbb{N}$ gives the *arity*, the number of arguments for each function Constant c a function symbol of arity 0 (af(c) = 0) • For constant *c* write *c* instead of *c*() • Will write s = t instead of = (s, t)• *R* finite set of relation symbols • $ar: R \to \mathbb{N}$, the arity for each relation symbol Similarly for other common infixes (e.g. +, −, *, <, ≤,...) • Assumes $= \in R$ and ar(=) = 2Elsa L Gunter () CS477 Formal S Elsa L Gunter () Structures Assignments Meaning of terms starts with a structure: V set of variables, \mathcal{D} domain of interpretation $\mathcal{S} = (\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$

where

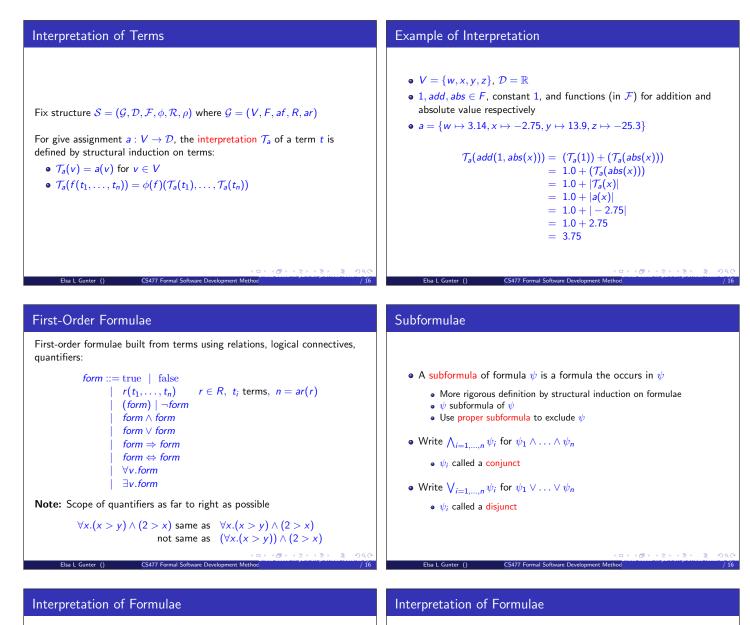
- $\mathcal{G} = (V, F, af, R, ar)$ a signature,
- $\bullet \ \mathcal{D}$ and domain on interpretation
- \mathcal{F} set of functions over \mathcal{D} ; $\mathcal{F} \bigcup_{n \geq 0} \mathcal{D}^n \to \mathcal{D}$
- Note: \mathcal{F} can contain elements of \mathcal{D} since $\mathcal{D} = (\mathcal{D}^0 \to \mathcal{D})$
- $\phi: F \to \mathcal{F}$ where if $\phi(f) \in (\mathcal{D}^n \to \mathcal{D})$ then n = af(f)
- \mathcal{R} set of relations over \mathcal{D} ; $\mathcal{R} \subseteq \bigcup_{n \ge 1} \mathcal{P}(\mathcal{D}^n)$
- $\rho: R \to \mathcal{R}$ where if $\rho(r) \subseteq \mathcal{D}^n$ then n = ar(r)

An assignment is a function $a: V \rightarrow D$ Example:

 $V = \{w, x, y, z\}$

$$\mathsf{a} = \{\mathsf{w} \mapsto 3.14, \mathsf{x} \mapsto -2.75, \mathsf{y} \mapsto 13.9, \mathsf{z} \mapsto -25.3\}$$

• Assignment is a fixed association of values to variables; not "update-able"



Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

For give assignment $a: V \to D$, the interpretation \mathcal{M}_a of a formula ψ assigning a value in $\{\mathsf{T},\mathsf{F}\}$ is defined by structural induction on formulae:

```
Fix structure S = (G, D, F, \phi, R, \rho) where G = (V, F, af, R, ar)
```

```
For give assignment a: V \to D, the interpretation \mathcal{M}_a of a formula \psi assigning a value in \{\mathsf{T},\mathsf{F}\} is defined by structural induction on formulae:

• \mathcal{M}_a(\text{true}) = \mathsf{T} \mathcal{M}_a(\text{false}) = \mathsf{F}
```

Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

For give assignment $a: V \to \mathcal{D}$, the interpretation \mathcal{M}_a of a formula ψ assigning a value in $\{\textbf{T},\textbf{F}\}$ is defined by structural induction on formulae:

- $\mathcal{M}_a(\text{true}) = \mathbf{T}$ $\mathcal{M}_a(\text{false}) = \mathbf{F}$
- $\mathcal{M}_a(r(t_1,\ldots,t_n)) = \rho(r)(\mathcal{T}_a(t_1),\ldots,\mathcal{T}(t_n))$

Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

For give assignment $a: V \to D$, the interpretation \mathcal{M}_a of a formula ψ assigning a value in $\{T, F\}$ is defined by structural induction on formulae: • $\mathcal{M}_a(\text{true}) = \mathbf{T}$ $\mathcal{M}_a(\text{false}) = \mathbf{F}$

- $\mathcal{M}_a(r(t_1,\ldots,t_n)) = \rho(r)(\mathcal{T}_a(t_1),\ldots,\mathcal{T}(t_n))$
- $\mathcal{M}_a((\psi)) = \mathcal{M}_a(\psi)$

Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

For give assignment $a: V \to \mathcal{D}$, the interpretation \mathcal{M}_a of a formula ψ assigning a value in $\{T, F\}$ is defined by structural induction on formulae:

- $\mathcal{M}_a(\text{true}) = \mathbf{T}$ $\mathcal{M}_a(\text{false}) = \mathbf{F}$
- $\mathcal{M}_a(r(t_1,\ldots,t_n)) = \rho(r)(\mathcal{T}_a(t_1),\ldots,\mathcal{T}(t_n))$
- $\mathcal{M}_a((\psi)) = \mathcal{M}_a(\psi)$
- $\mathcal{M}_a(\neg \psi) = \mathbf{T}$ if $\mathcal{M}_a(\psi) = \mathbf{F}$ and $\mathcal{M}_a(\neg \psi) = \mathbf{F}$ if $\mathcal{M}_a(\psi) = \mathbf{T}$

Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

For give assignment $a: V \to \mathcal{D}$, the interpretation \mathcal{M}_a of a formula ψ assigning a value in $\{\mathbf{T}, \mathbf{F}\}$ is defined by structural induction on formulae:

- $\mathcal{M}_a(\text{true}) = \mathbf{T}$ $\mathcal{M}_a(\text{false}) = \mathbf{F}$ • $\mathcal{M}_a(r(t_1,\ldots,t_n)) = \rho(r)(\mathcal{T}_a(t_1),\ldots,\mathcal{T}(t_n))$
- $\mathcal{M}_a((\psi)) = \mathcal{M}_a(\psi)$
- $\mathcal{M}_a(\neg \psi) = \mathbf{T}$ if $\mathcal{M}_a(\psi) = \mathbf{F}$ and $\mathcal{M}_a(\neg \psi) = \mathbf{F}$ if $\mathcal{M}_a(\psi) = \mathbf{T}$
- $\mathcal{M}_a(\psi_1 \wedge \psi_2) = \mathbf{T}$ if $\mathcal{M}_a(\psi_1) = \mathbf{T}$ and $\mathcal{M}_a(\psi_2) = \mathbf{T}$, and $\mathcal{M}_{a}(\psi_{1} \wedge \psi_{2}) = \mathbf{F}$ otherwise

Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

For give assignment $a: V \to D$, the interpretation \mathcal{M}_a of a formula ψ assigning a value in $\{T, F\}$ is defined by structural induction on formulae:

- $\mathcal{M}_a(\text{true}) = \mathbf{T}$ $\mathcal{M}_a(\text{false}) = \mathbf{F}$
- $\mathcal{M}_a(r(t_1,\ldots,t_n)) = \rho(r)(\mathcal{T}_a(t_1),\ldots,\mathcal{T}(t_n))$
- $\mathcal{M}_{a}((\psi)) = \mathcal{M}_{a}(\psi)$
- $\mathcal{M}_a(\neg \psi) = \mathbf{T}$ if $\mathcal{M}_a(\psi) = \mathbf{F}$ and $\mathcal{M}_a(\neg \psi) = \mathbf{F}$ if $\mathcal{M}_a(\psi) = \mathbf{T}$
- $\mathcal{M}_a(\psi_1 \wedge \psi_2) = \mathbf{T}$ if $\mathcal{M}_a(\psi_1) = \mathbf{T}$ and $\mathcal{M}_a(\psi_2) = \mathbf{T}$, and $\mathcal{M}_a(\psi_1 \wedge \psi_2) = \mathbf{F}$ otherwise
- $\mathcal{M}_a(\psi_1 \lor \psi_2) = \mathbf{T}$ if $\mathcal{M}_a(\psi_1) = \mathbf{T}$ or $\mathcal{M}_a(\psi_2) = \mathbf{T}$, and $\mathcal{M}_a(\psi_1 \lor \psi_2) = \mathbf{F}$ otherwise

Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

For give assignment $a: V \to D$, the interpretation \mathcal{M}_a of a formula ψ assigning a value in $\{T, F\}$ is defined by structural induction on formulae:

- $\mathcal{M}_a(r(t_1,\ldots,t_n)) = \rho(r)(\mathcal{T}_a(t_1),\ldots,\mathcal{T}(t_n))$
- $\mathcal{M}_a(\neg \psi) = \mathbf{T}$ if $\mathcal{M}_a(\psi) = \mathbf{F}$ and $\mathcal{M}_a(\neg \psi) = \mathbf{F}$ if $\mathcal{M}_a(\psi) = \mathbf{T}$
- $\mathcal{M}_a(\psi_1 \wedge \psi_2) = \mathbf{T}$ if $\mathcal{M}_a(\psi_1) = \mathbf{T}$ and $\mathcal{M}_a(\psi_2) = \mathbf{T}$, and $\mathcal{M}_a(\psi_1 \wedge \psi_2) = \mathbf{F}$ otherwise

•
$$\mathcal{M}_{a}(\psi_{1} \lor \psi_{2}) = \mathsf{T}$$
 if $\mathcal{M}_{a}(\psi_{1}) = \mathsf{T}$ or $\mathcal{M}_{a}(\psi_{2}) = \mathsf{T}$, and
 $\mathcal{M}_{a}(\psi_{1} \lor \psi_{2}) = \mathsf{F}$ otherwise

• $\mathcal{M}_a(\psi_1 \Rightarrow \psi_2) = \mathsf{T}$ if $\mathcal{M}_a(\psi_1) = \mathsf{F}$ or $\mathcal{M}_a(\psi_2) = \mathsf{T}$, and $\mathcal{M}_a(\psi_1 \Rightarrow \psi_2) = \mathbf{F}$ otherwise

- $\mathcal{M}_a(\text{true}) = \mathbf{T}$ $\mathcal{M}_a(\text{false}) = \mathbf{F}$ • $\mathcal{M}_a((\psi)) = \mathcal{M}_a(\psi)$

Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

$$a + [v \mapsto d](w) = \begin{cases} d & \text{if } w = v \\ a(w) & \text{if } w \neq v \end{cases}$$

Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

Let

$$a + [v \mapsto d](w) = \begin{cases} d & \text{if } w = v \\ a(w) & \text{if } w \neq v \end{cases}$$

• $\mathcal{M}_{a}(\forall v.\psi) = \mathbf{T}$ if for every $d \in \mathcal{D}$ we have $\mathcal{M}_{a+[v \mapsto d]}(\psi) = \mathbf{T}$, and $\mathcal{M}_{a}(\forall v.\psi) = \mathbf{F}$ otherwise

Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

Let

$$a + [v \mapsto d](w) = \begin{cases} d & \text{if } w = v \\ a(w) & \text{if } w \neq v \end{cases}$$

- $\mathcal{M}_a(\forall v.\psi) = \mathbf{T}$ if for every $d \in \mathcal{D}$ we have $\mathcal{M}_{a+[v\mapsto d]}(\psi) = \mathbf{T}$, and $\mathcal{M}_a(\forall v.\psi) = \mathbf{F}$ otherwise
- $\mathcal{M}_a(\exists v.\psi) = \mathbf{T}$ if there exists $d \in \mathcal{D}$ such that $\mathcal{M}_{a+[v\mapsto d]}(\psi) = \mathbf{T}$, and $\mathcal{M}_a(\forall v.\psi) = \mathbf{F}$ otherwise

Modeling First-order Formulae

nter ()

Given structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

CS477 Formal Software Deve

- $(\mathcal{S}, \mathcal{M})$ model for first-order language over signature \mathcal{G}
- $\bullet\,$ Truth of formulae in language over signature ${\cal G}$ depends on structure ${\cal S}$
- Assignment a models ψ , or a satisfies ψ , or a $\models^{\mathcal{S}} \psi$ if $\mathcal{M}_{a}(\psi) = \mathsf{T}$
- ψ is valid for S if $a \models^{S} \psi$ for some a.
- S is a model of ψ , written $\models^{S} \psi$ if every assignment for S satisfies ψ .
- ψ is valid, or a tautology if ψ valid for every mode. Write $\models \psi$

CS477 Formal Software Develop

• ψ_1 logically equivalent to ψ_2 if for all structures S and assignments a, $a \models^S \psi_1$ iff $a \models^S \psi_2$

Examples

Elsa L Gunter ()

Sample Tautologies

Elsa L Gunter ()

All instances of propositional tautologies

- Assignment $\{x \mapsto 0\}$ satisfies $\exists y.x < y$ valid in interval [0, 1]; assignment $\{x \mapsto 1\}$ doesn't
- $\forall x. \exists y. x < y$ valid in \mathbb{N} and \mathbb{R} , but not interval [0, 1]
- $(\exists x. \forall y. (y \le x)) \Rightarrow (\forall y. \exists x. (y \le x))$ tautology
 - Why?

→ (面) (目) (目) (目) (目) (0) (0)

(ロ) (問) (注) (注) (注) 注 のQ(C

Sample Tautologies

All instances of propositional tautologies

$$= (\exists x. \forall y. (y \le x)) \Rightarrow (\forall y. \exists x. (y \le x))$$

$$\models ((\forall x.\forall y.\psi) \Leftrightarrow (\forall y.\forall x.\psi))$$

$$\models ((\forall x.\psi) \Rightarrow (\exists x.\psi))$$

 $\models (\forall x.\psi_1 \land \psi_2) \Leftrightarrow ((\forall x.\psi_1) \land (\forall x.\psi_2))$

 $(\exists x.\psi_1 \land \psi_2) \Rightarrow ((\exists x.\psi_1) \land (\exists x.\psi_2))$

Free Variables: Terms

Informally: free variables of a expression are variables that have an occurrence in an expression that is not bound. Written fv(e) for expression e

Free variables of terms defined by structural induction over terms; written • $fv(x) = \{x\}$

•
$$fv(f(t_1,\ldots,t_n) = \bigcup_{i=1,\ldots,n} fv(t_i)$$

Note:

• Free variables of term just variables occurring in term; no bound variables

are Development Me

0

- No free variables in constants
- **Example**: $fv(add(1, abs(x))) = \{x\}$