

Interpretation of Terms

Fix structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F, a f, R$, ar $)$
For give assignment $a: V \rightarrow \mathcal{D}$, the interpretation \mathcal{T}_{a} of a term t is defined by structural induction on terms:

- $\mathcal{T}_{a}(v)=a(v)$ for $v \in V$
- $\mathcal{T}_{a}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=\phi(f)\left(\mathcal{T}_{a}\left(t_{1}\right), \ldots, \mathcal{T}_{a}\left(t_{n}\right)\right)$

First-Order Formulae

First-order formulae built from terms using relations, logical connectives, quantifiers:

$$
\begin{aligned}
& \text { form }::= \text { true } \mid \text { false } \\
& r\left(t_{1}, \ldots, t_{n}\right) \quad r \in R, t_{i} \text { terms, } n=\operatorname{ar}(r) \\
&(\text { form }) \mid \neg \text { form } \\
& \text { form } \wedge \text { form } \\
& \text { form } \vee \text { form } \\
& \text { form } \Rightarrow \text { form } \\
& \text { form } \Leftrightarrow \text { form } \\
& \forall v . \text { form } \\
& \exists v . \text { form }
\end{aligned}
$$

Note: Scope of quantifiers as far to right as possible

$$
\begin{aligned}
\forall x \cdot(x>y) \wedge(2>x) \text { same as } & \forall x \cdot(x>y) \wedge(2>x) \\
\text { not same as } & (\forall x \cdot(x>y)) \wedge(2>x)
\end{aligned}
$$

Interpretation of Formulae

Fix structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F, a f, R$, ar $)$
For give assignment $a: V \rightarrow \mathcal{D}$, the interpretation \mathcal{M}_{a} of a formula ψ assigning a value in $\{\mathbf{T}, \mathbf{F}\}$ is defined by structural induction on formulae:

Example of Interpretation

- $V=\{w, x, y, z\}, \mathcal{D}=\mathbb{R}$
- 1, add, abs $\in F$, constant 1 , and functions (in \mathcal{F}) for addition and absolute value respectively
- $a=\{w \mapsto 3.14, x \mapsto-2.75, y \mapsto 13.9, z \mapsto-25.3\}$

$$
\begin{aligned}
\mathcal{T}_{a}(\operatorname{add}(1, a b s(x))) & =\left(\mathcal{T}_{a}(1)\right)+\left(\mathcal{T}_{a}(a b s(x))\right) \\
& =1.0+\left(\mathcal{T}_{a}(a b s(x))\right) \\
& =1.0+\left|\mathcal{T}_{a}(x)\right| \\
& =1.0+|a(x)| \\
& =1.0+|-2.75| \\
& =1.0+2.75 \\
& =3.75
\end{aligned}
$$

Subformulae

- A subformula of formula ψ is a formula the occurs in ψ
- More rigorous definition by structural induction on formulae - ψ subformula of ψ
- Use proper subformula to exclude ψ
- Write $\bigwedge_{i=1, \ldots, n} \psi_{i}$ for $\psi_{1} \wedge \ldots \wedge \psi_{n}$
- ψ_{i} called a conjunct
- Write $\bigvee_{i=1, \ldots, n} \psi_{i}$ for $\psi_{1} \vee \ldots \vee \psi_{n}$
- ψ_{i} called a disjunct

Interpretation of Formulae

Fix structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F$, af, R, ar $)$
For give assignment $a: V \rightarrow \mathcal{D}$, the interpretation \mathcal{M}_{a} of a formula ψ assigning a value in $\{\mathbf{T}, \mathbf{F}\}$ is defined by structural induction on formulae:

$$
\text { - } \mathcal{M}_{a}(\text { true })=\mathbf{T} \quad \mathcal{M}_{a}(\text { false })=\mathbf{F}
$$

Interpretation of Formulae

Fix structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F$, af,R, ar $)$

For give assignment $a: V \rightarrow \mathcal{D}$, the interpretation \mathcal{M}_{a} of a formula ψ assigning a value in $\{\mathbf{T}, \mathbf{F}\}$ is defined by structural induction on formulae:

- $\mathcal{M}_{a}($ true $)=\mathbf{T} \quad \mathcal{M}_{a}($ false $)=\mathbf{F}$
- $\mathcal{M}_{a}\left(r\left(t_{1}, \ldots, t_{n}\right)\right)=\rho(r)\left(\mathcal{T}_{a}\left(t_{1}\right), \ldots, \mathcal{T}\left(t_{n}\right)\right)$

Interpretation of Formulae

Fix structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F$, af, R, ar $)$
For give assignment $a: V \rightarrow \mathcal{D}$, the interpretation \mathcal{M}_{a} of a formula ψ assigning a value in $\{\mathbf{T}, \mathbf{F}\}$ is defined by structural induction on formulae:

- \mathcal{M}_{a} (true $)=\mathbf{T} \quad \mathcal{M}_{a}($ false $)=\mathbf{F}$
- $\mathcal{M}_{a}\left(r\left(t_{1}, \ldots, t_{n}\right)\right)=\rho(r)\left(\mathcal{T}_{a}\left(t_{1}\right), \ldots, \mathcal{T}\left(t_{n}\right)\right)$
- $\mathcal{M}_{a}((\psi))=\mathcal{M}_{a}(\psi)$
- $\mathcal{M}_{a}(\neg \psi)=\mathbf{T}$ if $\mathcal{M}_{a}(\psi)=\mathbf{F}$ and $\mathcal{M}_{a}(\neg \psi)=\mathbf{F}$ if $\mathcal{M}_{a}(\psi)=\mathbf{T}$

Interpretation of Formulae

Fix structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F$, af, R, ar $)$
For give assignment $a: V \rightarrow \mathcal{D}$, the interpretation \mathcal{M}_{a} of a formula ψ assigning a value in $\{\mathbf{T}, \mathbf{F}\}$ is defined by structural induction on formulae:

- $\mathcal{M}_{a}($ true $)=\mathbf{T} \quad \mathcal{M}_{a}($ false $)=\mathbf{F}$
- $\mathcal{M}_{a}\left(r\left(t_{1}, \ldots, t_{n}\right)\right)=\rho(r)\left(\mathcal{T}_{a}\left(t_{1}\right), \ldots, \mathcal{T}\left(t_{n}\right)\right)$
- $\mathcal{M}_{a}((\psi))=\mathcal{M}_{a}(\psi)$
- $\mathcal{M}_{a}(\neg \psi)=\mathbf{T}$ if $\mathcal{M}_{a}(\psi)=\mathbf{F}$ and $\mathcal{M}_{a}(\neg \psi)=\mathbf{F}$ if $\mathcal{M}_{a}(\psi)=\mathbf{T}$
- $\mathcal{M}_{a}\left(\psi_{1} \wedge \psi_{2}\right)=\mathbf{T}$ if $\mathcal{M}_{a}\left(\psi_{1}\right)=\mathbf{T}$ and $\mathcal{M}_{a}\left(\psi_{2}\right)=\mathbf{T}$, and $\mathcal{M}_{a}\left(\psi_{1} \wedge \psi_{2}\right)=\mathbf{F}$ otherwise
- $\mathcal{M}_{a}\left(\psi_{1} \vee \psi_{2}\right)=\mathbf{T}$ if $\mathcal{M}_{a}\left(\psi_{1}\right)=\mathbf{T}$ or $\mathcal{M}_{a}\left(\psi_{2}\right)=\mathbf{T}$, and $\mathcal{M}_{a}\left(\psi_{1} \vee \psi_{2}\right)=\mathbf{F}$ otherwise

Interpretation of Formulae

Fix structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F$, af, R, ar $)$
For give assignment $a: V \rightarrow \mathcal{D}$, the interpretation \mathcal{M}_{a} of a formula ψ assigning a value in $\{\mathbf{T}, \mathbf{F}\}$ is defined by structural induction on formulae:

- $\mathcal{M}_{a}($ true $)=\mathbf{T} \quad \mathcal{M}_{a}($ false $)=\mathbf{F}$
- $\mathcal{M}_{a}\left(r\left(t_{1}, \ldots, t_{n}\right)\right)=\rho(r)\left(\mathcal{T}_{a}\left(t_{1}\right), \ldots, \mathcal{T}\left(t_{n}\right)\right)$
- $\mathcal{M}_{a}((\psi))=\mathcal{M}_{a}(\psi)$

Interpretation of Formulae

Fix structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F$, af, R, ar $)$
For give assignment $a: V \rightarrow \mathcal{D}$, the interpretation \mathcal{M}_{a} of a formula ψ assigning a value in $\{\mathbf{T}, \mathbf{F}\}$ is defined by structural induction on formulae:

- $\mathcal{M}_{a}($ true $)=\mathbf{T} \quad \mathcal{M}_{a}($ false $)=\mathbf{F}$
- $\mathcal{M}_{a}\left(r\left(t_{1}, \ldots, t_{n}\right)\right)=\rho(r)\left(\mathcal{T}_{a}\left(t_{1}\right), \ldots, \mathcal{T}\left(t_{n}\right)\right)$
- $\mathcal{M}_{a}((\psi))=\mathcal{M}_{a}(\psi)$
- $\mathcal{M}_{a}(\neg \psi)=\mathbf{T}$ if $\mathcal{M}_{a}(\psi)=\mathbf{F}$ and $\mathcal{M}_{a}(\neg \psi)=\mathbf{F}$ if $\mathcal{M}_{a}(\psi)=\mathbf{T}$
- $\mathcal{M}_{a}\left(\psi_{1} \wedge \psi_{2}\right)=\mathbf{T}$ if $\mathcal{M}_{a}\left(\psi_{1}\right)=\mathbf{T}$ and $\mathcal{M}_{a}\left(\psi_{2}\right)=\mathbf{T}$, and $\mathcal{M}_{a}\left(\psi_{1} \wedge \psi_{2}\right)=\mathbf{F}$ otherwise

Interpretation of Formulae

Fix structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F$, af,R, ar $)$
For give assignment $a: V \rightarrow \mathcal{D}$, the interpretation \mathcal{M}_{a} of a formula ψ assigning a value in $\{\mathbf{T}, \mathbf{F}\}$ is defined by structural induction on formulae:

- \mathcal{M}_{a} (true $)=\mathbf{T} \quad \mathcal{M}_{a}($ false $)=\mathbf{F}$
- $\mathcal{M}_{a}\left(r\left(t_{1}, \ldots, t_{n}\right)\right)=\rho(r)\left(\mathcal{T}_{a}\left(t_{1}\right), \ldots, \mathcal{T}\left(t_{n}\right)\right)$
- $\mathcal{M}_{a}((\psi))=\mathcal{M}_{a}(\psi)$
- $\mathcal{M}_{a}(\neg \psi)=\mathbf{T}$ if $\mathcal{M}_{a}(\psi)=\mathbf{F}$ and $\mathcal{M}_{a}(\neg \psi)=\mathbf{F}$ if $\mathcal{M}_{a}(\psi)=\mathbf{T}$
- $\mathcal{M}_{a}\left(\psi_{1} \wedge \psi_{2}\right)=\mathbf{T}$ if $\mathcal{M}_{a}\left(\psi_{1}\right)=\mathbf{T}$ and $\mathcal{M}_{a}\left(\psi_{2}\right)=\mathbf{T}$, and $\mathcal{M}_{a}\left(\psi_{1} \wedge \psi_{2}\right)=\mathbf{F}$ otherwise
- $\mathcal{M}_{a}\left(\psi_{1} \vee \psi_{2}\right)=\mathbf{T}$ if $\mathcal{M}_{a}\left(\psi_{1}\right)=\mathbf{T}$ or $\mathcal{M}_{a}\left(\psi_{2}\right)=\mathbf{T}$, and $\mathcal{M}_{a}\left(\psi_{1} \vee \psi_{2}\right)=\mathbf{F}$ otherwise
- $\mathcal{M}_{a}\left(\psi_{1} \Rightarrow \psi_{2}\right)=\mathbf{T}$ if $\mathcal{M}_{a}\left(\psi_{1}\right)=\mathbf{F}$ or $\mathcal{M}_{a}\left(\psi_{2}\right)=\mathbf{T}$, and $\mathcal{M}_{a}\left(\psi_{1} \Rightarrow \psi_{2}\right)=\mathbf{F}$ otherwise

Interpretation of Formulae

Fix structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F, a f, R$, ar $)$
Let

$$
a+[v \mapsto d](w)= \begin{cases}d & \text { if } w=v \\ a(w) & \text { if } w \neq v\end{cases}
$$

Interpretation of Formulae

Fix structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F$, af, R, ar $)$
Let

$$
a+[v \mapsto d](w)= \begin{cases}d & \text { if } w=v \\ a(w) & \text { if } w \neq v\end{cases}
$$

- $\mathcal{M}_{a}(\forall v \cdot \psi)=\mathbf{T}$ if for every $d \in \mathcal{D}$ we have $\mathcal{M}_{a+[v \mapsto d]}(\psi)=\mathbf{T}$, and $\mathcal{M}_{a}(\forall v . \psi)=\mathbf{F}$ otherwise
- $\mathcal{M}_{a}(\exists v \cdot \psi)=\mathbf{T}$ if there exists $d \in \mathcal{D}$ such that $\mathcal{M}_{a+[v \mapsto d]}(\psi)=\mathbf{T}$, and $\mathcal{M}_{a}(\forall v, \psi)=\mathbf{F}$ otherwise

Examples

- Assignment $\{x \mapsto 0\}$ satisfies $\exists y . x<y$ valid in interval $[0,1]$; assignment $\{x \mapsto 1\}$ doesn't
- $\forall x . \exists y \cdot x<y$ valid in \mathbb{N} and \mathbb{R}, but not interval $[0,1]$
- $(\exists x . \forall y \cdot(y \leq x)) \Rightarrow(\forall y . \exists x .(y \leq x))$ tautology
- Why?

Interpretation of Formulae

Fix structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F, a f, R$, ar $)$
Let

$$
a+[v \mapsto d](w)= \begin{cases}d & \text { if } w=v \\ a(w) & \text { if } w \neq v\end{cases}
$$

- $\mathcal{M}_{a}(\forall v \cdot \psi)=\mathbf{T}$ if for every $d \in \mathcal{D}$ we have $\mathcal{M}_{a+[v \mapsto d]}(\psi)=\mathbf{T}$, and $\mathcal{M}_{a}(\forall v . \psi)=\mathbf{F}$ otherwise

Modeling First-order Formulae

Given structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ where $\mathcal{G}=(V, F, a f, R$, ar $)$

- $(\mathcal{S}, \mathcal{M})$ model for first-order language over signature \mathcal{G}
- Truth of formulae in language over signature \mathcal{G} depends on structure \mathcal{S}
- Assignment a models ψ, or a satisfies ψ, or $a \models^{\mathcal{S}} \psi$ if $\mathcal{M}_{a}(\psi)=\mathbf{T}$
- ψ is valid for \mathcal{S} if $a \models^{\mathcal{S}} \psi$ for some a.
- \mathcal{S} is a model of ψ, written $\models^{\mathcal{S}} \psi$ if every assignment for \mathcal{S} satisfies ψ.
- ψ is valid, or a tautology if ψ valid for every mode. Write $\models \psi$
- ψ_{1} logically equivalent to ψ_{2} if for all structures \mathcal{S} and assignments a, $a \models^{\mathcal{S}} \psi_{1}$ iff $a \models^{\mathcal{S}} \psi_{2}$

Sample Tautologies

All instances of propositional tautologies

Sample Tautologies

All instances of propositional tautologies

$$
\models(\exists x \cdot \forall y \cdot(y \leq x)) \Rightarrow(\forall y \cdot \exists x \cdot(y \leq x))
$$

Sample Tautologies

All instances of propositional tautologies

$$
\begin{gathered}
\models(\exists x \cdot \forall y \cdot(y \leq x)) \Rightarrow(\forall y \cdot \exists x \cdot(y \leq x)) \\
\models((\forall x \cdot \forall y \cdot \psi) \Leftrightarrow(\forall y \cdot \forall x \cdot \psi)) \\
\models((\forall x \cdot \psi) \Rightarrow(\exists x \cdot \psi))
\end{gathered}
$$

Sample Tautologies

All instances of propositional tautologies

$$
\begin{gathered}
\models(\exists x \cdot \forall y \cdot(y \leq x)) \Rightarrow(\forall y \cdot \exists x \cdot(y \leq x)) \\
\models((\forall x \cdot \forall y \cdot \psi) \Leftrightarrow(\forall y \cdot \forall x \cdot \psi)) \\
\models((\forall x \cdot \psi) \Rightarrow(\exists x \cdot \psi)) \\
\models\left(\forall x \cdot \psi_{1} \wedge \psi_{2}\right) \Leftrightarrow\left(\left(\forall x \cdot \psi_{1}\right) \wedge\left(\forall x \cdot \psi_{2}\right)\right) \\
\left(\exists x \cdot \psi_{1} \wedge \psi_{2}\right) \Rightarrow\left(\left(\exists x \cdot \psi_{1}\right) \wedge\left(\exists x \cdot \psi_{2}\right)\right)
\end{gathered}
$$

Sample Tautologies

All instances of propositional tautologies

$$
\begin{gathered}
\models(\exists x \cdot \forall y \cdot(y \leq x)) \Rightarrow(\forall y \cdot \exists x \cdot(y \leq x)) \\
\quad \models((\forall x \cdot \forall y \cdot \psi) \Leftrightarrow(\forall y \cdot \forall x \cdot \psi))
\end{gathered}
$$

Free Variables: Terms

Informally: free variables of a expression are variables that have an occurrence in an expression that is not bound. Written $f v(e)$ for expression e
Free variables of terms defined by structural induction over terms; written

- $f v(x)=\{x\}$
- $f v\left(f\left(t_{1}, \ldots, t_{n}\right)=\bigcup_{i=1, \ldots, n} f v\left(t_{i}\right)\right.$

Note:

- Free variables of term just variables occurring in term; no bound variables
- No free variables in constants
- Example: $f v(\operatorname{add}(1, a b s(x)))=\{x\}$

