
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

February 2, 2013

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 1

/ 16

First Order Logic vs Propositional Logic

First Order Logic extends Propositional Logic with

Non-boolean constant

Variables

Functions and relations (or predicates, more generally)

Quantification of variables

Sample first order formula:

∀x .∃y .x < y ∧ y ≤ x + 1

Reference: Peled, Software Reliability Methods, Chapter 3

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 2

/ 16

Signatures

Start with signature:
G = (V ,F , af ,R, ar)

V a countably infinite set of variables

F finite set of function symbols

af : F → N gives the arity, the number of arguments for each
function Constant c a function symbol of arity 0 (af (c) = 0)

R finite set of relation symbols

ar : R → N, the arity for each relation symbol

Assumes = ∈ R and ar(=) = 2

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 3

/ 16

Terms over Signature

Terms t are expressions built over a signature (V ,F , af ,R, ar)

t ::= v v ∈ V
| f (t1, . . . , tn) f ∈ F and n = af (f)

Example: add(1, abs(x)) where add , abs, 1 ∈ F ; x ∈ V

For constant c write c instead of c()

Will write s = t instead of = (s, t)

Similarly for other common infixes (e.g. +, −, ∗, <, ≤, . . .)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 4

/ 16

Structures

Meaning of terms starts with a structure:

S = (G,D,F , φ,R, ρ)

where

G = (V ,F , af ,R, ar) a signature,

D and domain on interpretation

F set of functions over D; F ⋃n≥0Dn → D
Note: F can contain elements of D since D = (D0 → D)

φ : F → F where if φ(f) ∈ (Dn → D) then n = af (f)

R set of relations over D; R ⊆ ⋃n≥1 P(Dn)

ρ : R → R where if ρ(r) ⊆ Dn then n = ar(r)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 5

/ 16

Assignments

V set of variables, D domain of interpretation
An assignment is a function a : V → D
Example:

V = {w , x , y , z}

a = {w 7→ 3.14, x 7→ −2.75, y 7→ 13.9, z 7→ −25.3}

Assignment is a fixed association of values to variables; not
“update-able”

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 6

/ 16

Interpretation of Terms

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For give assignment a : V → D, the interpretation Ta of a term t is
defined by structural induction on terms:

Ta(v) = a(v) for v ∈ V

Ta(f (t1, . . . , tn)) = φ(f)(Ta(t1), . . . , Ta(tn))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 7

/ 16

Example of Interpretation

V = {w , x , y , z}, D = R
1, add , abs ∈ F , constant 1, and functions (in F) for addition and
absolute value respectively

a = {w 7→ 3.14, x 7→ −2.75, y 7→ 13.9, z 7→ −25.3}

Ta(add(1, abs(x))) = (Ta(1)) + (Ta(abs(x)))
= 1.0 + (Ta(abs(x)))
= 1.0 + |Ta(x)|
= 1.0 + |a(x)|
= 1.0 + | − 2.75|
= 1.0 + 2.75
= 3.75

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 8

/ 16

First-Order Formulae

First-order formulae built from terms using relations, logical connectives,
quantifiers:

form ::= true | false
| r(t1, . . . , tn) r ∈ R, ti terms, n = ar(r)
| (form) | ¬form
| form ∧ form
| form ∨ form
| form⇒ form
| form⇔ form
| ∀v .form
| ∃v .form

Note: Scope of quantifiers as far to right as possible

∀x .(x > y) ∧ (2 > x) same as ∀x .(x > y) ∧ (2 > x)
not same as (∀x .(x > y)) ∧ (2 > x)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 9

/ 16

Subformulae

A subformula of formula ψ is a formula the occurs in ψ

More rigorous definition by structural induction on formulae
ψ subformula of ψ
Use proper subformula to exclude ψ

Write
∧

i=1,...,n ψi for ψ1 ∧ . . . ∧ ψn

ψi called a conjunct

Write
∨

i=1,...,n ψi for ψ1 ∨ . . . ∨ ψn

ψi called a disjunct

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 10

/ 16

Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For give assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , T (tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 11

/ 16

Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For give assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , T (tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 11

/ 16

Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For give assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , T (tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 11

/ 16

Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For give assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , T (tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 11

/ 16

Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For give assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , T (tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 11

/ 16

Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For give assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , T (tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 11

/ 16

Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For give assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , T (tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 11

/ 16

Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For give assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , T (tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 11

/ 16

Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

Let

a + [v 7→ d](w) =

{
d if w = v
a(w) if w 6= v

Ma(∀v .ψ) = T if for every d ∈ D we have Ma+[v 7→d](ψ) = T, and
Ma(∀v .ψ) = F otherwise

Ma(∃v .ψ) = T if there exists d ∈ D such that Ma+[v 7→d](ψ) = T,
and Ma(∀v .ψ) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 12

/ 16

Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

Let

a + [v 7→ d](w) =

{
d if w = v
a(w) if w 6= v

Ma(∀v .ψ) = T if for every d ∈ D we have Ma+[v 7→d](ψ) = T, and
Ma(∀v .ψ) = F otherwise

Ma(∃v .ψ) = T if there exists d ∈ D such that Ma+[v 7→d](ψ) = T,
and Ma(∀v .ψ) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 12

/ 16

Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

Let

a + [v 7→ d](w) =

{
d if w = v
a(w) if w 6= v

Ma(∀v .ψ) = T if for every d ∈ D we have Ma+[v 7→d](ψ) = T, and
Ma(∀v .ψ) = F otherwise

Ma(∃v .ψ) = T if there exists d ∈ D such that Ma+[v 7→d](ψ) = T,
and Ma(∀v .ψ) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 12

/ 16

Modeling First-order Formulae

Given structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

(S,M) model for first-order language over signature G
Truth of formulae in language over signature G depends on structure
S
Assignment a models ψ, or a satisfies ψ, or a |=S ψ if Ma(ψ) = T

ψ is valid for S if a |=S ψ for some a.

S is a model of ψ, written |=S ψ if every assignment for S satisfies ψ.

ψ is valid, or a tautology if ψ valid for every mode. Write |= ψ

ψ1 logically equivalent to ψ2 if for all structures S and assignments a,
a |=S ψ1 iff a |=S ψ2

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 13

/ 16

Examples

Assignment {x 7→ 0} satisfies ∃y .x < y valid in interval [0, 1];
assignment {x 7→ 1} doesn’t

∀x .∃y .x < y valid in N and R, but not interval [0, 1]

(∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x)) tautology

Why?

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 14

/ 16

Sample Tautologies

All instances of propositional tautologies

|= (∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x))

|= ((∀x .∀y .ψ)⇔ (∀y .∀x .ψ))

|= ((∀x .ψ)⇒ (∃x .ψ))

|= (∀x .ψ1 ∧ ψ2)⇔ ((∀x .ψ1) ∧ (∀x .ψ2))

(∃x .ψ1 ∧ ψ2)⇒ ((∃x .ψ1) ∧ (∃x .ψ2))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 15

/ 16

Sample Tautologies

All instances of propositional tautologies

|= (∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x))

|= ((∀x .∀y .ψ)⇔ (∀y .∀x .ψ))

|= ((∀x .ψ)⇒ (∃x .ψ))

|= (∀x .ψ1 ∧ ψ2)⇔ ((∀x .ψ1) ∧ (∀x .ψ2))

(∃x .ψ1 ∧ ψ2)⇒ ((∃x .ψ1) ∧ (∃x .ψ2))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 15

/ 16

Sample Tautologies

All instances of propositional tautologies

|= (∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x))

|= ((∀x .∀y .ψ)⇔ (∀y .∀x .ψ))

|= ((∀x .ψ)⇒ (∃x .ψ))

|= (∀x .ψ1 ∧ ψ2)⇔ ((∀x .ψ1) ∧ (∀x .ψ2))

(∃x .ψ1 ∧ ψ2)⇒ ((∃x .ψ1) ∧ (∃x .ψ2))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 15

/ 16

Sample Tautologies

All instances of propositional tautologies

|= (∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x))

|= ((∀x .∀y .ψ)⇔ (∀y .∀x .ψ))

|= ((∀x .ψ)⇒ (∃x .ψ))

|= (∀x .ψ1 ∧ ψ2)⇔ ((∀x .ψ1) ∧ (∀x .ψ2))

(∃x .ψ1 ∧ ψ2)⇒ ((∃x .ψ1) ∧ (∃x .ψ2))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 15

/ 16

Sample Tautologies

All instances of propositional tautologies

|= (∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x))

|= ((∀x .∀y .ψ)⇔ (∀y .∀x .ψ))

|= ((∀x .ψ)⇒ (∃x .ψ))

|= (∀x .ψ1 ∧ ψ2)⇔ ((∀x .ψ1) ∧ (∀x .ψ2))

(∃x .ψ1 ∧ ψ2)⇒ ((∃x .ψ1) ∧ (∃x .ψ2))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 15

/ 16

Sample Tautologies

All instances of propositional tautologies

|= (∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x))

|= ((∀x .∀y .ψ)⇔ (∀y .∀x .ψ))

|= ((∀x .ψ)⇒ (∃x .ψ))

|= (∀x .ψ1 ∧ ψ2)⇔ ((∀x .ψ1) ∧ (∀x .ψ2))

(∃x .ψ1 ∧ ψ2)⇒ ((∃x .ψ1) ∧ (∃x .ψ2))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 15

/ 16

Free Variables: Terms

Informally: free variables of a expression are variables that have an
occurrence in an expression that is not bound. Written fv(e) for
expression e
Free variables of terms defined by structural induction over terms; written

fv(x) = {x}
fv(f (t1, . . . , tn) =

⋃
i=1,...,n fv(ti)

Note:

Free variables of term just variables occurring in term; no bound
variables

No free variables in constants

Example: fv(add(1, abs(x))) = {x}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 2, 2013 16

/ 16

