
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

February 3, 2013

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 1

/ 21

Getting Started with Isabelle

Choice

Use Isabelle on EWS
Install on your machine
Both

On EWS

Assuming you are running an X client, log in to EWS:

ssh -Y <netid >@remlnx.ews.illinois.edu

-Y used to forward X packets securely

To start Isabelle with emacs and ProofGeneral

/class/cs477/bin/isabelle emacs

To start Isabelle with jedit

/class/cs477/bin/isabelle jedit

Will assume emacs and ProofGeneral here

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 2

/ 21

My First Theory File

File name: my theory.thy

Contents:

theory My_theory

imports Main

begin

thm impI

lemma trivial: "A A"

apply (rule impI)

apply assumption

done (* of lemma *)

thm trivial

end (* of theory file *)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 3

/ 21

Overview of Isabelle/HOL

HOL = Higher-Order Logic

HOL = Types + Lambda Calculus + Logic

HOL has

datatypes
recursive functions
logical operators (∧, ∨, ¬, −→, ∀, ∃, . . .)

Contains propositional logic, first-order logic

HOL is very similar to a functional programming language

Higher-order = functions are values, too!

Well start with propositional logic

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 4

/ 21

Formulae (first Approximation)

Syntax (in decreasing priority):

form ::= (form) | term = term
| ¬form | form ∧ form
| form ∨ form | form −→ form
| ∀x . form | ∃x . form

and some others

Scope of quantifiers: as far tot he right as possible

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 5

/ 21

Examples

¬A ∧ B ∨ C ≡ ((¬A) ∧ B) ∨ C

A ∧ B = C ≡ A ∧ (B = C)

∀x. P x ∧ Q x ≡ ∀x. (P x ∧ Q x)

∀x.∃y. P x y ∧ Q x ≡ ∀x.(∃y. (P x y ∧ Q x))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 6

/ 21



Proofs

General schema:

lemma name: "..."

apply (...)
...
done

First . . . theorem statement
(. . . ) are proof methods

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 7

/ 21

Top-down Proofs

sorry

“completes” any proof (by giving up, and accepting it)

Suitable for top-down development of theories:

Assume lemmas first, prove them later.

Only allowed for interactive proof!

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 8

/ 21

Isabelle Syntax

Distinct from HOL syntax

Contains HOL syntax within it

Also the same as HOL - need to not confuse them

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 9

/ 21

Theory = Module

Syntax:
theory MyTh
imports ImpTh1 . . . ImpThn

begin

declarations, definitions, theorems, proofs, . . .
end

MyTh: name of theory being built. Must live in file MyTh.thy.

ImpThi : name of imported theories. Importing is transitive.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 10

/ 21

Meta-logic: Basic Constructs

Implication: =⇒ (==>)
For separating premises and conclusion of theorems / rules

Equality: ≡ (==)
For definitions

Universal Quantifier: Λ (!!)
Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 11

/ 21

Rule/Goal Notation

[|A1; . . . ;An|] =⇒ B

abbreviates
A1 =⇒ . . . =⇒ An =⇒ B

and means the rule (or potential rule):

A1; . . . ;An

B

; ≈ “and”

Note: A theorem is a rule; a rule is a theorem.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 12

/ 21



The Proof/Goal State

1. Λx1 . . . xm. [|A1; . . . ;An|] =⇒ B

x1 . . . xm Local constants (fixed variables)

A1 . . .An Local assumptions

B Actual (sub)goal

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 13

/ 21

Proof Basics

Isabelle uses Natural Deduction proofs

Uses (modified) sequent encoding

Rule notation:

Rule Sequent Encoding
A1 . . . An

A
[|A1, . . . , An|] =⇒ A

A1 . . .

B
...
Ai . . . An

A

[|A1, . . . , B =⇒ Ai, . . . , An|] =⇒ A

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 14

/ 21

Natural Deduction

For each logical operator ⊕, have two kinds of rules:

Introduction: How can I prove A⊕ B?

?
A⊕ B

Elimination: What can I prove using A⊕ B?

. . .A⊕ B . . .

?

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 15

/ 21

Operational Reading

A1 . . .An

A

Introduction rule:
To prove A it suffices to prove A1 . . .An.

Elimination rule:
If we know A1 and we want to prove A

it suffices to prove A2 . . .An

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 16

/ 21

Natural Deduction for Propositional Logic

A B
conjI

A ∧ B
A ∧ B [|A; B|] =⇒ C

conjE
C

A

A ∨ B
B

disjI1/2
A ∨ B

A ∨ B A =⇒ C B =⇒ C
disjE

c

A =⇒ B
impI

A −→ B

A −→ B A B =⇒ C
impE

C

A =⇒ False
notI

¬A
¬A A

notE
B

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 17

/ 21

Natural Deduction for Propositional Logic

A =⇒ B B =⇒ A
iffI

A = B

A = B A
iffD1

B

A = B B
iffD2

A

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 18

/ 21



More Rules

A ∧ B
conjunct1

A

A ∧ B
conjunct2

B

A −→ B A
mp

B

Compare to elimination rules:

A ∧ B [|A; B|] =⇒ C
conjE

C

A −→ B A B =⇒ C
impE

C

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 19

/ 21

“Classical” Rules

6 A =⇒ False
ccontr

A

6 A =⇒ A
classical

A

ccontr and classical are not derivable from the Natural Deduction
rules.

They make the logic “classical”, i.e. “non-constructive or
“non-intuitionistic”.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 20

/ 21

Proof by Assumption

A1 . . . Ai . . . An

Ai

Proof method: assumption

Use:

apply assumption

Proves:
[|A1; . . . ; An|] =⇒ A

by unifying A with one of the Ai

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 21

/ 21

Rule Application: The Rough Idea

Applying rule [|A1; . . . ; An|] =⇒ A to subgoal C :

Unify A and C

Replace C with n new subgoals: A′
1 . . . A′

n

Backwards reduction, like in Prolog
Example: rule: [|?P; ?Q|] =⇒?P∧?Q

subgoal: 1. A ∧ B
Result: 1. A2. B

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 22

/ 21

Rule Application: More Complete Idea

Applying rule [|A1; . . . ; An|] =⇒ A to subgoal C :

Unify A and C with (meta)-substitution σ

Specialize goal to σ(C )

Replace C with n new subgoals: σ(A1) . . . σ(An)

Note: schematic variables in C treated as existential variables
Does there exist value for ?X in C that makes C true?
(Still not the whole story)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 23

/ 21

rule Application

Rule: [|A1; . . . ; An|] =⇒ A

Subgoal: 1. [|B1; . . . ; Bm|] =⇒ C

Substitution: σ(A) ≡ σ(C )

New subgoals: 1. [|σ(B1); . . . ;σ(Bm)|] =⇒ σ(A1)
...
n. [|σ(B1); . . . ;σ(Bm)|] =⇒ σ(An)

Proves: [|σ(B1); . . . ;σ(Bm)|] =⇒ σ(C )
Command: apply (rule <rulename>)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 24

/ 21



Applying Elimination Rules

apply (erule <elim-rule>)

Like rule but also

unifies first premise of rule with an assumption

eliminates that assumption instead of conclusion

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 25

/ 21

Example

Rule: [|?P∧?Q; [|?P; ?Q|] =⇒?R|] =⇒?R

Subgoal: 1. [|X; A ∧ B; Y|] =⇒ Z

Unification: ?P∧?Q ≡ A ∧ B and ?R ≡ Z

New subgoal: 1. [|X; Y|] =⇒ [|A; B|] =⇒ Z

Same as: 1.[|X; Y; A; B|] =⇒ Z

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 3, 2013 26

/ 21


