

## Formulae (first Approximation)

- Syntax (in decreasing priority):

| form | $:=$ | $($ form $)$ |
| :--- | :--- | :--- |
|  | $\neg$ form | term $=$ term |
|  |  | form $\vee$ form $\wedge$ form |
|  | $\forall x$. form $\longrightarrow$ form | $\exists x$. form |
|  |  |  |
|  | and some others |  |

- Scope of quantifiers: as far tot he right as possible

Getting Started with Isabelle

- Choice
- Use Isabelle on EWS
- Install on your machine
- Both
- On EWS
- Assuming you are running an $X$ client, log in to EWS: ssh -Y <netid>@remlnx.ews.illinois.edu
- -Y used to forward X packets securely
- To start Isabelle with emacs and ProofGeneral /class/cs477/bin/isabelle emacs
- To start Isabelle with jedit
/class/cs477/bin/isabelle jedit
- Will assume emacs and ProofGeneral here


## Overview of Isabelle/HOL

- HOL $=$ Higher-Order Logic
- $\mathrm{HOL}=$ Types + Lambda Calculus + Logic
- HOL has
- datatypes
- recursive functions
- logical operators ( $\wedge, \vee, \neg, \longrightarrow, \forall, \exists, \ldots$ )
- Contains propositional logic, first-order logic
- HOL is very similar to a functional programming language
- Higher-order $=$ functions are values, too!
- Well start with propositional logic


## Examples

- $\neg A \wedge B \vee C \equiv((\neg A) \wedge B) \vee C$
- $A \wedge B=C \equiv A \wedge(B=C)$
- $\forall x . P \times \wedge Q \times \equiv \forall x .(P \times \wedge Q x)$
- $\forall x . \exists y . P \times y \wedge Q x \equiv \forall x .(\exists y .(P \times y \wedge Q x))$


## Proofs

## General schema:

lemma name: "..."
apply (...)
done

First . . . theorem statement
(...) are proof methods

## Isabelle Syntax

- Distinct from HOL syntax
- Contains HOL syntax within it
- Also the same as HOL - need to not confuse them


## Meta-logic: Basic Constructs

## Implication: $\Longrightarrow$ (==>)

For separating premises and conclusion of theorems / rules
Equality: $\equiv(==)$
For definitions

Universal Quantifier: $\wedge$ (!!)
Usually inserted and removed by Isabelle automatically
Do not use inside HOL formulae
Top-down Proofs

## sorry

- "completes" any proof (by giving up, and accepting it)
- Suitable for top-down development of theories:
- Assume lemmas first, prove them later.

Only allowed for interactive proof!

## Theory = Module

## Syntax:

theory MyTh
imports $I m p T h_{1} \ldots I m p T h_{n}$ begin
declarations, definitions, theorems, proofs, ... end

- MyTh: name of theory being built. Must live in file MyTh.thy.
- ImpTh ${ }_{i}$ : name of imported theories. Importing is transitive.


## Rule/Goal Notation

$$
\left[\left|A_{1} ; \ldots ; A_{n}\right|\right] \Longrightarrow B
$$

abbreviates

$$
A_{1} \Longrightarrow \ldots \Longrightarrow A_{n} \Longrightarrow B
$$

and means the rule (or potential rule):

$$
\frac{A_{1} ; \ldots ; A_{n}}{B}
$$

$$
; \quad \text { "and" }
$$

Note: A theorem is a rule; a rule is a theorem.

The Proof/Goal State

1. $\wedge x_{1} \ldots x_{m} .\left[\left|A_{1} ; \ldots ; A_{n}\right|\right] \Longrightarrow B$
$x_{1} \ldots x_{m}$ Local constants (fixed variables)
$A_{1} \ldots A_{n} \quad$ Local assumptions
B Actual (sub)goal

## Natural Deduction

For each logical operator $\oplus$, have two kinds of rules:
Introduction: How can I prove $A \oplus B$ ?

$$
\frac{?}{A \oplus B}
$$

Elimination: What can I prove using $A \oplus B$ ?

$$
\frac{\ldots A \oplus B \ldots}{?}
$$

## Proof Basics

- Isabelle uses Natural Deduction proofs
- Uses (modified) sequent encoding
- Rule notation:

$$
\begin{aligned}
& \text { Rule } \\
& \frac{A_{1} \ldots A_{n}}{A} \\
& \text { Sequent Encoding } \\
& \llbracket A_{1}, \ldots, A_{n} \rrbracket \Longrightarrow A \\
& \text { B } \\
& \frac{\mathrm{A}_{1} \ldots \overline{\overline{A_{i}}} \ldots \mathrm{~A}_{\mathrm{n}}}{\mathrm{~A}} \\
& \llbracket A_{1}, \ldots, B \Longrightarrow A_{i}, \ldots, A_{n} \rrbracket \Longrightarrow A
\end{aligned}
$$

## Operational Reading

$$
\frac{A_{1} \ldots A_{n}}{A}
$$

Introduction rule:
To prove $A$ it suffices to prove $A_{1} \ldots A_{n}$.
Elimination rule:
If we know $A_{1}$ and we want to prove $A$ it suffices to prove $A_{2} \ldots A_{n}$

$$
\begin{aligned}
\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A=B} & \text { iffI } \quad \\
& \frac{A=B A}{B} \text { iffD1 } \\
& \frac{A=B \quad B}{A} \text { iffD2 }
\end{aligned}
$$

More Rules

$$
\begin{gathered}
\frac{A \wedge B}{A} \text { conjunct1 } \frac{A \wedge B}{B} \text { conjunct2 } \\
\frac{A \longrightarrow B A}{B} m p
\end{gathered}
$$

Compare to elimination rules:

$$
\frac{\mathrm{A} \wedge \mathrm{~B}\lfloor\mathrm{~A} ; \mathrm{B} \rrbracket \Longrightarrow \mathrm{C}}{\mathrm{C}} \operatorname{conjE} \quad \frac{\mathrm{~A} \longrightarrow \mathrm{BAB} \Longrightarrow \mathrm{C}}{\mathrm{C}} \mathrm{impE}
$$

## Proof by Assumption

$$
\frac{\mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{i}} \ldots \mathrm{~A}_{\mathrm{n}}}{\mathrm{~A}_{\mathrm{i}}}
$$

- Proof method: assumption
- Use:
apply assumption
- Proves:

$$
\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A
$$

by unifying $A$ with one of the $A_{i}$

## Rule Application: More Complete Idea

Applying rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ to subgoal $C$ :

- Unify $A$ and $C$ with (meta)-substitution $\sigma$
- Specialize goal to $\sigma(C)$
- Replace $C$ with $n$ new subgoals: $\sigma\left(A_{1}\right) \ldots \sigma\left(A_{n}\right)$

Note: schematic variables in $C$ treated as existential variables
Does there exist value for ? $X$ in $C$ that makes $C$ true?
(Still not the whole story)

## "Classical" Rules

$$
\frac{A \Longrightarrow \text { False }}{\mathrm{A}} \text { ccontr } \quad \frac{A \Longrightarrow \mathrm{~A}}{\mathrm{~A}} \text { classical }
$$

- ccontr and classical are not derivable from the Natural Deduction rules.
- They make the logic "classical", i.e. "non-constructive or "non-intuitionistic".


## Rule Application: The Rough Idea

Applying rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ to subgoal $C$ :

- Unify $A$ and $C$
- Replace $C$ with $n$ new subgoals: $A_{1}^{\prime} \ldots A_{n}^{\prime}$

Backwards reduction, like in Prolog
Example: rule: $\llbracket ? \mathrm{P} ; ? \mathrm{Q} \rrbracket \Longrightarrow ? \mathrm{P} \wedge$ ?Q
subgoal: 1. $\mathrm{A} \wedge \mathrm{B}$
Result: 1. A2. B

## Application

## Rule:

$$
\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A
$$

Subgoal:

$$
\text { 1. } \llbracket B_{1} ; \ldots ; B_{m} \rrbracket \Longrightarrow C
$$

Substitution: $\quad \sigma(A) \equiv \sigma(C)$
New subgoals: $\quad$ 1. $\llbracket \sigma\left(B_{1}\right) ; \ldots ; \sigma\left(B_{m}\right) \rrbracket \Longrightarrow \sigma\left(A_{1}\right)$

Proves:
Command:

$$
\text { n. } \llbracket \sigma\left(B_{1}\right) ; \ldots ; \sigma\left(B_{m}\right) \rrbracket \Longrightarrow \sigma\left(A_{n}\right)
$$

$\llbracket \sigma\left(B_{1}\right) ; \ldots ; \sigma\left(B_{m}\right) \rrbracket \Longrightarrow \sigma(C)$ apply (rule <rulename>)

Applying Elimination Rules
apply (erule <elim-rule>)
Like rule but also

- unifies first premise of rule with an assumption
- eliminates that assumption instead of conclusion


## Example

| Rule: | $\llbracket ? \mathrm{P} \wedge ? \mathrm{Q} ; \llbracket ? \mathrm{P} ; ? \mathrm{Q} \rrbracket \Longrightarrow ? \mathrm{R} \rrbracket \Longrightarrow ? \mathrm{R}$ |
| :--- | :--- |
| Subgoal: | $1 . \llbracket \mathrm{X} ; \mathrm{A} \wedge \mathrm{B} ; \mathrm{Y} \rrbracket \Longrightarrow \mathrm{Z}$ |
| Unification: | $? \mathrm{P} \wedge \cap ? \mathrm{Q} \equiv A \wedge B$ and $? \mathrm{R} \equiv \mathrm{Z}$ |
| New subgoal: | $1 . \llbracket \mathrm{X} ; \mathrm{Y} \rrbracket \Longrightarrow \llbracket \mathrm{A} ; \mathrm{B} \rrbracket \Longrightarrow \mathrm{Z}$ |
| Same as: | $1 . \llbracket \mathrm{X} ; \mathrm{Y} ; \mathrm{A} ; \mathrm{B} \rrbracket \Longrightarrow \mathrm{Z}$ |

Rule: $\quad\|? \mathrm{P} \wedge ? \mathrm{Q} ;\| ? \mathrm{P} ; \mathrm{?Q} \rrbracket \Longrightarrow ? \mathrm{R} \rrbracket \Longrightarrow$ ?R
Subgoal: $\quad$ 1. $\llbracket \mathrm{X} ; \mathrm{A} \wedge \mathrm{B} ; \mathrm{Y} \rrbracket \Longrightarrow \mathrm{Z}$

Unification: $\quad ? P \wedge ? Q \equiv A \wedge B$ and $? R \equiv Z$

Same as: $\quad$ 1. $[\mathrm{X} ; \mathrm{Y} ; \mathrm{A} ; \mathrm{B}] \Longrightarrow \mathrm{Z}$

