CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

February 1, 2013

Assumptions in Natural Deduction

- Problem: Keeping track of hypotheses and their discharge in Natural Deduction is HARD!
- Solution: Use sequents to track hypotheses
- A sequent is a pair of
- A set of propositions (called assumptions, or hypotheses of sequent) and
- A proposition (called conclusion of sequent)
- More generally (not here), allow set of hypotheses and set of conclusions

Nat. Ded. Introduction Sequent Rules

「 is set of propositions (assumptions/hypotheses) Hypothesis Introduction:

$$
\overline{\Gamma \cup\{A\} \vdash A} \mathrm{Hyp}
$$

Truth Introduction:

$$
\overline{\Gamma \vdash \mathbf{T}}^{\mathbf{T}} \mathbf{I}
$$

And Introduction:

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}
$$

Or Introduction:

$$
\frac{\Gamma \vdash A}{\Gamma \vdash A \vee B} \operatorname{Or}_{L} I \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \vee B} \operatorname{Or}_{R} I
$$

Not Introduction:

$$
\frac{\Gamma \cup\{A\} \vdash \mathbf{F}}{\Gamma \vdash \neg A}
$$

Implication Introduction:

$$
\frac{\Gamma \cup\{A\} \vdash B}{\Gamma \vdash A \Rightarrow B} \operatorname{Imp} \mathrm{I}
$$

Nat. Ded. Elimination Sequent Rules

Γ is set of propositions (assumptions/hypotheses)
Not Elimination: Implication Elimination:

$$
\frac{\Gamma \vdash \neg A \quad \Gamma \vdash A}{\Gamma \vdash C} \operatorname{Not} \mathrm{E} \quad \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A \quad \Gamma \cup\{B\} \vdash C}{\Gamma \vdash C} \operatorname{Imp} \mathrm{E}
$$

And Elimination:

$$
\frac{\Gamma \vdash A \wedge B \Gamma \cup\{A\} \vdash C}{\Gamma \vdash C} \operatorname{And}_{L} \mathrm{E} \quad \frac{\Gamma \vdash A \wedge B \Gamma \cup\{B\} \vdash C}{\Gamma \vdash C} \operatorname{And}_{R} \mathrm{E}
$$

False Elimination:
Or Elimination:

$$
\frac{\Gamma \vdash \mathbf{F}}{\Gamma \vdash C} \mathbf{F E} \quad \frac{\Gamma \vdash A \vee B \quad \Gamma \cup\{A\} \vdash C \quad \Gamma \cup\{B\} \vdash C}{\Gamma \vdash C} \text { Or } \mathrm{E}
$$

Example Proof 4, Revisited

$\} \vdash(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))$

Example Proof 4, Revisited

$$
\Gamma_{1}=\{A \Rightarrow B\}
$$

$$
\begin{gathered}
\Gamma_{1} \vdash(B \Rightarrow C) \Rightarrow(A \Rightarrow C) \\
\} \vdash(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))
\end{gathered}
$$

Example Proof 4, Revisited

$$
\begin{aligned}
& \Gamma_{1}=\{A \Rightarrow B\} \\
& \Gamma_{2}=\{A \Rightarrow B, B \Rightarrow C\}
\end{aligned}
$$

$$
\begin{gathered}
\Gamma_{2} \vdash A \Rightarrow C \\
\Gamma_{1} \vdash(B \Rightarrow C) \Rightarrow(A \Rightarrow C) \\
\} \vdash(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))
\end{gathered}
$$

Example Proof 4, Revisited

$$
\begin{aligned}
& \Gamma_{1}=\{A \Rightarrow B\} \\
& \Gamma_{2}=\{A \Rightarrow B, B \Rightarrow C\} \\
& \Gamma_{3}=\{A \Rightarrow B, B \Rightarrow C, A\}
\end{aligned}
$$

$$
\Gamma_{3} \vdash C
$$

$$
\Gamma_{2} \vdash A \Rightarrow C
$$

$$
\Gamma_{1} \vdash(B \Rightarrow C) \Rightarrow(A \Rightarrow C)
$$

$$
\} \vdash(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))
$$

Example Proof 4, Revisited

$$
\begin{aligned}
& \Gamma_{1}=\{A \Rightarrow B\} \\
& \Gamma_{2}=\{A \Rightarrow B, B \Rightarrow C\} \\
& \Gamma_{3}=\{A \Rightarrow B, B \Rightarrow C, A\} \\
& \Gamma_{4}=\{A \Rightarrow B, B \Rightarrow C, A, B\}
\end{aligned}
$$

$$
\Gamma_{3} \vdash A \Rightarrow B \quad \Gamma_{3} \vdash A \quad \Gamma_{4} \vdash C
$$

$$
\Gamma_{3} \vdash C
$$

$$
\Gamma_{2} \vdash A \Rightarrow C
$$

$$
\Gamma_{1} \vdash(B \Rightarrow C) \Rightarrow(A \Rightarrow C)
$$

$$
\} \vdash(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))
$$

Example Proof 4, Revisited

$$
\begin{aligned}
& \Gamma_{1}=\{A \Rightarrow B\} \\
& \Gamma_{2}=\{A \Rightarrow B, B \Rightarrow C\} \\
& \Gamma_{3}=\{A \Rightarrow B, B \Rightarrow C, A\} \\
& \Gamma_{4}=\{A \Rightarrow B, B \Rightarrow C, A, B\}
\end{aligned}
$$

$\frac{\text { Hyp }}{\Gamma_{3} \vdash A \Rightarrow B} \quad \overline{\Gamma_{3} \vdash A} \quad \Gamma_{4} \vdash C$

$$
\Gamma_{3} \vdash C
$$

$$
\Gamma_{2} \vdash A \Rightarrow C
$$

$$
\Gamma_{1} \vdash(B \Rightarrow C) \Rightarrow(A \Rightarrow C)
$$

$$
\} \vdash(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))
$$

Example Proof 4, Revisited

$$
\begin{aligned}
& \Gamma_{1}=\{A \Rightarrow B\} \\
& \Gamma_{2}=\{A \Rightarrow B, B \Rightarrow C\} \\
& \Gamma_{3}=\{A \Rightarrow B, B \Rightarrow C, A\} \\
& \Gamma_{4}=\{A \Rightarrow B, B \Rightarrow C, A, B\}
\end{aligned}
$$

$$
\Gamma_{4} \vdash C
$$

$$
\Gamma_{3} \vdash C
$$

$\Gamma_{2} \vdash A \Rightarrow C$

$$
\frac{\Gamma_{1} \vdash(B \Rightarrow C) \Rightarrow(A \Rightarrow C)}{\} \vdash(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))}
$$

Example Proof 4, Revisited

$$
\begin{aligned}
& \Gamma_{1}=\{A \Rightarrow B\} \\
& \Gamma_{2}=\{A \Rightarrow B, B \Rightarrow C\} \\
& \Gamma_{3}=\{A \Rightarrow B, B \Rightarrow C, A\} \\
& \Gamma_{4}=\{A \Rightarrow B, B \Rightarrow C, A, B\} \\
& \Gamma_{5}=\{A \Rightarrow B, B \Rightarrow C, A, B, C\}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\text { Hyp }}{\overline{\Gamma_{3} \vdash A \Rightarrow B}} \frac{\overline{H y p}}{\Gamma_{3} \vdash A} \\
\frac{\overline{\Gamma_{4} \vdash B \Rightarrow C} \overline{\Gamma_{4} \vdash B} \overline{\Gamma_{5} \vdash C}}{\Gamma_{3} \vdash C} \operatorname{ImpE} \\
\Gamma_{4} \vdash C \\
I m p E
\end{gathered}
$$

$$
\Gamma_{2} \vdash A \Rightarrow C
$$

$$
\Gamma_{1} \vdash(B \Rightarrow C) \Rightarrow(A \Rightarrow C)
$$

$$
\} \vdash(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))
$$

Example Proof 4, Revisited

$$
\begin{aligned}
& \Gamma_{1}=\{A \Rightarrow B\} \\
& \Gamma_{2}=\{A \Rightarrow B, B \Rightarrow C\} \\
& \Gamma_{3}=\{A \Rightarrow B, B \Rightarrow C, A\} \\
& \Gamma_{4}=\{A \Rightarrow B, B \Rightarrow C, A, B\} \\
& \Gamma_{5}=\{A \Rightarrow B, B \Rightarrow C, A, B, C\}
\end{aligned}
$$

Hyp
$\frac{\text { Hyp }}{\overline{\Gamma_{3} \vdash A \Rightarrow B}} \frac{\frac{\text { Hyp }}{\Gamma_{3} \vdash A}}{} \frac{\overline{\Gamma_{4} \vdash B \Rightarrow C}}{\overline{\Gamma_{4} \vdash B}} \overline{\Gamma_{5} \vdash C}$
$\Gamma_{4} \vdash C$

$\Gamma_{3} \vdash C$

$$
\Gamma_{2} \vdash A \Rightarrow C
$$

$$
\Gamma_{1} \vdash(B \Rightarrow C) \Rightarrow(A \Rightarrow C)
$$

$$
\} \vdash(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))
$$

Example Proof 4, Revisited

$$
\begin{aligned}
& \Gamma_{1}=\{A \Rightarrow B\} \\
& \Gamma_{2}=\{A \Rightarrow B, B \Rightarrow C\} \\
& \Gamma_{3}=\{A \Rightarrow B, B \Rightarrow C, A\} \\
& \Gamma_{4}=\{A \Rightarrow B, B \Rightarrow C, A, B\} \\
& \Gamma_{5}=\{A \Rightarrow B, B \Rightarrow C, A, B, C\}
\end{aligned}
$$

$\frac{\text { Hyp }}{\Gamma_{3} \vdash A \Rightarrow B}$	$\frac{\text { Hyp }}{\Gamma_{3} \vdash A}$	$\frac{\text { Hyp }}{\Gamma_{4} \vdash B \Rightarrow C}$	$\frac{\text { Hyp }}{\Gamma_{4} \vdash B}$	$\overline{\Gamma_{5} \vdash C}$
$\Gamma_{4} \vdash C$				
$\Gamma_{3} \vdash C$				

$$
\Gamma_{2} \vdash A \Rightarrow C
$$

$$
\Gamma_{1} \vdash(B \Rightarrow C) \Rightarrow(A \Rightarrow C)
$$

$$
\} \vdash(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))
$$

Example Proof 4, Revisited

$$
\begin{aligned}
& \Gamma_{1}=\{A \Rightarrow B\} \\
& \Gamma_{2}=\{A \Rightarrow B, B \Rightarrow C\} \\
& \Gamma_{3}=\{A \Rightarrow B, B \Rightarrow C, A\} \\
& \Gamma_{4}=\{A \Rightarrow B, B \Rightarrow C, A, B\} \\
& \Gamma_{5}=\{A \Rightarrow B, B \Rightarrow C, A, B, C\}
\end{aligned}
$$

Hyp	Hyp	Hyp	Hyp	Hyp
		$\Gamma_{4} \vdash B \Rightarrow C$	$\Gamma_{4} \vdash B$	$\Gamma_{5} \vdash C$
$\Gamma_{3} \vdash A \Rightarrow B$	$\Gamma_{3} \vdash$ A		$\vdash C$	

$$
\begin{gathered}
\Gamma_{2} \vdash A \Rightarrow C \\
\Gamma_{1} \vdash(B \Rightarrow C) \Rightarrow(A \Rightarrow C) \\
\} \vdash(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))
\end{gathered}
$$

Introduction to Isabelle/HOL

- Isabelle/HOL is an interactive theorem prover
- Proof guided by human
- Goal-directed reduction (LCF style)
- Core: type of type, term, theorem/inference rule as abstract types in SML
- Secure: every proof built from axioms, defintions, primitive rules of inference
- Programmable: derived rules and proof methods use secure core
- Layered interface (mostly don't need to see SML)

Some Useful Links

- Website for Isabelle:
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
- Isabelle mailing list - to join, send mail to: isabelle-users@cl.cam.ac.uk
- Reference: http://www.cl.cam.ac.uk/Research/HVG/Isabelle/ dist/Isabelle/doc/tutorial.pdf

System Architecture

ProofGeneral*	(X)Emacs based interface
Isar	Isabelle proof scripting language
Isabelle/HOL	Isabelle instance for HOL
Isabelle	generic theorem prover
Standard ML	implementation language

* Also exists jedit interface

Proof General

An Isabelle Interface
by David Aspinall

Proof General

Customized version of (x)emacs:

- All of emacs (info: Ctrl-h i)
- Isabelle aware when editing .thy files
- (Optional) Can use mathematical symbols ("x-symbols")
Interaction:
- via mouse / buttons / pull-down menus
- or keyboard (for key bindings, see Ctrl-h m)

Proof General Input

Input of math symbols in ProofGeneral

- via "standard" ascii name: \&, I, -->, ...
- via ascii encoding (similar to $\operatorname{AT} T_{E X}$):
\<and>, \<or>, ...
- via menu ("X-Symbol")

Symbol Translations

x-symbol	\forall	\exists	λ	\neg	\wedge
ascii (1)	\backslash <forall>	\backslash <exists>	\backslash <lambda>	\backslash <not>	\backslash <and>
ascii (2)	ALL	EX	$\%$	\sim	$\&$

x-symbol	\vee	\longrightarrow	\Rightarrow
ascii (1)	$\backslash<$ or>	$\backslash<$ longrightarrow>	\backslash <Rightarrow>
ascii (2)	\|	$-->$	>>

(1) is converted to x-symbol, (2) remains as ascii See Appendix A of reference for more complete list

Demo 1

Time for a demo of types and terms (and a simple lemma)

Overview of Isabelle/HOL

HOL

- HOL = Higher-Order Logic
- HOL $=$ Types + Lambda Calculus + Logic
- HOL has
- datatypes
- recursive functions
- logical operators ($\wedge, \vee, \longrightarrow, \forall, \exists, \ldots$)
- Contains propositional logic, first-order logic
- HOL is very similar to a functional programming language
- Higher-order $=$ functions are values, too!

Formulae (Approximation)

- Syntax (in decreasing priority):

form	$::=$	$($ form $)$	term $=$ term
	\neg form	form \wedge form	
	form \vee form	form \longrightarrow form	
	$\forall x$. form	$\exists x$. form	
	and some others		

- Scope of quantifiers: as for to right as possible

Examples

- $\neg A \wedge B \vee C \equiv((\neg A) \wedge B) \vee C$
- $A \wedge B=C \equiv A \wedge(B=C)$
- $\forall \mathrm{x} . \mathrm{P} \times \wedge \mathrm{Q} x \equiv \forall \mathrm{x}$. $(\mathrm{P} \times \wedge \mathrm{Q} \times)$
- $\forall \mathrm{x} . \exists \mathrm{y} . \mathrm{P} \times \mathrm{y} \wedge \mathrm{Q} \times \equiv \forall \mathrm{x}$. $(\exists \mathrm{y} .(\mathrm{P} \times \mathrm{y} \wedge \mathrm{Q} \mathrm{x}))$

Proofs

```
General schema:
lemma name: " ..."
apply ( ...)
done
If the lemma is suitable as a simplification rule:
lemma name[simp]: " ..."
Adds lemma name to future simplifications
```


Top-down Proofs

sorry

"completes" any proof (by giving up, and accepting it) Suitable for top-down development of theories:
Assume lemmas first, prove them later.

Only allowed for interactive proof!

