CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

February 1, 2013

Assumptions in Natural Deduction

- Problem: Keeping track of hypotheses and their discharge in Natural Deduction is *HARD*!
- Solution: Use sequents to track hypotheses
- A sequent is a pair of
 - A set of propositions (called assumptions, or hypotheses of sequent) and
 - A proposition (called conclusion of sequent)
- More generally (not here), allow set of hypotheses and set of conclusions

通 と く ヨ と く ヨ と

Nat. Ded. Introduction Sequent Rules

 Γ is set of propositions (assumptions/hypotheses) Hypothesis Introduction:

Nat. Ded. Elimination Sequent Rules

Γ is set of propositions (assumptions/hypotheses) Not Elimination: Implication Elimination:

 $\frac{\Gamma \vdash \neg A \quad \Gamma \vdash A}{\Gamma \vdash C} \text{ Not E} \qquad \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A \quad \Gamma \cup \{B\} \vdash C}{\Gamma \vdash C} \text{ Imp E}$ And Elimination: $\frac{\Gamma \vdash A \land B \quad \Gamma \cup \{A\} \vdash C}{\Gamma \vdash C} \operatorname{And}_{L} \mathsf{E} \qquad \frac{\Gamma \vdash A \land B \quad \Gamma \cup \{B\} \vdash C}{\Gamma \vdash C} \operatorname{And}_{R} \mathsf{E}$ False Elimination: Or Elimination: $\frac{\Gamma \vdash \mathbf{F}}{\Gamma \vdash C} \mathbf{F} \mathbf{E} \qquad \frac{\Gamma \vdash A \lor B \quad \Gamma \cup \{A\} \vdash C \quad \Gamma \cup \{B\} \vdash C}{\Gamma \vdash C} \text{ Or } \mathbf{E}$

日本《國本《日本《日本》書

$\{ \} \vdash (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$

Elsa L Gunter ()

3

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

 $\Gamma_1 = \{A \Rightarrow B\}$

$$\frac{\Gamma_1 \vdash (B \Rightarrow C) \Rightarrow (A \Rightarrow C)}{\{ \} \vdash (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))} \text{Imp I}$$

 $\Gamma_1 = \{A \Rightarrow B\}$ $\Gamma_2 = \{A \Rightarrow B, B \Rightarrow C\}$

$$\frac{\Gamma_2 \vdash A \Rightarrow C}{\Gamma_1 \vdash (B \Rightarrow C) \Rightarrow (A \Rightarrow C)} \qquad \text{Imp I}$$

$$\{ \} \vdash (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$$

æ

$$\begin{split} &\Gamma_1 = \{A \Rightarrow B\} \\ &\Gamma_2 = \{A \Rightarrow B, \ B \Rightarrow C\} \\ &\Gamma_3 = \{A \Rightarrow B, \ B \Rightarrow C, \ A\} \end{split}$$

3

$$\begin{split} &\Gamma_1 = \{A \Rightarrow B\} \\ &\Gamma_2 = \{A \Rightarrow B, \ B \Rightarrow C\} \\ &\Gamma_3 = \{A \Rightarrow B, \ B \Rightarrow C, \ A\} \\ &\Gamma_4 = \{A \Rightarrow B, \ B \Rightarrow C, \ A, \ B\} \end{split}$$

3

$$\begin{split} &\Gamma_1 = \{A \Rightarrow B\} \\ &\Gamma_2 = \{A \Rightarrow B, \ B \Rightarrow C\} \\ &\Gamma_3 = \{A \Rightarrow B, \ B \Rightarrow C, \ A\} \\ &\Gamma_4 = \{A \Rightarrow B, \ B \Rightarrow C, \ A, \ B\} \end{split}$$

3

$$\begin{split} &\Gamma_1 = \{A \Rightarrow B\} \\ &\Gamma_2 = \{A \Rightarrow B, \ B \Rightarrow C\} \\ &\Gamma_3 = \{A \Rightarrow B, \ B \Rightarrow C, \ A\} \\ &\Gamma_4 = \{A \Rightarrow B, \ B \Rightarrow C, \ A, \ B\} \end{split}$$

3

$$\begin{split} &\Gamma_1 = \{A \Rightarrow B\} \\ &\Gamma_2 = \{A \Rightarrow B, \ B \Rightarrow C\} \\ &\Gamma_3 = \{A \Rightarrow B, \ B \Rightarrow C, \ A\} \\ &\Gamma_4 = \{A \Rightarrow B, \ B \Rightarrow C, \ A, \ B\} \\ &\Gamma_5 = \{A \Rightarrow B, \ B \Rightarrow C, \ A, \ B, \ C\} \end{split}$$

3

$$\begin{split} &\Gamma_1 = \{A \Rightarrow B\} \\ &\Gamma_2 = \{A \Rightarrow B, \ B \Rightarrow C\} \\ &\Gamma_3 = \{A \Rightarrow B, \ B \Rightarrow C, \ A\} \\ &\Gamma_4 = \{A \Rightarrow B, \ B \Rightarrow C, \ A, \ B\} \\ &\Gamma_5 = \{A \Rightarrow B, \ B \Rightarrow C, \ A, \ B, \ C\} \end{split}$$

3

$$\begin{split} &\Gamma_1 = \{A \Rightarrow B\} \\ &\Gamma_2 = \{A \Rightarrow B, \ B \Rightarrow C\} \\ &\Gamma_3 = \{A \Rightarrow B, \ B \Rightarrow C, \ A\} \\ &\Gamma_4 = \{A \Rightarrow B, \ B \Rightarrow C, \ A, \ B\} \\ &\Gamma_5 = \{A \Rightarrow B, \ B \Rightarrow C, \ A, \ B, \ C\} \end{split}$$

3

$$\begin{split} &\Gamma_1 = \{A \Rightarrow B\} \\ &\Gamma_2 = \{A \Rightarrow B, \ B \Rightarrow C\} \\ &\Gamma_3 = \{A \Rightarrow B, \ B \Rightarrow C, \ A\} \\ &\Gamma_4 = \{A \Rightarrow B, \ B \Rightarrow C, \ A, \ B\} \\ &\Gamma_5 = \{A \Rightarrow B, \ B \Rightarrow C, \ A, \ B, \ C\} \end{split}$$

3

Introduction to Isabelle/HOL

- Isabelle/HOL is an *interactive* theorem prover
- Proof guided by human
- Goal-directed reduction (LCF style)
- Core: type of type, term, theorem/inference rule as abstract types in SML
- Secure: every proof built from axioms, definitons, primitive rules of inference
- Programmable: derived rules and proof methods use secure core
- Layered interface (mostly don't need to see SML)

· · · · · · · · ·

Some Useful Links

• Website for Isabelle:

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

- Isabelle mailing list to join, send mail to: isabelle-users@cl.cam.ac.uk
- Reference:

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/ dist/Isabelle/doc/tutorial.pdf

ProofGeneral*	(X)Emacs based interface		
lsar	Isabelle proof scripting language		
Isabelle/HOL	Isabelle instance for HOL		
Isabelle	generic theorem prover		
Standard ML	implementation language		

* Also exists *jedit* interface

æ

ヘロト 人間 ト くほ ト くほ トー

An Isabelle Interface by David Aspinall

Elsa L Gunter ()

Proof General

Customized version of (x)emacs:

- All of emacs (info: Ctrl-h i)
- Isabelle aware when editing .thy files
- (Optional) Can use mathematical symbols ("x-symbols")

Interaction:

- via mouse / buttons / pull-down menus
- or keyboard (for key bindings, see Ctrl-h m)

伺下 イヨト イヨト

Proof General Input

Input of math symbols in ProofGeneral

- via "standard" ascii name: &, |, -->, ...
- via ascii encoding (similar to LATEX): \<and>, \<or>, ...
- via menu ("X-Symbol")

▲圖▶ ▲ 国▶ ▲ 国▶ -

x-symbol	A	Э	λ	_	\wedge
ascii (1)	$\langle \text{forall} \rangle$	$\langle exists \rangle$	$\langle $	$\langle \text{not} \rangle$	$\langle and \rangle$
ascii (2)	ALL	EX	%	\sim	&

x-symbol	V	\longrightarrow	\Rightarrow
ascii (1)	$\langle or \rangle$	<pre>\<longrightarrow></longrightarrow></pre>	<pre>\<rightarrow></rightarrow></pre>
ascii (2)		>	=>

(1) is converted to x-symbol, (2) remains as ascii See Appendix A of reference for more complete list

- 4 週 ト - 4 三 ト - 4 三 ト

Time for a demo of types and terms (and a simple lemma)

æ

Overview of Isabelle/HOL

HOL

- HOL = Higher-Order Logic
- HOL = Types + Lambda Calculus + Logic
- HOL has
 - datatypes
 - recursive functions
 - logical operators (\land , \lor , \longrightarrow , \forall , \exists , ...)
- Contains propositional logic, first-order logic
- HOL is very similar to a functional programming language
- Higher-order = functions are values, too!

★週 ▶ ★ 国 ▶ ★ 国 ▶

• Syntax (in decreasing priority):

• Scope of quantifiers: as for to right as possible

個 と く ヨ と く ヨ と …

Examples

- $\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$
- $A \wedge B = C \equiv A \wedge (B = C)$
- $\forall x. P \times \land Q \times \equiv \forall x. (P \times \land Q \times)$
- $\forall x. \exists y. P \times y \land Q \times \equiv \forall x. (\exists y. (P \times y \land Q \times))$

・ 何 ト ・ ヨ ト ・ ヨ ト

Proofs

General schema:

```
lemma name: " ..."
apply ( ...)
:
```

done

If the lemma is suitable as a simplification rule:

```
lemma name[simp]: " ..."
```

Adds lemma name to future simplifications

sorry

"completes" any proof (by giving up, and accepting it) Suitable for top-down development of theories: Assume lemmas first, prove them later.

Only allowed for interactive proof!

・ 回 と ・ ヨ と ・ ヨ と