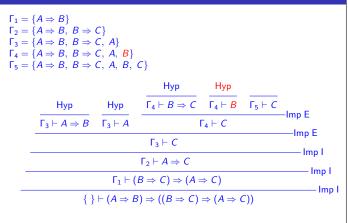

Assumptions in Natural Deduction • Problem: Keeping track of hypotheses and their discharge in Natural CS477 Formal Software Development Methods Deduction is HARD! • Solution: Use sequents to track hypotheses Elsa L Gunter • A sequent is a pair of 2112 SC, UIUC egunter@illinois.edu • A set of propositions (called assumptions, or hypotheses of sequent) and http://courses.engr.illinois.edu/cs477 • A proposition (called conclusion of sequent) • More generally (not here), allow set of hypotheses and set of conclusions Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 1, 2013 Elsa L Gunter () Nat. Ded. Introduction Sequent Rules Nat. Ded. Elimination Sequent Rules Γ is set of propositions (assumptions/hypotheses) **r** is set of propositions (assumptions/hypotheses)

Example Proof 4, Revisited

Not Elimination: Implication Elimination:

Example Proof 4, Revisited $\Gamma_1 = \{A \Rightarrow B\}$


Elsa L Gunter () CS477 Formal Software Development Me

 $\frac{\Gamma_1 \vdash (B \Rightarrow C) \Rightarrow (A \Rightarrow C)}{\{\} \vdash (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))} \quad \text{Imp I}$ $\{ \} \vdash (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$

Example Proof 4, Revisited						
$\Gamma_2 = \Gamma_3 = \Gamma_4 =$	$ \begin{array}{l} \{A \Rightarrow B\} \\ \{A \Rightarrow B, B \Rightarrow \end{array} \end{array} $	C, A} C, A, B}	C}			
			Нур			
	Нур	Нур	$\Gamma_4 \vdash B \Rightarrow C$	$\Gamma_4 \vdash B$	$\Gamma_5 \vdash C$	lass E
	$\Gamma_3 \vdash A \Rightarrow B$	$\overline{\Gamma_3 \vdash A}$		Γ ₄ ⊢ <i>C</i>		–Imp E —–Imp E
			$\Gamma_3 \vdash C$			—— Imp I
	$ \begin{array}{c} & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$					
	{ }	$\vdash (A \Rightarrow B)$	$B) \Rightarrow ((B \Rightarrow C))$	$\Rightarrow (A \Rightarrow 0)$	())	- mp i
					(177) → (Ξ) →	<
	Elsa L Gunter ()	CS477 For	rmal Software Developme			/ 19

Example Proof 4, Revisited

Example Proof 4, Revisited $\Gamma_1 = \{A \Rightarrow B\}$ $$\begin{split} &\Gamma_1 = \{A \Rightarrow B, B \Rightarrow C\} \\ &\Gamma_2 = \{A \Rightarrow B, B \Rightarrow C, A\} \\ &\Gamma_3 = \{A \Rightarrow B, B \Rightarrow C, A\} \\ &\Gamma_4 = \{A \Rightarrow B, B \Rightarrow C, A, B\} \\ &\Gamma_5 = \{A \Rightarrow B, B \Rightarrow C, A, B, C\} \end{split}$$ Нур Нур Нур $\overline{\Gamma_4 \vdash B \Rightarrow C} \quad \overline{\Gamma_4 \vdash B} \quad \overline{\Gamma_5 \vdash C}$ Нур Нур –Imp E $\Gamma_3 \vdash A \Rightarrow B \quad \Gamma_3 \vdash A$ $\Gamma_4 \vdash C$ -Imp E $\Gamma_3 \vdash C$ – Imp I $\Gamma_2 \vdash A \Rightarrow C$ – Imp I $\Gamma_1 \vdash (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$ – Imp I $\{ \} \vdash (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$

Introduction to Isabelle/HOL

- $\bullet~\mbox{Isabelle/HOL}$ is an interactive theorem prover
- Proof guided by human
- Goal-directed reduction (LCF style)
- $\bullet\,$ Core: type of type, term, theorem/inference rule as abstract types in SML

CS477 Formal Software Development Met

- Secure: every proof built from axioms, defintions, primitive rules of inference
- Programmable: derived rules and proof methods use secure core
- Layered interface (mostly don't need to see SML)

Some Useful Links

Elsa L Gunter ()

- Website for Isabelle: http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
- Isabelle mailing list to join, send mail to: isabelle-users@cl.cam.ac.uk
- Reference: http://www.cl.cam.ac.uk/Research/HVG/Isabelle/ dist/Isabelle/doc/tutorial.pdf

System Architecture

ProofGeneral*	(X)Emacs based interface
lsar	Isabelle proof scripting language
Isabelle/HOL	Isabelle instance for HOL
Isabelle	generic theorem prover
Standard ML	implementation language

* Also exists *jedit* interface

→ (問) (言) (言) (言) (言) (○)

Proof General
Customized version of (x)emacs: • All of emacs (info: Ctrl-h i) • Isabelle aware when editing .thy files • (Optional) Can use mathematical symbols ("x-symbols") Interaction: • via mouse / buttons / pull-down menus • or keyboard (for key bindings, see Ctrl-h m)
<ロン・(コン・(コン・(コン・(コン・(コン・(コン・(コン・(コン・(コン・(コ
Symbol Translations
$ x-symbol \forall B x-symbol x-symbol x-symbol x-symbol x-symbol x-symbol x-symbol x-symbol x-symbol $
<ロトイロトイスティミト そ つらぐ Formal Software Development Method /19 Elsa L Gunter () CS477 Formal Software Development Method
a demo of types and terms nd a simple lemma)
a demo of types and terms

HOL

- HOL = Higher-Order Logic
- HOL = Types + Lambda Calculus + Logic
- HOL has
 - datatypes
 - recursive functions
- logical operators $(\land, \lor, \longrightarrow, \forall, \exists, \ldots)$
- Contains propositional logic, first-order logic
- HOL is very similar to a functional programming language

CS477 Formal Software Develop

• Higher-order = functions are values, too!

Formulae (Approximation)

- Syntax (in decreasing priority):
- Scope of quantifiers: as for to right as possible

CS477 Formal Software De

term = *term*

 $\textit{form} \land \textit{form}$

 $\exists x. \text{ form}$

form \longrightarrow form

Examples

Elsa L Gunter ()

- $\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$
- $A \wedge B = C \equiv A \wedge (B = C)$
- $\forall x. P \times \land Q \times \equiv \forall x. (P \times \land Q \times)$
- $\forall x. \exists y. P \times y \land Q \times \equiv \forall x. (\exists y. (P \times y \land Q \times))$

Proofs

General schema: lemma name: " ..." apply (...)

Elsa L Gunter ()

: done

If the lemma is suitable as a simplification rule: lemma name[simp]: " ..."
Adds lemma name to future simplifications

Top-down Proofs

Elsa L Gunter ()

sorry

"completes" any proof (by giving up, and accepting it) Suitable for top-down development of theories: Assume lemmas first, prove them later.

Only allowed for interactive proof!

CS477 Formal Software Development Metho