CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

January 24, 2013

Course Overview

- Review of basic math underlying most formal methods
- Intro to interactive theorem proving
 - Intro to Isabelle/HOL
- Floyd-Hoare Logic (aka Axiomatic Semantics)
 - Verification Conditions
 - Verification Condition Generators (VCGs)
- Rewrite Logic
 - Intro to Maude
- Operation Semantics
 - Structured Oper. Sem., Transition Sem., Contexts Reduction Sem.
- Models of Concurrency
 - Finite State Automata, Buchi Automata, Concurrent Game Structures, Petri Nets

伺下 イヨト イヨト

- Temporal Logics
 - LTL
 - CTL
- Model Checkers
 - Spin
 - NuSMV
 - SAL
- Process Algebras, Pi Calculus, CSP, Actors
 - Intro to FDR
 - Intro to Rebeca
- Type Systems
 - Type Soundness
 - Dependent Types, Liquid Types, DML
 - Communication Types (aka Session Types)
 - Runtime Type Checking, Runtime Verification

Course Objectives

- How to do proofs in Hoare Logic, and what role a loop invaraint plays
- How to use finite automata to model computer systems
- How to express properties of concurrent systems in a temporal logic
- How to use a model checker to verify / falsify a temporal safety property of a concurrent system
- The connection between types and propgram properties
- What type soundness does and does not guarantee about a well-typed program

伺下 イヨト イヨト

Propositional Logic

The Language of Propositional Logic

- Begins with constants $\{T, F\}$
- Assumes countable set *AP* of propositional variables, a.k.a. propositional atoms, a.k.a. atomic propositions
- Assumes logical connectives: ∧ (and); ∨ (or); ¬ (not); ⇒ (implies);
 ⇔ = (if and only if)
- The set of propositional formulae *PROP* is the inductive closure of these as follows:
 - $\{\mathbf{T}, \mathbf{F}\} \subseteq PROP$
 - $AP \subseteq PROP$
 - if $A \in PROP$ then $(A) \in PROP$ and $\neg A \in A$
 - if $A \in PROP$ and $B \in PROP$ then $(A \land B) \in PROP$, $(A \lor B) \in PROP$, $(A \Rightarrow B) \in PROP$, $(A \Leftrightarrow B) \in PROP$.
 - Nothing else is in *PROP*
- Informal definition; formal definition requires math foundations, set theory, fixed point theorem ...

Semantics of Propositional Logic: Model Theory

Model for Propositional Logic has three parts

- Mathematical set of values used as meaning of propositions
- Interpretation function giving meaning to props built from logical connectives, via structural recursion

Standard Model of Propositional Logic

- $\mathcal{B} = \{ true, false \}$ boolean values
- $v : AP \rightarrow B$ a valuation
- Interpretation function ...

Semantics of Propositional Logic: Model Theory

Standard Model of Propositional Logic (cont)

- Standard interpretation \mathcal{I}_{v} defined by structural induction on formulae:
 - $\mathcal{I}_{\nu}(\mathsf{T}) = \operatorname{true} \text{ and } \mathcal{I}_{\nu}(\mathsf{F}) = \operatorname{false}$
 - If $a \in AP$ then $\mathcal{I}_v(a) = v(a)$
 - For $p \in PROP$, if $\mathcal{I}_{\nu}(p) = \text{true}$ then $\mathcal{I}_{\nu}(\neg p) = \text{false}$, and if $\mathcal{I}_{\nu}(p) = \text{false}$ then $\mathcal{I}_{\nu}(\neg p) = \text{true}$
 - For $p, q \in PROP$
 - If $\mathcal{I}_{\nu}(p) = \text{true}$ and $\mathcal{I}_{\nu}(q) = \text{true}$, then $\mathcal{I}_{\nu}(p \wedge q) = \text{true}$, else $\mathcal{I}_{\nu}(p \wedge q) = \text{false}$
 - If $\mathcal{I}_{\nu}(p) = \text{true or } \mathcal{I}_{\nu}(q) = \text{true, then } \mathcal{I}_{\nu}(p \lor q) = \text{true, else}$ $\mathcal{I}_{\nu}(p \lor q) = \text{false}$
 - If $\mathcal{I}_{\nu}(q) = \text{true or } \mathcal{I}_{\nu}(p) = \text{false, then } \mathcal{I}_{\nu}(p \Rightarrow q) = \text{true, else}$ $\mathcal{I}_{\nu}(p \Rightarrow q) = \text{false}$
 - If $\mathcal{I}_{\nu}(p) = \mathcal{I}_{\nu}(q)$ then $\mathcal{I}_{\nu}(p \Leftrightarrow q) = \text{true}$, else $\mathcal{I}_{\nu}(p \Leftrightarrow q) = \text{false}$

(曰) 《圖》 《唐》 《唐》 《唐

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true					
true	false					
false	true					
false	false					

.

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false				
true	false	false				
false	true	true				
false	false	true				

.

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true			
true	false	false	false			
false	true	true	false			
false	false	true	false			

.

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true	true		
true	false	false	false	true		
false	true	true	false	true		
false	false	true	false	false		

.

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true	true	true	
true	false	false	false	true	false	
false	true	true	false	true	true	
false	false	true	false	false	true	

.

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true	true	true	true
true	false	false	false	true	false	false
false	true	true	false	true	true	false
false	false	true	false	false	true	true

æ

Modeling Propositional Formulae

- $(\mathcal{B}, \mathcal{I})$ is the standard model of proposition logic
- Given valuation v and proposition $p \in PROP$, write $v \models p$ iff $\mathcal{I}_v(p) = \text{true}$
 - More fully written as $\mathcal{B}, \mathcal{I}, \mathbf{v} \models \mathbf{p}$
 - Say v satisfies p, or v models p
 - Write $v \not\models p$ if $\mathcal{I}_v(p) = \text{false}$
- p is satisfiable if there exists valuation v such that $v \models p$
- p is valid, a.k.a. a tautology if for every valuation v we have $v \models p$
- p is logically equivalent to q, $p \equiv q$ if for every valuation, v, we have $v \models p$ iff $v \models q$
 - Claim: Logical equivalence is an equivalence relation

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

$$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$$

A	В	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
true	true			
true	false			
false	true			
false	false			

ヘロト 人間 ト 人 ヨト 人 ヨトー

$$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$$

A	В	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
true	true	true		
true	false	false		
false	true	true		
false	false	true		

ヘロト 人間 ト 人 ヨト 人 ヨトー

$$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$$

A	В	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
true	true	true	true	
true	false	false	true	
false	true	true	true	
false	false	true	false	

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

$$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$$

A	В	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
true	true	true	true	true
true	false	false	true	true
false	true	true	true	true
false	false	true	false	true

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

Example: Logical Equivalence

$$A \Rightarrow B \equiv ((\neg A) \lor B)$$

A	В	$A \Rightarrow B$	$\neg A$	$(\neg A) \lor B$
true	true	true	false	true
true	false	false	false	false
false	true	true	true	true
false	false	true	true	true

王

・ロト ・聞 ト ・ ヨト ・ ヨト …

More Useful Logical Equivalences

$$\neg \neg A \equiv A \qquad \neg T \equiv F \qquad \neg F \equiv T$$

$$(A \lor A) \equiv A \qquad (A \lor B) \lor C \equiv A \lor (B \lor C)$$

$$(A \land A) \equiv A \qquad (A \land B) \land C \equiv A \land (B \land C)$$

$$A \lor B \equiv B \lor A \qquad \neg (A \lor B) \equiv (\neg A) \land (\neg B)$$

$$A \land B \equiv B \land A \qquad \neg (A \land B) \equiv (\neg A) \lor (\neg B)$$

$$(A \land \neg A) \equiv F \qquad A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

$$(A \lor \neg A) \equiv T \qquad (A \land B) \lor C \equiv (A \lor C) \land (B \lor C)$$

$$(T \land A) \equiv A \qquad A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$$

$$(T \lor A) \equiv T \qquad (A \land B) \lor C \equiv (A \land C) \lor (B \land C)$$

$$(F \land A) \equiv F \qquad (F \lor A) \equiv A$$

æ

ヘロト 人間 ト 人 ヨト 人 ヨトー

Logical Equivalence a Structural Congruence

Theorem

Logical equivalence is a structural congruence. That is, if $p \equiv p'$ and $q \equiv q'$ then

> < 3 > < 3

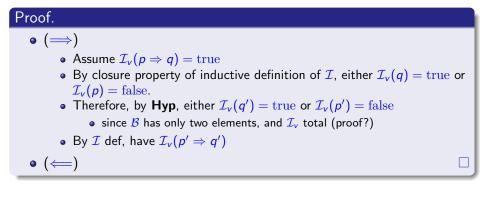
Logical Equivalence a Structural Congruence

Proof.

- Assume $p \equiv p'$ and $q \equiv q'$
- Hyp: Then for all valuations $v, v \models p$ iff $v \models p'$ and $v \models q$ iff $v \models q'$, i.e. $\mathcal{I}_v(p) = \text{true}$ iff $\mathcal{I}_v(p') = \text{true}$ and $\mathcal{I}_v(q) = \text{true}$ iff $\mathcal{I}_v(q') = \text{true}$
- Case 4: Show $p \Rightarrow q \equiv p' \Rightarrow q'$
 - Other cases done same way
- Need to show for all ν , $\mathcal{I}_{\nu}(p \Rightarrow q) = \text{true iff } \mathcal{I}_{\nu}(p' \Rightarrow q') = \text{true}$
- Fix v
- Need to show if $\mathcal{I}_{\nu}(p \Rightarrow q) = \text{true}$ then $\mathcal{I}_{\nu}(p' \Rightarrow q') = \text{true}$, and if $\mathcal{I}_{\nu}(p' \Rightarrow q') = \text{true}$ then $\mathcal{I}_{\nu}(p \Rightarrow q) = \text{true}$

イロト 不得下 イヨト イヨト

Logical Equivalence a Structural Congruence



Non-standard Model of Propositional Logic

Other models possible Example:

- $C = \{ true, false \perp \}$
- Valuations assign values in cC to propositional atoms
- If $\mathcal{J}_w(p) = \bot$ then $\mathcal{J}_w(\neg p) = \bot$, otherwise same as for \mathcal{I}
- $\mathcal{J}_w(p) = bot$ or $\mathcal{J}_w(q) = \bot$ then $\mathcal{J}_w(\neg p) = \bot$, $\mathcal{J}_w(p \land q) = \bot$, $\mathcal{J}_w(p \lor q) = \bot$, $\mathcal{J}_w(p \Rightarrow q) = \bot$, and $\mathcal{J}_w(p \Leftrightarrow q) = \bot$; otherwise same as for \mathcal{I}
- Note: $A \lor \neg A \not\equiv \mathsf{T}$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …