CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha January 24, 2013

Course Overview

- Review of basic math underlying most formal methods
- Intro to interactive theorem proving Intro to Isabelle/HOL
- Floyd-Hoare Logic (aka Axiomatic Semantics)
 - Verification Conditions
 - Verification Condition Generators (VCGs)
- Rewrite Logic
- Intro to Maude
- Operation Semantics • Structured Oper. Sem., Transition Sem., Contexts Reduction Sem.
- Models of Concurrency
 - Finite State Automata, Buchi Automata, Concurrent Game Structures, Petri Nets

Course Overview

Elsa L Gunter ()

- Temporal Logics
 - LTL
 - CTL
- Model Checkers
 - Spin
 - NuSMV
 - SAL
- Process Algebras, Pi Calculus, CSP, Actors
 - Intro to FDR
 - Intro to Rebeca
- Type Systems
 - Type Soundness
 - Dependent Types, Liquid Types, DML
 - Communication Types (aka Session Types)
 - Runtime Type Checking, Runtime Verification

CS477 Formal Software De

Course Objectives

Elsa I. Gunter ()

- How to do proofs in Hoare Logic, and what role a loop invaraint plays
- How to use finite automata to model computer systems

CS477 Formal Software Develo

- How to express properties of concurrent systems in a temporal logic
- How to use a model checker to verify / falsify a temporal safety property of a concurrent system
- The connection between types and propgram properties
- What type soundness does and does not guarantee about a well-typed program

Propositional Logic

Elsa L Gunter ()

The Language of Propositional Logic

- Begins with constants {**T**, **F**}
- Assumes countable set AP of propositional variables, a.k.a. propositional atoms, a.k.a. atomic propositions
- Assumes logical connectives: \land (and); \lor (or); \neg (not); \Rightarrow (implies); \Leftrightarrow = (if and only if)
- The set of propositional formulae PROP is the inductive closure of these as follows:
 - $\{\mathbf{T}, \mathbf{F}\} \subseteq PROP$
 - $AP \subseteq PROP$
 - if $A \in PROP$ then $(A) \in PROP$ and $\neg A \in A$
 - if $A \in PROP$ and $B \in PROP$ then $(A \land B) \in PROP$, $(A \lor B) \in PROP, (A \Rightarrow B) \in PROP, (A \Leftrightarrow B) \in PROP.$
 - Nothing else is in PROP
- Informal definition; formal definition requires math foundations, set theory, fixed point theorem ... CS477 Formal Sol

Semantics of Propositional Logic: Model Theory

Model for Propositional Logic has three parts

- Mathematical set of values used as meaning of propositions
- Interpretation function giving meaning to props built from logical connectives, via structural recursion

Standard Model of Propositional Logic

- $\mathcal{B} = \{\text{true}, \text{false}\}$ boolean values
- $v : AP \rightarrow B$ a valuation
- Interpretation function ...

Semantics of Propositional Logic: Model Theory

Standard Model of Propositional Logic (cont)

- \bullet Standard interpretation \mathcal{I}_{ν} defined by structural induction on formulae:
 - $\mathcal{I}_{\nu}(\mathsf{T}) = \text{true and } \mathcal{I}_{\nu}(\mathsf{F}) = \text{false}$
 - If $a \in AP$ then $\mathcal{I}_{v}(a) = v(a)$ For $p \in PROP$, if $\mathcal{I}_{v}(p) =$ true then $\mathcal{I}_{v}(\neg p) =$ false, and if
 - $\mathcal{I}_{v}(p) = \text{false then } \mathcal{I}_{v}(\neg p) = \text{true}$
 - For $p, q \in PROP$

 - If $\mathcal{I}_{\nu}(p)$ = true and $\mathcal{I}_{\nu}(q)$ = true, then $\mathcal{I}_{\nu}(p \land q)$ = true, else $\mathcal{I}_{\nu}(p \land q)$ = false If $\mathcal{I}_{\nu}(p)$ = true or $\mathcal{I}_{\nu}(q)$ = true, then $\mathcal{I}_{\nu}(p \lor q)$ = true, else
 - $\mathcal{I}_v(p \lor q) = \text{false}$ • If $\mathcal{I}_{\nu}(q) = \text{true or } \mathcal{I}_{\nu}(p) = \text{false, then } \mathcal{I}_{\nu}(p \Rightarrow q) = \text{true, else}$
 - $\mathcal{I}_{v}(p \Rightarrow q) = \text{false}$

CS477 Formal Software Develor

• If $\mathcal{I}_{\nu}(p) = \mathcal{I}_{\nu}(q)$ then $\mathcal{I}_{\nu}(p \Leftrightarrow q) = \text{true}$, else $\mathcal{I}_{\nu}(p \Leftrightarrow q) = \text{false}$

Truth Tables

Elsa L Gunter ()

Interpretation function often described by truth table

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false				
true	false	false				
false	true	true				
false	false	true				

Truth Tables

Interpretation function often described by truth table

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true					
true	false					
false	true					
false	false					

Truth Tables

sa L Gunter ()

Interpretation function often described by truth table

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true			
true	false	false	false			
false	true	true	false			
false	false	true	false			

Truth Tables

Elsa L Gunter ()

Interpretation function often described by truth table

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true	true		
true	false	false	false	true		
false	true	true	false	true		
false	false	true	false	false		

Truth Tables

nter ()

Interpretation function often described by truth table

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true	true	true	
true	false	false	false	true	false	
false	true	true	false	true	true	
false	false	true	false	false	true	

Ø

< E

Truth Tables	Modeling Propositional Formulae
Interpretation function often described by truth table $\begin{array}{c c c c c c c c c c c c c c c c c c c $	 (B, I) is the standard model of proposition logic Given valuation v and proposition p ∈ PROP, write v ⊨ p iff I_v(p) = true More fully written as B, I, v ⊨ p Say v satisfies p, or v models p Write v ⊭ p if I_v(p) = false p is satisfiable if there exists valuation v such that v ⊨ p p is valid, a.k.a. a tautology if for every valuation v we have v ⊨ p p is logically equivalent to q, p ≡ q if for every valuation, v, we have v ⊨ p iff v ⊨ q Claim: Logical equivalence is an equivalence relation
Elsa L Gunter () CS477 Formal Software Development Method / 17	Elsa L Gunter () CS477 Formal Software Development Method
Example Tautology	Example Tautology
$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$ $\boxed{\begin{array}{c c c c c c c c c c c c c c c c c c c$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$ $\boxed{\begin{array}{c c c c c c c c c } A & B & A \Rightarrow B & (A \Rightarrow B) \Rightarrow B & A \Rightarrow ((A \Rightarrow B) \Rightarrow B) \\ \hline true & true & true & & & \\ \hline true & false & false & & & \\ \hline false & true & true & & & \\ \hline false & false & true & & & \\ \hline false & false & true & & & \\ \hline \end{array}}$
د میں دیکھ دیکھ دیکھ دیکھ دیکھ دیکھ دیکھ دیکھ	Elsa L Gunter () CS477 Formal Software Development Method
Example Tautology	Example Tautology
$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
AB $A \Rightarrow B$ $(A \Rightarrow B) \Rightarrow B$ $A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$ truetruetruetruetruefalsefalsetruefalsetruetruetrue	AB $A \Rightarrow B$ $(A \Rightarrow B) \Rightarrow B$ $A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$ truetruetruetruetruefalsefalsetruefalsetruetruetruefalsetruetruetrue
false false true false	false false true false true

Example Tautology – Your Turn	Example: Logical E	Equiva	alence				
		<i>A</i> =	<i>⇒</i> B ≡ ((-	¬A) ∨ I	В)		
	A	В	$A \Rightarrow B$	$\neg A$	$(\neg A) \lor B$		
	true	true	true	false	true		
	true	false	false	false	false		
	false	true	true	true	true		
	false	false	true	true	true		
< ロ > 〈唇 > 〈臣 > 〈臣 > 〈臣 > 〉 妻 - 句々()					< □ > < @ >	(E) < E)	হ ৩৭০
Elsa L Gunter () CS477 Formal Software Development Method / 17	Elsa L Gunter ()	CS477 For	rmal Software D	evelopment	Method		/ 17

Logical Equivalence a Structural Congruence

Logical equivalence is a structural congruence. That is, if $p\equiv p'$ and $q\equiv q'$ then

- $p \wedge q \equiv p' \wedge q'$
- $p \lor q \equiv p' \lor q'$
- $p \Rightarrow q \equiv p' \Rightarrow q'$
- **9** $p \Leftrightarrow q \equiv p' \Leftrightarrow q'$

lsa L Gunter ()

Logical Equivalence a Structural Congruence

- Assume $p \equiv p'$ and $q \equiv q'$
- Hyp: Then for all valuations $v, v \models p$ iff $v \models p'$ and $v \models q$ iff $v \models q'$, i.e. $\mathcal{I}_v(p) = \text{true}$ iff $\mathcal{I}_v(p') = \text{true}$ and $\mathcal{I}_v(q) = \text{true}$ iff $\mathcal{I}_v(q') = \text{true}$
- Case 4: Show p ⇒ q ≡ p' ⇒ q'
 Other cases done same way
- Need to show for all v, $\mathcal{I}_v(p \Rightarrow q) = \mathrm{true}$ iff $\mathcal{I}_v(p' \Rightarrow q') = \mathrm{true}$
- Fix v
- Need to show if $\mathcal{I}_{\nu}(p \Rightarrow q) = \text{true}$ then $\mathcal{I}_{\nu}(p' \Rightarrow q') = \text{true}$, and if $\mathcal{I}_{\nu}(p' \Rightarrow q') = \text{true}$ then $\mathcal{I}_{\nu}(p \Rightarrow q) = \text{true}$

e Development Me

□ → ← (日 → ← 三 → ← 三 → のへ)

Logical Equivalence a Structural Congruence

Non-standard Model of Propositional Logic

 $Other \ models \ possible$

Example:

- $\bullet \ \mathcal{C} = \{\mathrm{true}, \mathrm{false}\bot\}$
- \bullet Valuations assign values in cC to propositional atoms
- If $\mathcal{J}_w(p) = \bot$ then $\mathcal{J}_w(\neg p) = \bot$, otherwise same as for \mathcal{I}
- $\mathcal{J}_w(p) = bot \text{ or } \mathcal{J}_w(q) = \bot \text{ then } \mathcal{J}_w(\neg p) = \bot, \ \mathcal{J}_w(p \land q) = \bot, \ \mathcal{J}_w(p \lor q) = \bot, \ \mathcal{J}_w(p \Rightarrow q) = \bot, \text{ and } \mathcal{J}_w(p \Leftrightarrow q) = \bot; \text{ otherwise same as for } \mathcal{I}$

CS477 Formal Software Development Method

• Note: $A \lor \neg A \not\equiv \mathbf{T}$

Elsa L Gunter ()