LECTURE 23: RECAP: ALTERNATION, POLYNOMIAL TIME HIERARCHY,
AND PARALLEL COMPUTATION

Date: November 14, 2023.

Alternation Turing Machine (ATM) is exactly like a (multi-tape) nondeterministic Turing machine,
except that there is a “type” associated with each state. That is, the formal specification of the machine
includes a function type : Q — {A, V}, where Q is the set of states.

A configuration o is an and-configuration, if type(q) = A, where ¢ is the state of a. Similarly, « is an
or-configuration if type(¢) = V, where ¢ is the state of o. On input z, for configurations « and 8, we say

al 3, the the machine can take one step from a to .
T

Acceptance: We will only consider ATMs where every computation on an input z halts. The configurations
o of such an ATM are labeled accepting if:

e o is a halting, accepting configuration,

e « is an or-configuration and for some 3 such that o EN B, B is (inductively) labeled accepting.
x

e « is an and-configuration and every configuration  such that « EN B, B is (inductively) labeled
T
accepting.

An input z is accepted by ATM M, if the initial configuration of M on z is labeled accepting. The language
recognized by M (L(M)) is the set of all inputs it accepts.

Time-bounded ATMs: An ATM M is said to be T'(n)-time bounded if on any input x, all computations
of M on z halt in < T(|z|) steps. ATIME(T (n)) is the collection of all decision problems/languages A such
that there is a T'(n)-time bounded ATM M such that L(M) = A.

Space-bounded ATMs: An ATM M is said to be S(n)-space bounded if on any input z, the total number
of worktape cells used in any computation of M on z is at most S(|z|). ASPACE(S(n)) is the collection of
all decision problems/languages A such that there is a S(n)-space bounded ATM M such that L(M) = A.

Alternating Complexity Classes

ALOGSPACE = ASPACE(logn)
APTIME = U ATIME(n*)
APSPACE = U ASPACE(n¥)

AEXPTIME = U, ATIME(2™)

Theorem 1. The following relationships hold. For items other than (a), we assume that T(n) > n and
S(n) > logn.

(a) ATIME(T(n)) C ASPACE(T'(n)) and ASPACE(S(n)) C ATIME(20(5(m)),
(b) ATIME(T'(n)) € DSPACE(T(n)) and NSPACE(S(n)) C ATIME(S(n)2)
(c) ASPACE(S(n)) € DTIME(2°(5(™)) and DTIME(T'(n)) C ASPACE(log T'(n))

Corollary 2. The following equivalences hold: ALOGSPACE = P, APTIME = PSPACE, APSPACE =
EXP, AEXPTIME = EXPSPACE.

Aseact (e ») < P D.l‘.ﬂi@i) < Aspace(olksyn) = ASPACE (Segn)
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Bounding Alternations: A Yj;-machine is an ATM such that (a) the initial state is an or-state, and
(b) on any input, every computation path, has at most k — 1 switches between or-configurations and and-
configurations.

A TIx-machine is an ATM such that (a) the initial state is an and-state, and (b) on any input, every
computation path, has at most £ — 1 switches between or-configurations and and-configurations.

By convention ¥y and IIp-machines are deterministic TMs.

Polynomial Hierarchy:

¥h = {L(M) | M is a polynomial-time-bounded ¥;-machine}.
I} = {L(M) | M is a polynomial-time-bounded ITy-machine}.

Thus, £ = T15 = P, ¢ = NP, and II? = co-NP.

Proposition 3. The following identities hold.

) H;E = {§|Z€§Z}
LUl C 3, NI, )
Ph= Ui = U, CPSPACE = APTImE

frt # pSpaCE

Oracle Machines: For a language B, and complexity class C, we define

PP = {L(MPB)|M is a deterministic oracle TM such that M® runs in polynomial time}.
NP® = {L(MP)|M is a nondeterministic oracle TM such that M? runs in polynomial time}.
P¢ = UgecP?.
NPC = Upec NPB ) ZTI‘ . R& .
Theorem 4. Let NPy = NP and NPjy1 = NP"F. Then ¥° = NPy, for k > 1. 29 o e M

Z.
|-
Theorem 5. A € X if and only if there is a (deterministic) polynomial time computable predicate R and

constant ¢ such that i

A={z|InVy2- - Que. (N luil < 12l°) A R(z, 1, .. yw)}

i=1

where Q is 3 if k is odd, and is V if k is even.

Bounding Time and Alternation: For a ATM M, let M be the same machine as M, except on an
input z, if a computation takes more than m steps or has more than % alternations between “and” and
“or” configurations, M} halts the computation. The last configuration of such an abnormally terminated
computation is accepting if it is an and-configuration, and is rejecting if it is an or-configuration.

Define Hy = {(M,z,0™) | M]™ accepts x}

Theorem 6. Hj, is X} -complete.






Boolean Circuits: A Boolean circuit C with n inputs is a directed acyclic graph with n vertices of in-degree
0, a single vertex of out-degree 0, and whose internal vertices are all labeled with A, V, or —. A vertex labeled
with A, V, or - computes the logical and, or, or negation of its inputs, respectively. We assume that vertices
labeled with A or V have two children and vertices labeled with — have one child. On input z € {0,1}", the
output of C is given by the value of the vertex of out-degree 0 and is denoted by C(z).

The size of C' is the number of gates in C. The depth of C is the length of the longest path from an input
vertex to the output vertex.

Solving Problems using Families of Circuits: A family of circuits {Cp}nen of size S(n) is a collection
of Boolean circuits where for all n, C, has n inputs and size at most S(n). A language L is in SIZE(S(n)) if
there is a family of Boolean circuits {Cp, }rnen of size S(n) such that for all z € {0,1}", z € L iff Copfs) = 1.

Proposition 7. There is a language L € SIZE(O(1)) which is undecidable. C“I;«-\bb) =1
Theorem 8. Let L be an arbitrary language. Then L € SIZE(O(n2")).

Uniform Circuit Classes: A family of Boolean circuits {C, }nen is logspace-uniform if there is a logspace-
bounded Turing machine that outputs the circuit C}, on input 0™.

NC: A language L is in NC* if there exists a logspace uniform family of circuits {C), }nen where C,, has
poly(n) size, O((logn)*) depth, and for all z € {0,1}", = € L iff C,,(z) = 1.

NC = U NC?.
i>0

We will prove

Proposition 9. NC C P.

Open Problem: Is NC = P?



