LECTURE 18: LADNER’S THEOREM

Date: October 26, 2023.

NP: A € NP iff there is a NTM M and k such that M runs in n* and L(M)=A.

Polynomial Verifiability: A is verifiable in polynomial time iff there is a (deterministic) TM V, k, £
such that (a) V runs in n* time, and (b) = € A iff there is y, |y| < |z|® such that V accepts input (z, ).

A=3o | Ty, l4i< 1" wnd <nfy € LS
Here V' is said to be a“verifier for A. For = € A, a string y such that V accepts (z,y) is said to be the
proof that z € A with respect to V.

Theorem 1. Brevesthet A € NP iff A is verifiable in polynomial time.
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Logspace Computable Functions: A function f is computable in logspace if there is a Turing machine
M such that on any input z, M halts with f(z) written on its output tape, and M uses at most O(log |z])
cells on its work-tape.

Logspace Reducibility: A is reducible to B in logspace (denoted A <!°¢  B) if there is a logspace
computable function f such that for any z, z € A iff f(x) € B.

Proposition 2. Let C € {NL,P,NP,...}. If A <% B and B C then A cC.

Proposition 3. If A <I% B and B <% C then A <\ C.

Hardness and Completeness: Let C € {NL,P,NP,...}. A problem B is C-hard if for any A € C,
A Slr?lg B. B is C-complete if B is C-hard and B € C.

Proposition 4. If A is NP-hard and A gl%g B Zhen B is NP-hard.
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Proposition 5. If A is NP-complete and A € P then NP = P,
- Le NP,
L_a_,q;"-’ A, her => L&f.






Satisfiability: SAT is the problem, where given ¢ a CNF formula, determine if there is an assignment o to
the variables such that ¢ evaluates to 1 under a.

3SAT is the problem, where given ¢ a 3CNF formula, determine if there is an assignment a to the variables
~ such that ¢ evaluates to 1 under a.

Theorem 6 (Cook-Levin). SAT and 3SAT are NP-complete.
Theorem 7 (Ladner). IfNP # P then there is a problem A such that A € NP\ P and A is not NP-complete.
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