LECTURE 18: LADNER'S THEOREM

Date: October 26, 2023.

NP: $A \in NP$ iff there is a NTM M and k such that M runs in n^k and $\mathbf{L}(M) = A$.

Polynomial Verifiability: A is verifiable in polynomial time iff there is a (deterministic) TM V, k, ℓ such that (a) V runs in n^k time, and (b) $x \in A$ iff there is y, $|y| \le |x|^\ell$ such that V accepts input $\langle x, y \rangle$. A = $\{x \in A, y \in A, y$

Theorem 1. Prove that $A \in NP$ iff A is verifiable in polynomial time. (=) A ENP. 3 NTM M that sure in no time and L(M) = A.

Proof" y: the sequence of model choices of M that had to accepting & z.

Vorifies: Tapent < n., y7 Run M on x on the choices y. Accept y M obses.

(=) Vis a verifier for A.

Also for A: Input re, Guess a string y and run Mon (21,y7. Accept y V

Logspace Computable Functions: A function f is computable in logspace if there is a Turing machine M such that on any input x, M halts with f(x) written on its output tape, and M uses at most $O(\log |x|)$ cells on its work-tape.

Logspace Reducibility: A is reducible to B in logspace (denoted $A \leq_m^{\log} B$) if there is a logspace computable function f such that for any $x, x \in A$ iff $f(x) \in B$.

Proposition 2. Let $C \in \{NL, P, NP, \ldots\}$. If $A \leq_m^{\log} B$ and $B \in C$ then $A \in C$.

Proposition 3. If $A \leq_m^{\log} B$ and $B \leq_m^{\log} C$ then $A \leq_m^{\log} C$.

proof that $x \in A$ with respect to V.

Hardness and Completeness: Let $C \in \{NL, P, NP, \ldots\}$. A problem B is C-hard if for any $A \in C$, $A \leq_m^{\log} B$. B is C-complete if B is C-hard and $B \in C$.

Proposition 4. If A is NP-hard and $A \leq_m^{\log} B$ then B is NP-hard.

Need to show: #LENP, LENB B. S. Know: #LENP, LENBA, A ELOOB.

Proposition 5. If A is NP-complete and $A \in P$ then NP = P.

LEMP.
LEMA, AEP >> LEP.

LERE. if there is recursive relation $R \le t$. $L = \frac{2}{3}\pi \left| \frac{1}{3}y \right| C_{7,7}y \in R^{2}$.

LENP if there is a polytime relation $R \le t$. $L = \frac{2}{3}\pi \left| \frac{1}{3}y \right| \left| \frac{1}{3}y \right| \leq |\pi|^{2}$ and $(\pi,y) \in R^{2}$. REMyhill's Thm NP = P RE P

RE-complite.

Diagonalization Technique

Inputo $\alpha_1 \times_2 \times_3$. $M_1 \to X$ $M_2 \to X$ X

Satisfiability: SAT is the problem, where given φ a CNF formula, determine if there is an assignment a to the variables such that φ evaluates to 1 under a.

3SAT is the problem, where given φ a 3CNF formula, determine if there is an assignment a to the variables such that φ evaluates to 1 under a.

Theorem 6 (Cook-Levin). SAT and 3SAT are NP-complete.

Theorem 7 (Ladner). If $NP \neq P$ then there is a problem A such that $A \in NP \setminus P$ and A is not NP-complete. and A is not NP-hand (SAT & m A) A: murge SAT and P f: IN > IN. A = \(\frac{2}{2} \times \) f((1)x1) is even and \(\tau \) ESAT \(\frac{2}{3} \) - y f(n-1) is even (2k)- y f(n-1) is even (2k)- y f(n-1) is even (2k)MR(x) \neq x (x)then fln = 2k+1 else f(n)=2k. = if f(n-1) = 2k-1 if In. Walter | Rk(x) | < n. A(Rk(n)) + SAT(n) -then f(n) = 2k else f(n)=2k-1 Mf - algo to compute f.

NS - clut algo for SAT.

NA - algo for A (determined by for and NS)

NA - algo for A (determined by for and NS) tyo Ng: Input of (compute f(n))

Phose I: Run Ng on 0?

Phose I: Run Ng on 1 $\leq n$ Phose I:

For all x, $|x| \leq n$ Run Ng(n)

Run Mg(n)

Run Mg(n)

Run Mg(n) Algo Ng: Input on (compute f(n)) Let i be the last value for which f(i) was computed Il withus found (NOO+Mr(2) then retwen m+1 else m. And fli) = M. Cash M=2k#1: 2 Steps (Compute Rp(x)) Ns(x) and Na(Rp(x)) 46 \$ Ns(x) + Na(Rp(x)) then m+1 else m. Need to show: him f(n) = 00