Finite Automata

Mahesh Viswanathan

In this lecture, we will consider different models of finite state machines and study their relative power.
These notes assume that the reader is familiar with DFAs, NFAs, and regular expressions, eventhough we
recall DFAs and NFAs, and some classical results concerning them.

1 Deterministic Finite Automata (DFA)

Deterministic finite automata are the simplest formal model of a machine that has finitely many states,
and processes an input string symbol-by-symbol to solve a decision problem. These machines are also
deterministic in that their behavior is completely determined by the input string.

Definition 1. A deterministic finite automaton (DFA) is a tuple M = (Q, %, 6, s, F'), where
e () is a finite set of states,
e Y is a finite set called the input alphabet that is used to encode the input,

e) : QXX = @ is the transition function, that determines how the automaton changes its state in
response to a new input symbol,

e s € (Q is the initial state in which the automaton begins its computation, and
e FC (@ is the set of accept or final states.

The behavior of a DFA M on an input string € X* is as follows. It reads the symbols in = one at a
time, from left to right. At each point in time, the automaton has a current state. Initially, the automaton
is in state s. If the current state of the automaton is ¢, and the next symbol in x to be read is a, then the
automaton on reading a transitions to the state d(q, a), and continues processing the remaining symbols of
x. After all the symbols in x have been read by the automaton, if the current state of the automaton is in
F' then the input is said to have been accepted (or the automaton returns the Boolean answer true on the
input), and if the current state is not in F' then input is rejected (or the automaton returns false).

The above informal description of computation can be conveniently captured by the notion of a run. A
run of M starting from state ¢ on input z = ajas - --a,, where a; € %, is a sequence of states qo,q1,-.-qn
such that

® ¢o = ¢, and
e gir1 = 0(g;,a;) for every i > 0.

Such a run corresponds to an accepting computation, if it starts at the initial state s and the last state in
the run belongs to F'. Based on the definition of a DFA, one can see that given the starting state ¢, and the
input word x, the sequence of states in the run is uniquely determined. R

We will also find it convenient to extend the transition function § : @ x ¥ — @ to a function ¢ : @ x X* —
Q. The function ¢ is defined inductively as follows

g(q) = q ifx=c¢
’ 5(6(q,y),a) ifx=ya

In the above definition, we assume that x,y € ¥*, while a € 3. Intuitively, if the DFA reads string = starting
in state ¢, then its state at the end is §(q, z). We will sometimes use d; (instead of §) to make explicit that
we are running the DFA M.

o~

Definition 2. A DFA M = (Q,%,6,s, F) accepts input x € ¥* if §(s,x) € F. The language accepted or
recognized by M is R
LM)={zeX|d(s,z) € F}.

Intuitively, a DFA gives a boolean answer on any input string x; it accepts (or answers true) if the state
after reading x is in F' and rejects (or answers false) otherwise. The language of a DFA is the decision
problem it solves, namely, the collection of inputs for which it answers true.

Figure 1: Transition Diagram of M,

Example 3. For a string x € {0,1}, let us define lasta(x) to be the last two symbols in x. It can be defined
as follows.
f oz diflzr <2
lastz(x) = { ab if x = yab where y € {0,1}*, a,b € {0,1}

Consider the DFA M, = ({00,01,10,11},{0,1},6,00,{10,11}), where
0(u, a) = lasty(ua).

DFAs are often shown pictorially as a labeled directed graph, where vertices correspond to states of the DFA,
and edges are transitions. DFA My is shown in Figure 1.
The behavior of Ms on a few example strings is given below.

5(00,€) =00 6(00,0) =0 (00,01) = 01
5(00,011) =11 5(00,0110) = 10 §(00,01101) = 01

(11,€) = 11 (11,0) = 10 5(11,01) = 01

) =)

In general, we can prove by induction that, for any state u € {00,01,10,11} and string € {0,1}*,

~

d(u, x) = lasty(ux).
And the decision problem solved by My is
L(Ms) = {x € {0,1}" | last2(00x) € {10,11}} = {x € {0,1}* | last2(x) € {10,11}}.

A language/decision problem L is said to be regular ! if there is a DFA M that recognizes it, i.e.,
L(M) = L. Since the collection of DFAs is countable and the set of languages is uncountable (see lecture on

1The name is derived from the fact that regular expressions describe the same class of languages as those that can be
recognized by a DFAs.

infinite cardinals), there are many languages that are not regular. Standard proofs of non-regularity involve
using arguments like the fooling set method or the pumping lemma; see examples in Lectures 11 and 12 of
“Automata and Computability” by Dexter Kozen.

It is useful to recall a couple of classical automata constructions that allow us to conclude that the class
of regular languages is closed under all Boolean operations. For a DFA M = (Q, X%, 4, s, F'), define the DFA
M = (Q,%,6,s,F). In other words, M has exactly the same states, input alphabet, transition function, and
initial state as M, and only the set of final states are flipped in M.

Proposition 4. L(M) = L(M).

Proof. Observe that since M and M have the same transition function, we have that for any state ¢ € Q
and x € X*,

on (g,) = o57(q,).

Therefore, the following reasoning establishes the proposition.

r e L(M) iff gﬁ(s, z) € F (by defn. of acceptance)
iff Sp(s,z) € F (since dgp = Opr)
iff SM(S,QT) ¢ F (by defn.)
iff ¢ L(M) (by defn. of acceptance)

O

The second important construction we will recall is the cross-product construction that runs two DFAs
concurrenly on a common input string. Consider DFAs M7 = (Q1, %, 61, 51, F1) and My = (Q2, %, 2, s2, F3).
Define the DFA Ml X M2 = (Ql X QQ, 275, (51, 82), F) where

6((q1,q2),a) = (61(q1,a), 02(g2, a)).

We intentionally leave F' unspecified for now.

Proposition 5. If we take F = F| X Fy then L(M; x My) = L(M;) N L(Ms). On the other hand, if
F = (F1 X Qg) U (Ql X Fg), then L(Ml X MQ) = L(Ml) U L(MQ)

Proof. No matter what we take F' to be, we can show by induction (left as exercise), for any (g1, ¢2) € Q1 X Q2
and x € ¥*

ngxMQ((qla C]2)75U) = (S\Nh (qhx)agMz ((J2a$))

The proposition then follows by unrolling the definition of acceptance; again it is left as an exercise for the
reader. O

2 Nondeterministic Finite Automata (NFA)

Nondeterminism is an important computational abstraction that is used to model situations where computa-
tion is not uniquely determined by the input. It can be used to describe scenarios where we have incomplete
information about external factors that influence a computation (like which process among concurrently
executing processes is scheduled, or what an intruder sniffing on a network might do). It is also used as an
algorithmic paradigm to search for “proofs” that establish certain properties about the input. Studying the
computational power of nondeterminism has remained a central goal in computer science ever since it was
first introduced by Rabin and Scott.

The simplest context in which one can understand nondeterminism is that of nondeterministic finite
automata (NFA). These are finite state machines that generalize DFAs by allowing the next state of the
machine to be not determined by the current state and input symbol being read. Formally they are defined
as follows.

Definition 6. A nondeterministic finite automaton (NFA) is a tuple N = (Q, %2, A, S, F'), where
e O, X, FCQ, are the set of states, input alphabet, and final states, respectively, as before,

o A:Q x X — 29 is transition function, which given a current state, and input symbol, determines the
set of possible next states of the automaton, and

e S CQ is set of possible initial/start states in which the machine could begin.

2.1 Computation and Acceptance

0,1

Figure 2: Transition Diagram of N,

It useful to explain the behavior of an NFA through an example. Consider the NFA Ny shown pictorially
in Figure 2. The formal definition of Na = ({q0,¢1,92},{0,1}, A, {qo0}, {g2}) where

A(g0,0) = {g0} A(go,1) ={q0,¢1} A(q1,0) = {ga}
Alq1,1) = {g2} Alg2,0) = A(ge,1) =0

There are two useful ways to think about nondeterministic computation. Both these views are mathemati-
cally equivalent, and in certain contexts, one view maybe more convenient than the other.

Parallel Computation View. At any given time, the machine has a few active threads which could have
different current states. Initially, the machine starts threads corresponding to each of the initial states. At
each step, each (currently active) thread reads the next input symbol, and “forks” a thread corresponding
to each of the possible next states, given its current state. If from the current state of a thread there is no
transition on the current input symbol, then the thread dies. After reading all input symbols, if there is
some active, live thread of the machine that is an accepting state, the input is accepted. If none of the active
threads is in an accept state (or if there are no active threads) , the input is rejected. This view is shown in
Figure 3 which describes the computation of the NFA in Figure 2 on inputs 0100 and 0110.

Guessing View. An alternate view of nondeterministic computation is that the machine magically chooses
the next state in manner that leads to the NFA accepting the input, unless there is no such choice possible.
For example, again for the NFA in Figure 2 and input 0110, the machine (in this view) will magically choose
to transition from gy to g1 on the second 1 (and not on the first 1).

Like we did for DFAs, we can define the notion of the run of an NFA on a given input string. The
definition is (almost) identical, but now there could be multiple runs on a given input, which correspond to
different (complete) paths in the parallel computation view (see Figure 3). A run of NFA N = (Q,X, A, S, F)
on input x = aias - - - a, starting from state ¢ is a sequence of states qg, q1, ... g, such that

® ¢o = ¢, and
® ¢it1 € A(gi,a;) for every i > 0.

Again an accepting run is one that starts in some ¢ € S and ends in some state ¢ € F. And an input z is
accepted if N has some accepting run.

QOl q0]

N\ I

q0 q1 q0 1 q1)

ol o N N

qo q2 q0 q1 q2
ol o ol o o
do X q0 q2 X

Figure 3: Computation of NFA N, in Figure 2. X here denotes a thread dying because of the absence of
any transitions. The left tree shows the behavior on input 0100; this is not accepted since the only active
thread is in state go which is non-accepting. The right tree shows the behavior on input 0010. One of the
threads is in an accepting state ¢» at the end, and so 0110 is accepted.

The above notions of runs and acceptance can also be conveniently captured by extending the transition
function as we did for DFAs. Let A : Q x ¥* — 29 be the function inductively defined as follows. (As before

z,y € ¥* and a € X.)
A 3 p— R
(- { Uqleﬁ(q,y) Alqr,a) fz=uya

~

A(g,) is the set of states in which at least one active thread of N is after reading z, provided we start with
a single thread in state q. Given a set of states A C @, we will take

A(A,z) = U A(g, z)

qeA

As in the case of DFAs, we will sometimes write A ~ to emphasize that we are looking at the extended
transition function of NFA N.

Definition 7. For an NFA N = (Q,X,A, S, F) and string x € ¥*, we say N accepts z iff A(S’7 x)NF # 0.
The language accepted or recognized by NFA N is L(M) = {x € ¥* | N accepts x}. A language L is
said to be accepted/recognized by N if L = L(N).

Every DFA is a special kind of NFA, where the transition function provides ezactly one next state, given
a current state and symbol. Thus, if a language is recognized by (some) DFA, then it can also be recognized
by an NFA. It turns out the converse of this statement is also true. Thus, any language recognized by an
NFA is regular. This is achieved by the so called subset construction, which we revist here.

In order to construct a DFA M that is equivalent to an NFA N, the DFA will “simulate” the NFA N on
the given input. The computation of N on input w is completely determined by the threads that are active
at each step. While the number of active threads can grow exponentially as the N reads more of the input,
since the behavior of two active threads in the same state will be the same in the future, the DFA does not
need to keep track of how many active threads are in a particular state; the DFA only needs to track whether
there is an active thread in a particular state. Thus, to simulate the NFA, the DFA only needs to maintain
the current set of states of the NFA.

The formal construction based on the above idea is as follows. Let us consider an NFA N = (Q, X, A, S, F).
Define the DFA 2V = (29, %6, S, F’), where

(A, a) = Ugeal(q, a)
and F' ={ACQ|ANF #0}.

Proposition 8. For any NFA N, L(N) = L(2V).
Proof. The proposition is proved by inductively establishing the following claim.
VA C Q.Vz € . Ay(A,z) = dun (A, 2)

Proving the above claim is left as an exercise. The equivalence of the languages of N and 2V then follows
from the way we defined the set of final states F’ of 2%V, O

0,1 0,1

0,1
° o
1 ‘
H@
Figure 4: NFA N Figure 5: DFA 2V equivalent to N

We conclude this section with an example NFA N (Figure 4) and its equivalent DFA 2%V (Figure 5).

3 Universal Finite Automata (UFA)

NFAs generalize DFAs by allowing for multiple computations on a given input string. But they also make a
choice in terms of when an input is accepted — an NFA accepts an input string if some execution ends in a
final state. One could consider other modes of acceptance, in particular, the one where an input is accepted
if every computation ends in a final state. This leads us to universal finite automata.

Definition 9. A universal finite automaton (UFA) is a tuple U = (Q, 3, A, S, F) where Q, ¥, S, and F are
the set of states, input alphabet, initial states, and final states, respectively, just like for NFAs (Definition 6).
The transition function A : Q x % — (29 \ {0}) maps a current state and input symbol to a non-empty set
of next states.

Remark. The requirement that the transition function A map a state and input symbol to a non-empty
set of next states is a technical condition that we impose, which ensures that in the parallel computation
view of such machines, no thread dies in the middle of processing the input. This makes defining the notion
of acceptance cleaner and less challenging.

The way to think of computation of a UFA on an input string z is similar to the parallel view of
nondeterministic computation. Initially, the machine starts with a one thread in each of the initial states in
S. At each step, each thread reads the next input symbol, and “forks” a thread corresponding to each of
the possible next states, given its current state. After reading the entire input, if the state of every thread
is final, then the input is accepted. If some thread is an non-final state, the input is rejected.

The above intuitive view computation can be captured using runs. Runs for UFAs are defined in exactly
the same manner as for NFAs, and its definition is skipped. Similarly, we can extend the transition function
of a UFA in exactly the same manner. An input « is accepted if the last states of all runs on z end in a final
state. We can restate this definition as follows.

Definition 10. A UFA U = (Q,%,A, S, F) is said to accept an input x iff E(S, z) C F. The language
accepted /recognized by U is Ly(U) = {x € ¥* | U accepts z}.

Once again since DFAs are a special class of UFAs, we can conclude that every regular language is
recognized by UFAs. In addition, like for NFAs, we can also prove the converse — any language recongnized
by a UFA is regular.

Proposition 11. For any UFA U, Ly(U) is regular, i.e., can be recognized by a DFA.

Proof. There are a couple of ways we can argue this. First, we can observe that the DFA 2V with final states
F" = 2F where F is the set of final states of U, accepts the same language as U.

The second proof relies on observing the correspondence between UFAs and NFAs. Let the UFA U =
(Q,%,A, S, F). Consider the NFA U = (Q,X, A, S, F) 2. One can prove that

Ly(U) = L3(U).

Here we are using L3(U) (instead of L(N)) to emphasize the fact that U is being interpreted an an NFA,
which accepts strings when some run is accepting. The proof of this fact is left as an exercise. We know that

L3(U) is regular (Proposition 8) and regular languages are closed under complementation (Proposition 4).
These facts together imply that Ly(U) is regular. O

NFAs and UFAs correspond to two extremes of defining acceptance for a machine that can have multiple
computations on a given input string. NFAs accept if some computation/run/thread accepts, while UFAs
accept if all computations/runs/threads accept. One can imagine more complicted conditions on the set of
runs on an input to define when it is accepted. A general form of acceptance can be defined through the
notion of alternation, which we will introduce in the context of Turing machines. To see how alternating
finite automata work, and their computational power, you can read miscellaneous exercise 59 of “Automata
and Computability” by Dexter Kozen.

4 2-way Deterministic Finite Automata (2DFA)

All the finite automata we have introduced so far (DFA/NFA/UFA) read the symbols of the input from
left to right. None of these machines have the ability to go back and re-read an input symbol they have
already processed. In this section, we introduce two-way automata that can read the input string in either
direction, and can choose to re-read some symbols they have already seen. Such two-way machines can be
either deterministic or nondeterministic. We will only focus our attention on the deterministic model.

[lofefifof1]+]

finite-state
control

Figure 6: Two way deterministic finite automata

A two way deterministic finite automata is schematically shown in Figure 6. The symbols of the input
are thought of occupying cells of a finite tape. The leftmost and rightmost cells of this tape are assumed
to contain a left () and right () endmarker. These endmarkers enable the machine to know when the left
and right end of the input string have been reached, and they are assumed to be not part of the alphabet X
used to encode the input.

2NFAs and UFAs are in some sense the same kind of machine. The only difference is in the way we define acceptance.

The machine starts in its initial state s with its tape head pointing to the left endmarker. At any point
in time, the machine reads the symbol written on the tape cell currently being scanned by the head, and
based on this symbol and the current state of the machine, it moves its tape head either left or right, and
changes its state. It accepts the input if it reaches a special accept state ¢ and rejects if it reaches the reject
state r. In either of these cases the computation halts. However, it is possible that the 2DFA may never halt
and loop. In this case, the input is assumed to be rejected as well.

Definition 12. A 2DFA is a tuple M = (Q,3,F,,6,s,t,1) where
e () is the (finite) set of states,
e X is the input alphabet,
o I is the left endmarker, with F¢ X3,

e 1 is the right endmarker, with ¢ %,

0: (Q\{t,r}) x (BU{F,-}) = (Q x {L,R}) is the transition function which given a current state and
symbol being read, describes what the next state and direction (left/right) in which the input head is
moved; we assume that no transition is defined if the current state ist or r,

s € Q is the start state,

t € Q is the accept state, and
o 1 € (Q is the reject state, with t # r.

We also assume that the transition function is such that the 2DFA always moves right on reading & and left
on reading . In other words, for every q € Q \ {t,r},

6(g,F) = (p,R) for some p € Q,
0(q,) = (p,L) for some p € Q.

Example 13. Let us design a 2DFA for the language accepted by the DFA My (Exzample 3 and Figure 1).
Recall that the language we are interested in recognizing is

Ly = {z € {0,1}" | lasta(x) € {10,11}}

The 2DFA M, will work as follows. It will move the input head right until the right endmarker is reached.
Then it will move it’s head 2 steps to the left. If the symbol read is 1 then it will halt and accept. Otherwise

it will halt and reject.
Formally, M, = ({s,p,q,t,r},{0,1},,-,8,s,t,7) where ¢ is defined as follows.

0(s,a) = (s,R) for any a € {+,0,1} 4(s,) = (p,L)
6(p,a) = (g, L) for any a € {0,1,4} d(p,) = (¢;R)
6(g,0) = (r,R) 6(¢;1) = (t,R)
6(¢;F) = (¢:R) 6(g,4) = (¢, L).

4.1 Configurations and Computations

Recall that we defined the run of DFA to be a sequence of states that is consistent with the symbols in the
input and the transition function. While states are sufficient to determine what the next step of a DFA will
be, for 2DFA we need to know both the state and the position of the tape head so that we know which
symbol is being read. Thus, computations or runs of a 2DFA will be a sequence of pairs that consist of the
state and input head position at that step. We will define this precisely.

Let us fix a 2DFA M = (Q,%,F, 1,9, s,t,7) and an input = ajas - - - a,. Recall that the 2DFA is started
with the input between the endmarkers. Thus, taking ay = and a, 41 =, the 2DFA is executed on a tape

containing the string agajas - - - anan+1 =F x -. The tape head, at any given point, maybe scanning one of
the cells between 0 and n + 1.

A configuration of M on input x is a pair (q,7) where ¢ € Q and 0 < i < n + 1. Since initially M is in
state s and is scanning the leftmost cell, the start configuration is (s,0). The next configuration relation, i>,
x
which describes step of the machine on input z, is defined as follows.

(CL’L - 1)
(g7 +1).

Using the next configuration relation, we can define the notion of a run. A run of M on input x from
configuration c is finite or infinite sequence of configurations cg, c1, ... such that

® Cop = ¢,
1 .

e ¢; — ¢y for every i > 0, and
xT

e if the sequence is finite, then the last configuration is either (¢, j) or (r,j) for some j.

In the above definition, the possibility that the run is an infinite sequence accounts for the fact that M may
loop and never halt. The last condition says that M halts only if it either reaches the accept state ¢ or the
reject state r. Since M is deterministic, it has a unique run starting from any configuration ¢. The input is
accepted if M’s run on x starting from (s, 0) reaches a configuration where the state is ¢.

We can also define acceptance of inputs by defining the n-fold composition of i>, which is defined
x

inductively as follows.

(p, 1) 9, (p,4) for every configuration (p, %)
x
If (p,i) % (q.4) and (q.9) = (u.), then (p,i) = (u.)

Finally, we will say configuration (g, j) is reached (in zero or more steps) from (p,4), if for some n, (p,i) —
(q,7); we denote this by (p,i) = (g, 7).
Input z is accepted by M iff for some i, (s,0) = (t,4). The language accepted/recognized by M is
x
L(M) ={z € ¥* | M accepts z}.

Example 14. The 2DFA M, from Example 13 has the following runs.

21 = 00110 (s5,0) = (5,1) = (5,2) = (5,3) = (5,4) = (5,5) — (5,6) = (p,5) — (q,4) —> (t,5)
1 x1 1 x1 1 T T 1 1

2o = 00100 (5,0) = (5,1) = (5,2) = (5,3) = (5,4) — (5,5) - (5,6) — (p,5) — (¢,4) = (r,5)
xTo x2 xTo x2 T2 xTo T2 T2 T2

Given the above runs, M, accepts 00110 and rejects 00100.

4.2 Equivalence between 2DFA and DFA

Eventhough 2DFAs have the ability to re-read parts of the input if needed, they are not more powerful
than (1-way) DFAs. Every language recognized by a 2DFA is regular. We will prove this observation by
constructing a NFA that recognizes the same language as a given 2DFA; the result will then follow based on
the equivalence of NFAs and DFAs (Proposition 8).

The behavior of a 2DFA can be captured by the sequence of states of the machine as it crosses the
boundary of each tape cell. For example, consider the computation of M, (Example 6) on the input 00110.

I EIKIRNER KN RN

s—s—s—s—s—s—s>
(q—p
t
Figure 7: Behavior of 2DFA M, on input 00110 that illustrates crossing sequences.

This is shown in Figure 7. By convention, we assume that the computation begins by the machine crossing
the left boundary of cell 0 in the initial state s. On reading -, M, moves right without changing its state.
Thus, the first state when the machine crosses the left boundary of cell 1 is s, and it moves to the right as
it crosses this boundary. As the computation proceeds, M, crosses the left boundary of each cell in state s
moving right, until it reads the right endmarker. After reading -, it moves left, crossing the left boundary
of cell 6 in state p, moving left. It then crosses the left boundary of cell 5 in state ¢, and after reading 1 in
cell 4, it re-crosses the left boundary of cell 5 in state ¢.

A crossing sequence is the sequence of states of a 2DFA as it crosses a cell boundary. Assuming that the
input is ¢ = ajas - - - a,, we denote the crossing sequence on the left boundary of cell i (0 < i < n+1) as
0;. By convention, we take gg = s, for any input z. For example, in the computation shown in Figure 7,
o5 = S,q,t.

A crossing set of states is the set of states in a crossing sequence, paired with the direction in which
the head crosses the boundary in that state. For example, for the computation shown in Figure 7, at the
left boundary of the 5th cell, the crossing set of states corresponding to the sequence o5 = s,q,t is the set
{(s,R), (g, L), (t,R)}. Observe that the crossing set of states at any cell boundary is a finite set (even if the
computation is non-terminating) because such a set is a subset of @ x {L, R}, where @Q is the set of states of
the automaton.

We will present two proofs of the equivalence of 2DFAs and DFAs — one that uses crossing set of states,
and the other that uses crossing sequences.

4.3 Proof using Crossing Set of States

Let us fix a 2DFA M = (Q,%,,,d,s,t,7) . In this section, we will prove that there is an NFA N such
that L(N) = L(M). Then using the equivalence of NFAs and DFAs, and the fact that DFAs are closed on
complementation, this will allow us to establish the existence of a DFA that recognizes the same language
asa M.

Consider an input z = aqas - - - a,. We will denote the crossing set of states on the left boundary of cell
1 (0<i<mn+1)as W,. For example, for the computation in Figure 7, we have

Wo=W1=Wo=W3 =W, = {(8, R)} Ws5 = {(87 R)a (qv L)v (t’ R)} We = {(8, R)v (p’ L)}

As observed before, each crossing set of states is a finite set (independent of the length of the input x) for
any computation of M.

Let Wy, W1, ... W41 be the crossing set of states in the computation of M on input z = aqas - - - a,. the
following conditions hold for M’s computation on x.

1. Wy = {(s,R)}. This is true since M starts in state s and it never moves left of the leftmost cell during
the computation.

2. For any @ > 0, successive sets W;_1, W;, W, satisfy the following conditions.

o If (¢,R) € W; and d(q, a;) = (p,R) then (p,R) € Wit1.

10

e If (¢,R) € W, and (¢, a;) = (p,L) then (p,L) € W;.
o If (¢,L) € W; and §(q,a;,—1) = (p,R) then (p,R) € W;.
e If (¢,L) € W; and §(q,a;-1) = (p,L) then (p,L) € W,;_;.

If M does not accept z, then the following condition is additionally true for the sequence Wy, ... W, ;1.
3. t never appears in any of the sets W; since z is not accepted. That is, for every ¢, W;N{(¢t, L), (¢t,R)} = 0.

Our strategy for constructing NFA N for L(M) will be as follows. On input x, N will guess the crossing
set of states Wy, W1,... as it reads the symbols of x, and make sure that conditions 1,2,3 outlined above
hold. Notice that since each set W; is of bounded size (independent of the length of x or its computation),
these sets W; can be stored in the finite states of N.

Before defining N formally, it is useful to say when two crossing set of states U and V' are consistent with
a symbol a; this definition captures the conditions outlined in 2. above. U,V C @ x {L,R} are consistent
with input symbol a, if

If (¢,R) € U and 6(q,a) =
R) € U and 6(q,a) =

o If (g

R)
(¢:R) L)
o If (¢,L) € V and 6(¢,a) = (p,R) then (,R) € Vi.
o If (¢,L) € V and 6(¢,a) = (p, L)

We can now define N = (Q', X, A, {(s, R)}7F’) where

o Q = 2@\ {EHX{LR}: recall that if z is not accepted then ¢ does not appear in the crossing set of states
of M.

e For U € ', A(U,a) = {V € Q' | U,V are consistent with a}. Notice that A(U,a) could be @, if no
V € @’ is consistent.

o F'=(Q'

One can argue that L(N) = L(M).

4.4 Proof using Crossing Sequences

Recall that a crossing sequence is the sequence of states of a 2DFA as it crosses a cell boundary. Assuming
that the input is * = ajas - - - a,, we denote the crossing sequence on the left boundary of cell i (0 < ¢ <n+1)
as 0;. By convention, we take oy = s, for any input z. For example, in the computation shown in Figure 7,
05 = S,q,t.

The following observations about crossing sequences are useful. If input z is accepted by 2DFA M, then
no crossing sequence may have a repeated state with the head moving in the same direction. This is because
if we have such a repeated state, then it means that M (because it is deterministic) has entered a loop and
will never terminate. Second, the first time a boundary is crossed the head must be moving right. Subsequent
crossing must be in alternate directions. Thus, every odd numbered elements of a crossing sequence represent
right moves, while every even numbered elements represent left moves. Given the first observation in this
paragraph about looping, we have that if x is accepted, no crossing sequence can a state appear twice in
odd numbered positions or even numbered positions. Thus the length of any crossing sequence during an
accepting computation is at most 2|Q)|.

A crossing sequence is wvalid if it is a sequence ¢, go, . . . g such that no two odd position elements are
equal and no two even positioned elements are equal. In an accepting computation, all crossing sequences
are valid. Since the length of a valid crossing sequence is bounded by 2|Q)|, there are finite number of valid
crossing sequences. In fact the number of valid crossing sequences is bounded by \Q|2|Q|.

11

Our strategy for constructing the NFA N equivalent to the 2DFA M will be as follows. NV will check if
the input z is accepted by M by guessing the crossing sequences o; during M’s computation on x, as it reads
the input; of course, g is fixed to be s. Now suppose N has guessed the sequence o;, and after reading a;,
N guesses 0;41. N must make sure that the guesses of o; and ;41 (which are the two boundary crossing
sequences of cell i) are consistent with the fact that cell ¢ is holding the symbol a;. Thus we need to carefully
define what it means for two crossing sequences to be consistent with respect to the contents of a given cell.

We will say that a sequence o = p1, pa, ... p¢ Tight matches a sequences 0’ = g1, qo, ... q; on symbol a, if o
and ¢’ are consistent provided M enters cell a in state p; moving right. Similarly, we will say that a sequence
o = p1,D2,...Pe left matches a sequences o’ = q1,q2,...qr on symbol a, if o and ¢’ are consistent provided
M enters cell a in state g; moving left. We will define the notion of left and right matching, inductively, as
follows.

e 0 = ¢ and ¢’ = € both left and right match on a. That is, if one never reaches the cell containing a,
the two boundary crossing sequences must be empty.

o If p3,p4,...p¢ right matches o’ = ¢qq,...q; and §(p1,a) = (p2,L) then o right matches ¢’ on a. This
describes the situation when we cross into cell a in state p; and we immediately move left in state ps.

o If po,ps,...p¢ left matches g2, qs,...q; and 6(p1,a) = (g1, R) then o right matches ¢’. This captures
the situation when after entering cell a in state p;, we move across the right boundary in state ¢,
before returning back to the cell from the right boundary of a in state go. Notice, this case is the
reason why we need to also define the notion of left matches.

e Ifp1,po,...pe left matches g3, qq, - . . qx and 6(q1,a) = (g2, R) then o left matches ¢’ on a. The reasoning
for this is similar to the first non-base case for right matches.

e Finally, if pa, p3, ... pe right matches ¢o, ... qr and §(q1,a) = (p1,L) then o left matches o/. Again this
is similar to the second non-base case for right matching.

Having defined the notion of two crossing sequences right matching on an input symbol, we ready
to give the formal definition of the NFA N based on the intuition we outlined above. The NFA N =
(Q,2,A,{(s,0)}, F") where

e) =V x{0,1}, where V is the set of all valid crossing sequences. The state of N remembers its
current guess for the crossing sequence on the left boundary of the symbol N is going to read, as well
as whether N has already guessed a crossing sequence where the last state is the accept state t.

e For a state (o,b), where o is a valid crossing sequence, and b € {0, 1},
A((o,b),a) = {(o',V') | o right matches ¢’ on a and if ¢’ = o1t then b’ = 1; otherwise b’ = b}

In other words, in the next state (o’,b’), the crossing sequence ¢’ must be consistent with o given
symbol a, and if the last state of ¢’ is the accepting state ¢ then ' = 1; otherwise o’ is the same as b.

o F' ={(0,1)| 0 € V}. So the input is accepted, if at some point before reading all the input symbols,
N guessed a crossing sequence whose last state is ¢.

Now, we need to argue that L(N) = L(M). It is easy to see that L(M) C L(N). This is because if input
x is accepted by M, then N can guess the crossing sequences in the accepting computation of M on z, and
N would accept. To prove the converse, is more challenging.

A couple of alternate (simpler?) proofs for this result can be found in the book “Automata and Com-
putability” by Dexter Kozen. See lecture 18 and miscellaneous exercise 61.

12

