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Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Turing Machine

` 0 1 1 0 1 t

finite-state
control

A semi-infinite tape with ` in leftmost cell

Initially input stored on tape, with rest of the cell t
In one step, machine reads symbol under head, and based on
current state, changes state, writes a new symbol in cell, and
moves head either L or R.
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(Deterministic) Turing Machine
Formal Definition

A TM is M = (Q,Σ, Γ,`,t, δ, s, t, r) where

Q is a finite set of states,

Σ is a finite input alphabet, used to encode the input string,

Γ is a finite tape alphabet consisting of symbols written and read from
the tape; Σ ( Γ,

`∈ Γ \ Σ is the left endmarker,

t ∈ Γ \ Σ is the blank symbol,

s ∈ Q is the start state,

t ∈ Q is the unique accepting state,

r ∈ Q (r 6= t) is the unique rejecting state,

δ : (Q \ {t, r})× Γ→ Q × Γ× {L,R} is the transition function that never
overwrites `.
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Configuration, and One step

A configuration of a TM must describe the state, contents of
the tape, and position of the head. Thus,
α ∈ Q × {y tω | y ∈ Γ∗} × N.

The starting configuration on input x is (s,` xtω, 0)

For a tape z = ytω (y ∈ Γ∗), snb (z) is the string obtained
from z by substituting b for zn. The next configuration
relation is given by

δ(p, zi ) = (q, b, L)⇒ (p, z , i)
1−→
M

(q, s ib(z), i − 1),

δ(p, zi ) = (q, b,R)⇒ (p, z , i)
1−→
M

(q, s ib(z), i + 1).
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Universal Turing Machine

Acceptance, Rejection, and Halting

Let
∗−→
M

be the reflexive, transitive closure of
1−→
M

.

M accepts x if (s,` xtω, 0)
∗−→
M

(t, z , n) for some z , n

M rejects x if (s,` xtω, 0)
∗−→
M

(r , z , n) for some z , n

M does not halt on x if M neither accepts nor rejects x .

M is total if it halts on all inputs x

Viswanathan CS 475



Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Acceptance, Rejection, and Halting

Let
∗−→
M

be the reflexive, transitive closure of
1−→
M

.

M accepts x if (s,` xtω, 0)
∗−→
M

(t, z , n) for some z , n

M rejects x if (s,` xtω, 0)
∗−→
M

(r , z , n) for some z , n

M does not halt on x if M neither accepts nor rejects x .

M is total if it halts on all inputs x

Viswanathan CS 475



Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Acceptance, Rejection, and Halting

Let
∗−→
M

be the reflexive, transitive closure of
1−→
M

.

M accepts x if (s,` xtω, 0)
∗−→
M

(t, z , n) for some z , n

M rejects x if (s,` xtω, 0)
∗−→
M

(r , z , n) for some z , n

M does not halt on x if M neither accepts nor rejects x .

M is total if it halts on all inputs x

Viswanathan CS 475



Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Acceptance, Rejection, and Halting

Let
∗−→
M

be the reflexive, transitive closure of
1−→
M

.

M accepts x if (s,` xtω, 0)
∗−→
M

(t, z , n) for some z , n

M rejects x if (s,` xtω, 0)
∗−→
M

(r , z , n) for some z , n

M does not halt on x if M neither accepts nor rejects x .

M is total if it halts on all inputs x

Viswanathan CS 475



Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Acceptance, Rejection, and Halting

Let
∗−→
M

be the reflexive, transitive closure of
1−→
M

.

M accepts x if (s,` xtω, 0)
∗−→
M

(t, z , n) for some z , n

M rejects x if (s,` xtω, 0)
∗−→
M

(r , z , n) for some z , n

M does not halt on x if M neither accepts nor rejects x .

M is total if it halts on all inputs x

Viswanathan CS 475



Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Language, RE, REC

Language accepted/recognized by M is
L(M) = {x ∈ Σ∗ |M accepts x}.

A language/decision problem L is recursively enumerable (RE)
if L = L(M) for some TM M.

A language/decision problem L is recursive (REC) if
L = L(M) for some total TM M.
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Multi-Tape TM
Nondeterministic TM

Multi-Tape Turing Machine

` 0 1 1 0 t

` 1 0 t 0 0

` 0 0 1 t

finite-state
control

Input on Tape 1, with left endmarker in cell 0

Initially all heads scanning cell 0, and tapes 2 to k blank
except for the left endmarker

In one step: Read symbols under each of the k-heads, and
depending on the current control state, write new symbols on
the tapes, move the each tape head (possibly in different
directions), and change state.
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Church-Turing Thesis

Universal Turing Machine

Multi-Tape TM
Nondeterministic TM

Expressive Power of multi-tape TM

Theorem

For any k-tape Turing Machine M, there is a single tape TM
single(M) such that L(single(M)) = L(M).

Challenges

How do we store k-tapes in one?

How do we simulate the movement of k independent heads?
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Multi-Tape TM
Nondeterministic TM

Storing Multiple Tapes

` 0 1 1 t

` 1 0 t
finite-state

control

Multi-tape TM M

` (`, ·,`, ∗) (1, ∗, 0, ·) (0, ·, 1, ·) (t, ·, 1, ·) t

finite-state
control

1-tape equivalent single(M)

Store in cell i + 1 contents of cell i of all tapes.

“Mark” head
position of tape with ∗.
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Variants of Turing Machines
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Universal Turing Machine

Multi-Tape TM
Nondeterministic TM

Simulating One Step

Challenge 1: Head of 1-Tape TM is pointing to one cell. How do
we find out all the k symbols that are being read by the k heads,
which maybe in different cells?

Read the tape from left to right, storing the contents of the
cells being scanned in the state, as we encounter them.

Challenge 2: After this scan, 1-tape TM knows the next step of
k-tape TM. How do we change the contents and move the heads?

Once again, scan the tape, change all relevant contents,
“move” heads (i.e., move ∗s), and change state.
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Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Multi-Tape TM
Nondeterministic TM

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.

2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.
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moved left.

Formal construction in notes.
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Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Multi-Tape TM
Nondeterministic TM

Nondeterministic Turing Machine

Deterministic TM: At each step, there is one possible next state,
symbols to be written and direction to move the head, or the TM
may halt.

Nondeterministic TM: At each step, there are finitely many
possibilities. So formally, N = (Q,Σ, Γ,`,t,∆, s, t, r), where

Q,Σ, Γ,`,t, s, t, r are as before for deterministic machine

∆ : (Q \ {t, r})× Γ→ 2Q×Γ×{L,R}
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Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Multi-Tape TM
Nondeterministic TM

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM.

So are notions of starting
configuration and accepting configuration.

A single step
1−→
N

and multi-step
∗−→
N

is defined similarly.

x is accepted by N, if from the starting configuration with x
as input, N reaches the accepting state, for some sequence of
choices at each step.

L(N) = {x ∈ Σ∗ | N accepts x}
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Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Multi-Tape TM
Nondeterministic TM

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine N, there is a
(deterministic) TM det(N) such that L(det(N)) = L(N).

Proof Idea

det(N) will simulate N on the input.

Idea 1: det(N) tries to keep track of all possible
“configurations” that N could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(N) will simulate N on each possible sequence of
computation steps that N may try in each step.
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Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Multi-Tape TM
Nondeterministic TM

Nondeterministic Computation

αε = (s,` xtω, 0)

α1 · · · αi · · · · · · αr

· · · · · · αij · · · αr1 · · · αrr

· · · · · ·

If r = maxq,X |∆(q,X )| then the runs of M can be organized
as an r -branching tree.

αi1i2···in is the configuration of M after n-steps, where choice
i1 is taken in step 1, i2 in step 2, and so on.

Input x is accepted iff ∃ accepting configuration in tree.
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Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Multi-Tape TM
Nondeterministic TM

Proof Idea

The machine det(N) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
N on the appropriate sequence of nondeterministic choices

det(N) will explore the tree.

Observe that det(N) may not terminate if x is not accepted.
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Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Multi-Tape TM
Nondeterministic TM

Proof Details

det(N) will use 3 tapes to simulate N

(note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input x

Tape 2, called simulation tape, will be used as N’s tape when
simulating N on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices
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Church-Turing Thesis

Universal Turing Machine

Multi-Tape TM
Nondeterministic TM

Execution of det(N)

1 Initially: Input tape contains x , simulation tape and choice
tape are blank

2 Copy contents of input tape onto simulation tape
3 Simulate N using simulation tape as its (only) tape

1 At the next step of N, if state is q, simulation tape head reads
X , and choice tape head reads i , then simulate the ith
possibility in ∆(q,X ); if i is not valid, then goto step 4

2 After changing state, simulation tape contents, and head
position on simulation tape, move choice tape’s head to the
right. If Tape 3 is now scanning t, then goto step 4

3 If N accepts then accept and halt, else goto step 3(1) to
simulate the next step of N.

4 Write the lexicographically next choice sequence on choice
tape, erase everything on simulation tape and goto step 2.
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Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Multi-Tape TM
Nondeterministic TM

Deterministic Simulation
In a nutshell

det(N) simulates N over and over again, for different
sequences, and for different number of steps.

If N accepts x then there is a sequence of choices that will
lead to acceptance. det(N) will eventually have this sequence
on choice tape, and then its simulation N will accept.

If N does not accept x then no sequence of choices leads to
acceptance. det(N) will therefore never halt!
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Variants of Turing Machines
Church-Turing Thesis

Universal Turing Machine

Universality of the Model
Church-Turing Thesis

Robustness of the Class of TM Languages

Various efforts to capture mechanical computation have the same
expressive power.

Non-Turing Machine models: random access machines,
λ-calculus, type 0 grammars, first-order reasoning, π-calculus,
. . .

Enhanced Turing Machine models: TM with 2-way infinite
tape, multi-tape TM, nondeterministic TM, probabilistic
Turing Machines, quantum Turing Machines . . .

Restricted Turing Machine models: queue machines, 2-stack
machines, 2-counter machines, . . .
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Universal Turing Machine

Universality of the Model
Church-Turing Thesis

Church-Turing Thesis

“Anything solvable via a mechanical procedure can be solved on a
Turing Machine.”

Not a mathematical statement that can be proved or
disproved!

Strong evidence based on the fact that many attempts to
define computation yield the same expressive power
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Universality of the Model
Church-Turing Thesis

Consequences

In the course, we will use an informal pseudo-code to argue
that a problem/language can be solved on Turing machines

To show that something can be solved on Turing machines,
you can use any programming language of choice, unless the
problem specifically asks you to design a Turing Machine
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Church-Turing Thesis

Universal Turing Machine

Encoding Turing machines
Universal Tuing machines

Universal Turing Machine

There is a Turing machine U which given the encoding of a Turing
machine M and an input x can simulate the execution of M on x
and

(a) Accept if M accepts x , and (b) Reject if M rejects x .
U is called the universal Turing machine.
Since U is a fixed machine, its tape alphabet is fixed. However, it
needs to be able to simulate TMs with an arbitrary tape alphabet.
This is achieved by encoding the TMs using a fixed alphabet.
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Encoding Turing Machines

Consider an arbitrary Turing machine M = (Q,Σ, Γ,`,t, δ, s, t, r).

We will encode M using the alphabet {0, 1, [, ], ·, |}.
Encode each a ∈ Γ as a binary string enc(a) of length log |Γ|;
we will assume that `= 0log |Γ| and t = 0log |Γ|−11

A string x = a1a2 · · · an ∈ Γ∗ will be encoded as
[enc(a1)·enc(a2)· · · · ·enc(an)]

Each state q ∈ Q is encoded as a binary string enc(q) of
length log |Q|; we will assume that s = 0log |Q|, t = 0log |Q|−11
and r = 0log |Q|−210

Directions L and R will be encoded as 0 and 1, respectively.
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Turing Machine Codes
Continued

Each transition δ(p, a) = (q, b, d) is encoded as
[enc(p)·enc(a)|enc(q)·enc(b)·enc(d)]

The code for the machine itself is

[︸ ︷︷ ︸
trans 1

︸ ︷︷ ︸
trans 2

· · · · · · ︸ ︷︷ ︸
last trans

]

We will denote the encoding of machine M and input x as
〈M, x〉
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Featuring of the Encoding

The precise choice of the alphabet and encoding is not
important; it is merely to illustrate one precise encoding

In fact, when we write out TMs on paper using the english
alphabet, punctuation marks, and set notation is perfectly
good as well, as long as it is consistent.
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Universal Turing Machine

` [ 1 1 0 · ]

` 0 1 1 0 t t

` 1 0 t 0 0 t

` 0 0 1 t t

finite-state
control

Scratch

State of M

Simulation Tape

Input

Schematic picture of Universal TM

U will store the configuration of M by storing, the state of M on
the state tape, and the tape of M on the simulation tape.
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UTM algorithm

1 Check to see if the code for M is a valid TM code; if not reject the input.
For example, for our code, it involves checking to see if the string as
exactly one “|” between [ and ], etc.

2 If code is ok, then copy x onto tape 2

3 Write 0 · · · 0, the start state of M, on the third tape, and scan the “first
cell” of tape 2.

4 To simulate a move of M, search for a transition
[enc(p)·enc(a)|enc(q)·enc(b)·enc(d)] on tape 1, where enc(p) is on
tape 3 (current state) and enc(a) is read from tape 2 from the current
“cell”, i.e., between two successive · symbols from the current head
position. Then, write enc(q) on tape 3 (after erasing its current
contents), write enc(b) on tape 2 instead of enc(a), and finally move the
head on tape 2 to the appropriate “cell”.

5 If state on tape 3 is 0 · · · 01 then accept; if state is 0 · · · 010 then reject.
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