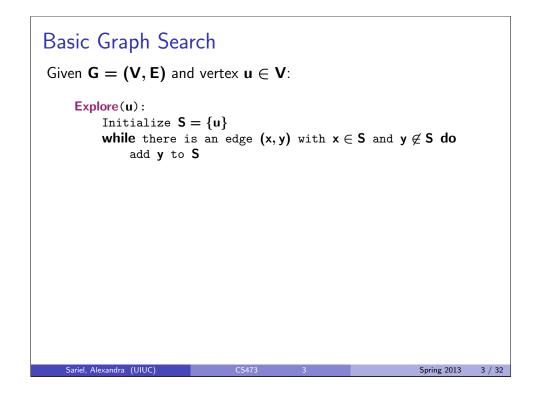
CS 473: Fundamental Algorithms, Spring 2013 Review session Lecture 99 February 19, 2013 Marcol 1000 Stright 2001 Stright 2

Why Graphs?

Sariel Alexandra

- Graphs help model networks which are ubiquitous: transportation networks (rail, roads, airways), social networks (interpersonal relationships), information networks (web page links) etc etc.
- Fundamental objects in Computer Science, Optimization, Combinatorics
- Many important and useful optimization problems are graph problems
- **③** Graph theory: elegant, fun and deep mathematics



	ted Graphs			
DFS(G)				
Mark all :	nodes u as unvisi	ted		
T is set	to Ø			
time $= 0$				
	e is an unvisite)	d node u d	0	
Output T				
DFS(u)				
Mark u as	visited			
pre(u) = -				
		(u) do		
	dge (u,v) in Out s not marked	(u) uo		
		Ŧ		
	d edge (\mathbf{u}, \mathbf{v}) to	1		
	FS(v)			
post(u) =	+ + time			
Sariel, Alexandra (UIUC)	CS473	4	Spring 2013	4 / 32

Spring 2013

2 / 32

pre and post numbers

Node u is **active** in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Sariel, Alexandra (UIUC)	CS473	5	Spring 2013	5 / 32

Directed Graph Connectivity Problems

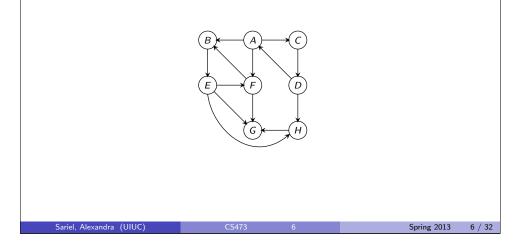
- **(**) Given **G** and nodes **u** and **v**, can **u** reach **v**?
- **3** Given **G** and **u**, compute rch(u).
- Siven **G** and **u**, compute all **v** that can reach **u**, that is all **v** such that $\mathbf{u} \in \operatorname{rch}(\mathbf{v})$.
- Find the strongly connected component containing node u, that is SCC(u).
- **Is G** strongly connected (a single strong component)?
- **O** Compute *all* strongly connected components of **G**.

First four problems can be solve in O(n + m) time by adapting **BFS**/**DFS** to directed graphs. The last one requires a clever **DFS** based algorithm.

Connectivity and Strong Connected Components

Definition

Given a directed graph **G**, **u** is strongly connected to **v** if **u** can reach **v** and **v** can reach **u**. In other words $\mathbf{v} \in \operatorname{rch}(\mathbf{u})$ and $\mathbf{u} \in \operatorname{rch}(\mathbf{v})$.



DFS Properties

Generalizing ideas from undirected graphs:

- **DFS(u)** outputs a directed out-tree **T** rooted at **u**
- **2** A vertex **v** is in **T** if and only if $\mathbf{v} \in \operatorname{rch}(\mathbf{u})$
- Sor any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint are one is contained in the other.
- The running time of DFS(u) is O(k) where $\mathbf{k} = \sum_{\mathbf{v} \in rch(u)} |Adj(\mathbf{v})|$ plus the time to initialize the Mark array.
- DFS(G) takes O(m + n) time. Edges in T form a disjoint collection of out-trees. Output of DFS(G) depends on the order in which vertices are considered.

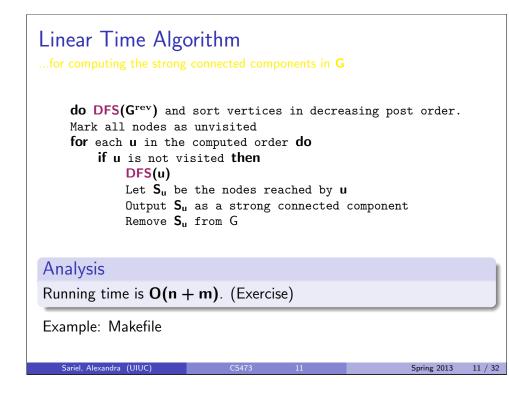
Spring 2013

Tree

Edges of **G** can be classified with respect to the **DFS** tree **T** as:

- Tree edges that belong to T
- A forward edge is a non-tree edges (x, y) such that pre(x) < pre(y) < post(y) < post(x).</p>
- A backward edge is a non-tree edge (x, y) such that pre(y) < pre(x) < post(x) < post(y).</p>
- A cross edge is a non-tree edges (x, y) such that the intervals [pre(x), post(x)] and [pre(y), post(y)] are disjoint.

Sariel, Alexandra (UIUC)	CS473	9	Spring 2013	9 / 32

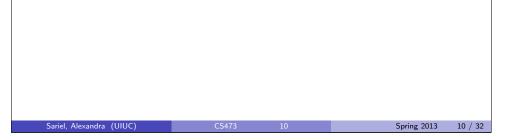


Algorithms via

- $SC(G,u) = \{v \mid u \text{ is strongly connected to } v\}$
 - Find the strongly connected component containing node u. That is, compute SCC(G, u).

 $SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u)$

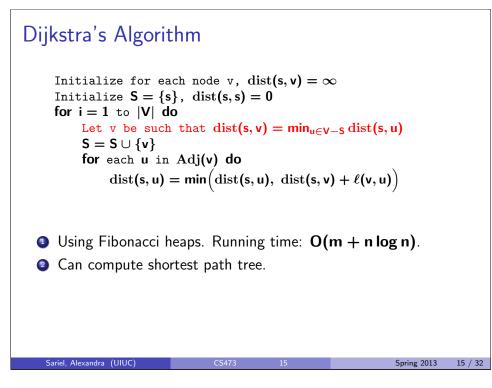
Hence, SCC(G, u) can be computed with two **DFS**es, one in G and the other in G^{rev} . Total O(n + m) time.



with Distances
$\begin{aligned} & BFS(s) \\ & \text{Mark all vertices as unvisited and for each v set dist(v)} = \infty \\ & \text{Initialize search tree T to be empty} \\ & \text{Mark vertex s as visited and set dist(s)} = 0 \\ & \text{set Q to be the empty queue} \\ & \text{enq(s)} \\ & \text{while Q is nonempty do} \\ & u = deq(Q) \\ & \text{for each vertex } v \in \mathrm{Adj}(u) \ do \\ & \text{if } v \ \text{is not visited do} \\ & \text{add edge } (u, v) \ \text{to T} \\ & \text{Mark } v \ \text{as visited, enq(v)} \\ & \text{and set dist}(v) = \mathrm{dist}(u) + 1 \end{aligned}$
Proposition
BFS(s) runs in $O(n + m)$ time.
Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 / 32

with Layers

```
BFSLayers(s):
    Mark all vertices as unvisited and initialize T to be empty
    Mark s as visited and set L_0 = \{s\}
    \mathbf{i} = \mathbf{0}
    while L<sub>i</sub> is not empty do
              initialize L_{i+1} to be an empty list
              for each u in L_i do
                   for each edge (u, v) \in Adj(u) do
                   if v is not visited
                            mark v as visited
                            add (u, v) to tree T
                            add v to L_{i+1}
              i = i + 1
Running time: O(n + m)
                                                                Spring 2013
   Sariel, Alexandra (UIUC
                                                                          13 / 32
```



<section-header><text><text><section-header><text>

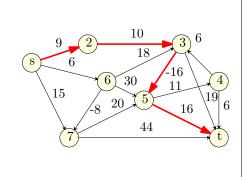
Single-Source Shortest Paths with Negative Edge Lengths

Path Problems Input: A directed graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Single-Source Shortest

- Given nodes **s**, **t** find shortest path from **s** to **t**.
- Given node **s** find shortest path from **s** to all other nodes.

Sariel, Alexandra (UIUC)



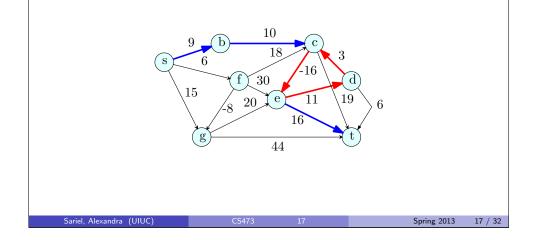
Spring 2013

16 / 32

Negative Length Cycles

Definition

A cycle **C** is a negative length cycle if the sum of the edge lengths of **C** is negative.



Bellman-Ford to detect Negative Cycles

for each $u \in V$ do $d(s, u) = \infty$ d(s,s) = 0for i = 1 to |V| - 1 do for each edge e = (u, v) do Relax(e) for each edge e = (u, v) do if e = (u, v) is tense then Stop and output that \boldsymbol{s} can reach a negative length cycle Output for each $u \in V$: d(s, u)

- Total running time: **O(mn)**.
- 2 Can detect negative cycle reachable from **s**.
- Appropriate construction detect any negative cycle in a graph.

19 / 32

A Generic Shortest Path Algorithm

Dijkstra's algorithm does not work with negative edges.

Relax(e = (u, v))if $(d(s, v) > d(s, u) + \ell(u, v))$ then $d(s, v) = d(s, u) + \ell(u, v)$

GenericShortestPathAlg:

d(s,s)=0for each node $u \neq s$ do $d(s, u) = \infty$

while there is a tense edge do Pick a tense edge e Relax(e)

Output **d(s, u)** values

Sariel Alexandra (UIUC

Sariel, Alexandra (UIUC)

```
Shortest paths in
                                 S
        ShorestPathInDAG(G, s):
            s=v_1,v_2,v_{i+1},\ldots,v_n be a topological sort of G
            for i = 1 to n do
                 d(s, v_i) = \infty
            d(s,s)=0
             for i = 1 to n - 1 do
                 for each edge e in Adj(v_i) do
                     Relax(e)
            return d(s, \cdot) values computed
Running time: O(m + n) time algorithm! Works for negative edge
```

Spring 2013

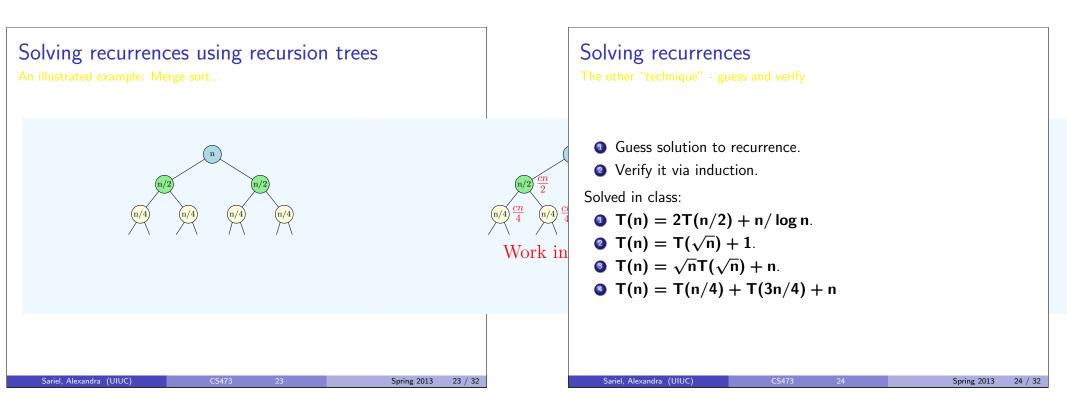
Spring 2013

20 / 32

18 / 32

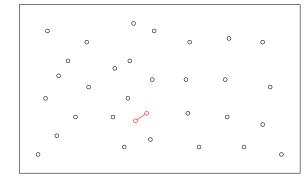
lengths and hence can find *longest* paths in a DAG.

Reduction Recursion Recursion is a very powerful and fundamental technique. Reducing problem **A** to problem **B**: 2 Basis for several other methods. • Algorithm for **A** uses algorithm for **B** as a *black box*. ① Divide and conquer. 2 Example: Uniqueness (or distinct element) to sorting. Dynamic programming. In Enumeration and branch and bound etc. Some classes of greedy algorithms. 3 Recurrences arise in analysis. Examples seen: Recursion: Tower of Hanoi, Selection sort, Quick Sort. **2** Divide & Conquer: Merge sort. Multiplying large numbers. Spring 2013 21 / 32 22 / 32 Sariel, Alexandra (UIUC Sariel, Alexandra, (UIUC Spring 2013



Closest Pair - the problem

Input Given a set **S** of **n** points on the plane Goal Find $\mathbf{p}, \mathbf{q} \in \mathbf{S}$ such that $\mathbf{d}(\mathbf{p}, \mathbf{q})$ is minimum



Algorithm:

One can compute closest pair points in the plane in **O(n log n)** time using divide and conquer. Sariel, Alexandra (UIUC)

Recursive algorithm for Selection

```
select(A, j):
      n = |A|
      if n < 10 then
            Compute jth smallest element in A using brute force.
      Form lists L_1, L_2, \ldots, L_{\lceil n/5 \rceil} where L_i = \{A[5i - 4], \ldots, A[5i]\}
      Find median b_i of each L_i using brute-force
      B is the array of b_1, b_2, \ldots, b_{\lceil n/5 \rceil}.
      \mathbf{b} = \mathbf{select}(\mathbf{B}, \lceil \mathbf{n}/10 \rceil)
      Partition \boldsymbol{A} into \boldsymbol{A}_{\text{less or equal}} and \boldsymbol{A}_{\text{greater}} using \boldsymbol{b} as pivot
      if |A_{less or equal}| = j then
            return b
      if |A_{\text{less or equal}}| > j) then
            return select (A<sub>less or equal</sub>, j)
      else
            return select(A_{greater}, j - |A_{less or equal}|)
```

Median selection

Problem

Given list L of n numbers, and a number k find kth smallest number in **n**.

- Quick Sort can be modified to solve it (but worst case running) time is quadratic (if lucky linear time).
- Seen divide & conquer algorithm... Involved, but linear running time.

Back to Recursion

Seen some simple recursive algorithms:

- Binary search.
- Past exponentiation.
- Fibonacci numbers.
- Maximum weight independent set.

Spring 2013

25 / 32

Spring 2013

26 / 32