
CS 473: Fundamental Algorithms, Spring 2013

Review session
Lecture 99
February 19, 2013

Sariel, Alexandra (UIUC) CS473 1 Spring 2013 1 / 32

Why Graphs?
1 Graphs help model networks which are ubiquitous: transportation

networks (rail, roads, airways), social networks (interpersonal
relationships), information networks (web page links) etc etc.

2 Fundamental objects in Computer Science, Optimization,
Combinatorics

3 Many important and useful optimization problems are graph
problems

4 Graph theory: elegant, fun and deep mathematics

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2 / 32

Basic Graph Search

Given G = (V,E) and vertex u ∈ V:

Explore(u):
Initialize S = {u}
while there is an edge (x, y) with x ∈ S and y 6∈ S do

add y to S

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3 / 32

DFS in Directed Graphs
DFS(G)

Mark all nodes u as unvisited

T is set to ∅
time = 0
while there is an unvisited node u do

DFS(u)

Output T

DFS(u)
Mark u as visited

pre(u) = + + time
for each edge (u, v) in Out(u) do

if v is not marked

add edge (u, v) to T
DFS(v)

post(u) = + + time

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 / 32

pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 32

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can reach
v and v can reach u. In other words v ∈ rch(u) and u ∈ rch(v).

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 / 32

Directed Graph Connectivity Problems
1 Given G and nodes u and v, can u reach v?

2 Given G and u, compute rch(u).

3 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

4 Find the strongly connected component containing node u, that
is SCC(u).

5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G.

First four problems can be solve in O(n + m) time by adapting
BFS/DFS to directed graphs. The last one requires a clever DFS
based algorithm.

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 32

DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(u) outputs a directed out-tree T rooted at u

2 A vertex v is in T if and only if v ∈ rch(u)

3 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint are one is contained in the
other.

4 The running time of DFS(u) is O(k) where
k =

∑
v∈rch(u) |Adj(v)| plus the time to initialize the Mark array.

5 DFS(G) takes O(m + n) time. Edges in T form a disjoint
collection of of out-trees. Output of DFS(G) depends on the
order in which vertices are considered.

Sariel, Alexandra (UIUC) CS473 8 Spring 2013 8 / 32

DFS Tree

Edges of G can be classified with respect to the DFS tree T as:

1 Tree edges that belong to T

2 A forward edge is a non-tree edges (x, y) such that
pre(x) < pre(y) < post(y) < post(x).

3 A backward edge is a non-tree edge (x, y) such that
pre(y) < pre(x) < post(x) < post(y).

4 A cross edge is a non-tree edges (x, y) such that the intervals
[pre(x), post(x)] and [pre(y), post(y)] are disjoint.

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 32

Algorithms via DFS

SC(G, u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G, u).

SCC(G, u) = rch(G, u) ∩ rch(Grev, u)

Hence, SCC(G, u) can be computed with two DFSes, one in G and
the other in Grev. Total O(n + m) time.

Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 32

Linear Time Algorithm
...for computing the strong connected components in G

do DFS(Grev) and sort vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do
if u is not visited then

DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component

Remove Su from G

Analysis

Running time is O(n + m). (Exercise)

Example: Makefile

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 32

BFS with Distances

BFS(s)
Mark all vertices as unvisited and for each v set dist(v) =∞
Initialize search tree T to be empty

Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue

enq(s)
while Q is nonempty do

u = deq(Q)
for each vertex v ∈ Adj(u) do

if v is not visited do
add edge (u, v) to T
Mark v as visited, enq(v)
and set dist(v) = dist(u) + 1

Proposition

BFS(s) runs in O(n + m) time.

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 / 32

BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty

Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list

for each u in Li do
for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited

add (u, v) to tree T
add v to Li+1

i = i + 1

Running time: O(n + m)

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 / 32

Checking if a graph is bipartite...
Linear time algorithm

Corollary

There is an O(n + m) time algorithm to check if G is bipartite and
output an odd cycle if it is not.

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 32

Dijkstra’s Algorithm

Initialize for each node v, dist(s, v) =∞
Initialize S = {s}, dist(s, s) = 0
for i = 1 to |V| do

Let v be such that dist(s, v) = minu∈V−S dist(s, u)
S = S ∪ {v}
for each u in Adj(v) do

dist(s, u) = min
(
dist(s, u), dist(s, v) + `(v, u)

)

1 Using Fibonacci heaps. Running time: O(m + n log n).

2 Can compute shortest path tree.

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 32

Single-Source Shortest Paths with Negative Edge

Lengths

Single-Source Shortest
Path Problems
Input: A directed graph
G = (V,E) with arbitrary
(including negative) edge
lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

Given nodes s, t find
shortest path from s to t.

Given node s find shortest
path from s to all other
nodes.

s

2 3

4

5

6

7 t

9

15

6

10

-8 20

30

18

11

16

-16

19

6

6

44

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 32

Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of
C is negative.

s

b c

d

e

f

g t

9

15

6

10

-8 20

30

18

11

16

-16

19

3

6

44

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 32

A Generic Shortest Path Algorithm

Dijkstra’s algorithm does not work with negative edges.

Relax(e = (u, v))
if (d(s, v) > d(s, u) + `(u, v)) then

d(s, v) = d(s, u) + `(u, v)

GenericShortestPathAlg:
d(s, s) = 0
for each node u 6= s do

d(s, u) =∞

while there is a tense edge do
Pick a tense edge e
Relax(e)

Output d(s, u) values

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 32

Bellman-Ford to detect Negative Cycles

for each u ∈ V do
d(s, u) =∞

d(s, s) = 0

for i = 1 to |V| − 1 do
for each edge e = (u, v) do

Relax(e)

for each edge e = (u, v) do
if e = (u, v) is tense then

Stop and output that s can reach

a negative length cycle

Output for each u ∈ V: d(s, u)

1 Total running time: O(mn).

2 Can detect negative cycle reachable from s.

3 Appropriate construction - detect any negative cycle in a graph.

Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 32

Shortest paths in DAGs
Algorithm for DAGs

ShorestPathInDAG(G, s):
s = v1, v2, vi+1, . . . , vn be a topological sort of G
for i = 1 to n do

d(s, vi) =∞
d(s, s) = 0

for i = 1 to n− 1 do
for each edge e in Adj(vi) do

Relax(e)

return d(s, ·) values computed

Running time: O(m + n) time algorithm! Works for negative edge
lengths and hence can find longest paths in a DAG.

Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20 / 32

Reduction

Reducing problem A to problem B:

1 Algorithm for A uses algorithm for B as a black box.

2 Example: Uniqueness (or distinct element) to sorting.

Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 / 32

Recursion
1 Recursion is a very powerful and fundamental technique.
2 Basis for several other methods.

1 Divide and conquer.
2 Dynamic programming.
3 Enumeration and branch and bound etc.
4 Some classes of greedy algorithms.

3 Recurrences arise in analysis.

Examples seen:
1 Recursion: Tower of Hanoi, Selection sort, Quick Sort.
2 Divide & Conquer:

1 Merge sort.
2 Multiplying large numbers.

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 / 32

Solving recurrences using recursion trees
An illustrated example: Merge sort...

n

n/2 n/2

n/4 n/4 n/4 n/4

n cn

n/2
cn
2

n/2

n/4
cn
4 n/4 n/4 n/4

cn
4

cn
4

cn
4

cn
2

Work in each node

n cn

n/2
cn
2

n/2

n/4
cn
4 n/4 n/4 n/4

cn
4

cn
4

cn
4

cn
2

Work in each node

cn

cn
2

cn
4

cn
4

cn
4

cn
4

cn
2+

+ + +
...

log n





= cn

= cn

= cn

= cn
...

cn

cn
2

cn
4

cn
4

cn
4

cn
4

cn
2+

+ + +
...

log n





= cn

= cn

= cn

= cn
...

+

+

= cn log n = O(n log n)

Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 / 32

Solving recurrences
The other “technique” - guess and verify

1 Guess solution to recurrence.

2 Verify it via induction.

Solved in class:

1 T(n) = 2T(n/2) + n/ log n.

2 T(n) = T(
√
n) + 1.

3 T(n) =
√
nT(
√
n) + n.

4 T(n) = T(n/4) + T(3n/4) + n

Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 32

Closest Pair - the problem

Input Given a set S of n points on the plane
Goal Find p, q ∈ S such that d(p, q) is minimum

Algorithm:

One can compute closest pair points in the plane in O(n log n) time
using divide and conquer.

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 32

Median selection

Problem
Given list L of n numbers, and a number k find kth smallest number
in n.

1 Quick Sort can be modified to solve it (but worst case running
time is quadratic (if lucky linear time).

2 Seen divide & conquer algorithm...
Involved, but linear running time.

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 32

Recursive algorithm for Selection
A feast for recursion

select(A, j):
n = |A|
if n ≤ 10 then

Compute jth smallest element in A using brute force.

Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . ,A[5i]}
Find median bi of each Li using brute-force

B is the array of b1, b2, . . . , bdn/5e.
b = select(B, dn/10e)
Partition A into Aless or equal and Agreater using b as pivot

if |Aless or equal| = j then
return b

if |Aless or equal| > j) then
return select(Aless or equal, j)

else
return select(Agreater, j− |Aless or equal|)

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 32

Back to Recursion

Seen some simple recursive algorithms:

1 Binary search.

2 Fast exponentiation.

3 Fibonacci numbers.

4 Maximum weight independent set.

Sariel, Alexandra (UIUC) CS473 28 Spring 2013 28 / 32

	Review session
	Linear Time Algorithm
	Checking if a graph is bipartite...
	Shortest paths in DAGs
	Solving recurrences using recursion trees
	Solving recurrences
	Recursive algorithm for Selection

