CS 473: Fundamental Algorithms, Spring 2013

Review session 2

Lecture 666
April 2, 2013




Dynamic Programming

@ Find a “smart” recursion for the problem in which the number of
distinct subproblems is small; polynomial in the original problem
size.

© Eliminate recursion and find an iterative algorithm to compute
the problems bottom up by storing the intermediate values in an
appropriate data structure; need to find the right way or order
the subproblem evaluation.

© Estimate the number of subproblems, the time to evaluate each
subproblem and the space needed to store the value. Evaluate
the total running time.

@ Optimize the resulting algorithm further

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2 /13



Dynamic programming...

Longest increasing subsequence.

Computing the solution itself (not only its value).

Maximum Weight Independent Set in Trees.

Dynamic programs can be also solved as problems on DAGs.
Edit distance: O(nm) [but linear spacel].

Floyd-Warshall: O(n3).

Knapsack: O(nW) (pseudo-polynomial).

@ TSP: O(n32") time and O(n?2") space.

000000

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3/13



Greedy algorithms...

Greed has its place, but be careful not to be too greedy!

© Must prove correctness of greedy algorithms.

@ Interval scheduling (so many variants that do not work).
Proved correctness by showing that one can map the greedy
solution to optimal.

@ Interval Partitioning/Coloring.
Proved the depth of instance was # colors used by greedy.

© Scheduling to Minimize Lateness.

Sariel, Alexandra (UIUC) Spring 2013 4 /13



Minimum spanning tree

@ Algorithms can be interpreted as being greedy.

@ Prim: T maintained by algorithm will be a tree. Start with a
node in T. In each iteration, pick edge with least attachment
costto T.

© Reverse delete: Delete edges keeping connectivity. Deleting
edges from most expensive to cheapest.

© Kruskal: Add edges in increasing price. Add edge only if merges
two trees in the current forest.

© Boriivka's: Every vertex pick cheapest edge out of it. Collapse
connected components of chosen edges. Repeat till have a single
tree.

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5/13



Why MST algorithms work?

Definition
An edge e = (u, V) is a safe edge if there is some partition of V into

S and V \ S and e is the unique minimum cost edge crossing S (one
end in S and the other in V \ S).

Definition
An edge e = (u, V) is an unsafe edge if there is some cycle C such
that e is the unique maximum cost edge in C.

Proposition

If edge costs are distinct then every edge is either safe or unsafe.

If e is a safe edge then every minimum spanning tree contains e.

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 /13



Why MST algorithms work?

Even more

Let G be a connected graph with distinct edge costs, then the set of
safe edges form a connected graph.

Let G be a connected graph with distinct edge costs, then set of safe
edges form the unique MS'T of G.

If e is an unsafe edge then no MS'T of G contains e. \

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7/13




Data structures for MST

@ Heap.
© Fibonacci heap.

© Union-find - path compression and union by rank.
(Amazing running time - O(ca(m, n)) per operation,)

Sariel, Alexandra (UIUC) Spring 2013 8 /13



Randomized algorithms

@ Basic concepts in discrete probability:
Random variable, probability, expectation, linearity of
expectation, independent events, conditional probability,
indicator variables.

© Types of randomized algorithms: Las Vegas and Monte Carlo.

© Why randomization works - concentration of mass.

@ Proved:

Theorem
Let X,, be the number heads when flipping a coin indepdently n
times. Then

3
Pr [xn < ﬂ < 2.0.68"* and Pr{Xn > T"] <2.0.68"*

o’

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 /13



Randomized algorithms

@ Proved QuickSort has O(nlog n) expected running time.
@ Proved QuickSort has O(nlog n) running time with high
probability.
© Proved QuickSelect has O(n) expected running time.
© Hashing.
@ Why randomization is a must.
@ 2-universal hash functions families.
© Showed/proved a 2-universal hash family.

Guess two random numbers a and 8. Hash function is
h(x) = (ax + 3) mod p.

Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 13



Network Flow

Definitions.

Edge flow < path flow.
Max-flow problem.

Cuts and minimum-cut.
flow < cut capacity.
Max-flow Min-cut Theorem.
Residual network.
Augmenting paths.
Ford-Fulkerson Algorithm.

©e0000000O0COC

Proved correctness of Ford-Fulkerson Algorithm if capacities are
integral.

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 /13



Network Flow Il

© Ford-Fulkerson running time is O(mC).

© Mentioned the strongly polynomial time algorithm by
Edmonds-Karp.

Computing minimum cut from max-flow.
One can convert a flow to an acyclic flow.

A flow can be decomposed into paths from the source to the
target + cycles.

Computing edge-disjoint paths using flow.

Computing vertex-disjoint paths using flow.

Menger's theorem (# edge to cut = # edge disjoint paths).
Multiple sinks/sources.

Matching in bipartite graph.

60000 00O

Perfect matching.

Sariel, Alexandra (UIUC) Spring 2013 12 /13



Network Flow IlI

@ Deciding if a specific team can win the Pennant using network
flow.

© Project scheduling.

© Mentioned extensions to min-cost flow, and lower bounds on
flow.

@ Circulations.
@ Survey design (using lower/upper bounds on flow).

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 /13



Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 /



Sariel, Alexandra (UIUC) Spring 2013



Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 /



Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 /



