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Chapter 1

Administrivia, Introduction, Graph
basics and DFS

CS 473: Fundamental Algorithms, Spring 2013
January 15, 2013

1.0.0.1 The word “algorithm” comes from...

Muhammad ibn Musa al-Khwarizmi
780-850 AD
The word “algebra” is taken from the title of one of his books.

1.1 Administrivia
1.1.0.2 Online resources

(A) Webpage: courses.engr.illinois.edu/cs473/sp2013/

General information, homeworks, etc.
(B) Moodle: https://learn.illinois.edu/course/view.php?id=1647

Quizzes, solutions to homeworks.
(C) Online questions/announcements: Piazza

https://piazza.com/#spring2013/cs473

Online discussions, etc.

1.1.0.3 Textbooks

(A) Prerequisites: CS 173 (discrete math), CS 225 (data structures) and CS 373 (theory
of computation)

(B) Recommended books:
(A) Algorithms by Dasgupta, Papadimitriou & Vazirani.

Available online for free!
(B) Algorithm Design by Kleinberg & Tardos

(C) Lecture notes: Available on the web-page after every class.
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(D) Additional References
(A) Previous class notes of Jeff Erickson, Sariel HarPeled and the instructor.
(B) Introduction to Algorithms: Cormen, Leiserson, Rivest, Stein.
(C) Computers and Intractability: Garey and Johnson.

1.1.0.4 Prerequisites

(A) Asymptotic notation: O(),Ω(), o().
(B) Discrete Structures: sets, functions, relations, equivalence classes, partial orders, trees, graphs
(C) Logic: predicate logic, boolean algebra
(D) Proofs: by induction, by contradiction
(E) Basic sums and recurrences: sum of a geometric series, unrolling of recurrences, basic calculus
(F) Data Structures: arrays, multi-dimensional arrays, linked lists, trees, balanced search trees, heaps
(G) Abstract Data Types: lists, stacks, queues, dictionaries, priority queues
(H) Algorithms: sorting (merge, quick, insertion), pre/post/in order traversal of trees, depth/breadth first search of trees (maybe graphs)
(I) Basic analysis of algorithms: loops and nested loops, deriving recurrences from a recursive program
(J) Concepts from Theory of Computation: languages, automata, Turing machine, undecidability, non-determinism
(K) Programming: in some general purpose language
(L) Elementary Discrete Probability: event, random variable, independence
(M) Mathematical maturity

1.1.0.5 Homeworks

(A) One quiz every week: Due by midnight on Sunday.
(B) One homework every week: Assigned on Tuesday and due the following Monday at

noon.
(C) Submit online only!
(D) Homeworks can be worked on in groups of up to 3 and each group submits one written

solution (except Homework 0).
(A) Short quiz-style questions to be answered individually on Moodle.

(E) Groups can be changed a few times only
(F) Unlike previous years no oral homework this semester due to large enrollment.

1.1.0.6 More on Homeworks

(A) No extensions or late homeworks accepted.
(B) To compensate, the homework with the least score will be dropped in calculating the

homework average.
(C) Important: Read homework faq/instructions on website.

1.1.0.7 Advice

(A) Attend lectures, please ask plenty of questions.
(B) Clickers...
(C) Attend discussion sessions.
(D) Don’t skip homework and don’t copy homework solutions.
(E) Study regularly and keep up with the course.
(F) Ask for help promptly. Make use of office hours.

1.1.0.8 Homeworks

(A) HW 0 is posted on the class website. Quiz 0 available
(B) Quiz 0 due by Sunday Jan 20 midnight

HW 0 due on Monday January 21 noon.
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(C) Online submission.
(D) HW 0 to be submitted in individually. f

1.2 Course Goals and Overview

1.2.0.9 Topics

(A) Some fundamental algorithms
(B) Broadly applicable techniques in algorithm design

(A) Understanding problem structure
(B) Brute force enumeration and backtrack search
(C) Reductions
(D) Recursion

(A) Divide and Conquer
(B) Dynamic Programming

(E) Greedy methods
(F) Network Flows and Linear/Integer Programming (optional)

(C) Analysis techniques
(A) Correctness of algorithms via induction and other methods
(B) Recurrences
(C) Amortization and elementary potential functions

(D) Polynomial-time Reductions, NP-Completeness, Heuristics

1.2.0.10 Goals

(A) Algorithmic thinking
(B) Learn/remember some basic tricks, algorithms, problems, ideas
(C) Understand/appreciate limits of computation (intractability)
(D) Appreciate the importance of algorithms in computer science and beyond (engineering,

mathematics, natural sciences, social sciences, ...)
(E) Have fun!!!
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1.3 Some Algorithmic Problems in the Real World

1.3.0.11 Shortest Paths

Directions to Chicago, IL

136 mi – about 2 hours 20 mins

Champaign, IL to Chicago, IL - Google Maps http://maps.google.com/maps?f=d&saddr=Champaign,+IL&da...

1 of 2 8/21/08 3:57 PM

1.3.0.12 Shortest Paths - Paris to
Berlin

1.3.0.13 Digital Information: Compression and Coding

Compression: reduce size for storage and transmission
Coding: add redundancy to protect against errors in storage and transmission

Efficient algorithms for compression/coding and decompressing/decoding part of most mod-
ern gadgets (computers, phones, music/video players ...)

1.3.1 Search and Indexing

1.3.1.1 String Matching and Link Analysis

(A) Web search: Google, Yahoo!, Microsoft, Ask, ...
(B) Text search: Text editors (Emacs, Word, Browsers, ...)
(C) Regular expression search: grep, egrep, emacs, Perl, Awk, compilers

1.3.1.2 Public-Key Cryptography

Foundation of Electronic Commerce

RSA Crypto-system: generate key n = pq where p, q are primes
Primality: Given a number N , check if N is a prime or composite.

Factoring: Given a composite number N , find a non-trivial factor

1.3.1.3 Programming: Parsing and Debugging

[godavari: /temp/test] chekuri % gcc main.c
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Parsing: Is main.c a syntactically valid C program?

Debugging: Will main.c go into an infinite loop on some input?

Easier problem ??? Will main.c halt on the specific input 10?

1.3.1.4 Optimization

Find the cheapest of most profitable way to do things

(A) Airline schedules - AA, Delta, ...
(B) Vehicle routing - trucking and transportation (UPS, FedEx, Union Pacific, ...)
(C) Network Design - AT&T, Sprint, Level3 ...

Linear and Integer programming problems

1.4 Algorithm Design
1.4.0.5 Important Ingredients in Algorithm Design

(A) What is the problem (really)?
(A) What is the input? How is it represented?
(B) What is the output?

(B) What is the model of computation? What basic operations are allowed?
(C) Algorithm design
(D) Analysis of correctness, running time, space etc.
(E) Algorithmic engineering: evaluating and understanding of algorithm’s performance in

practice, performance tweaks, comparison with other algorithms etc. (Not covered in
this course)

1.5 Primality Testing
1.5.0.6 Primality testing

Problem Given an integer N > 0, is N a prime?

SimpleAlgorithm:

for i = 2 to b
√
Nc do

if i divides N then
return ‘‘COMPOSITE’’

return ‘‘PRIME’’

Correctness? If N is composite, at least one factor in {2, . . . ,
√
N}

Running time? O(
√
N) divisions? Sub-linear in input size! Wrong!
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1.5.1 Primality testing

1.5.1.1 ...Polynomial means... in input size

How many bits to represent N in binary? dlogNe bits.

Simple Algorithm takes
√
N = 2(logN)/2 time.

Exponential in the input size n = logN .

(A) Modern cryptography: binary numbers with 128, 256, 512 bits.
(B) Simple Algorithm will take 264, 2128, 2256 steps!
(C) Fastest computer today about 3 petaFlops/sec: 3× 250 floating point ops/sec.

Lesson: Pay attention to representation size in analyzing efficiency of algorithms. Espe-
cially in number problems.

1.5.1.2 Efficient algorithms

So, is there an efficient/good/effective algorithm for primality?

Question: What does efficiency mean?

In this class efficiency is broadly equated to polynomial time.

O(n), O(n log n), O(n2), O(n3), O(n100), . . . where n is size of the input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound way to define efficiency.
Has been useful for several decades.

1.5.2 TSP problem

1.5.2.1 Lincoln’s tour

Paris

DanvilleUrbana
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Clinton

Bloomington

Metamora

P
ek
in
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eld

Taylorville

Sullivan

Shelbyville

Mt.
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las

ki

D
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(A) Circuit court - ride through counties stay-
ing a few days in each town.

(B) Lincoln was a lawyer traveling with the
Eighth Judicial Circuit.

(C) Picture: travel during 1850.
(A) Very close to optimal tour.
(B) Might have been optimal at the time..
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1.5.3 Solving TSP by a Computer

1.5.3.1 Is it hard?

(A) n = number of cities.
(B) n2: size of input.
(C) Number of possible solutions is

n ∗ (n− 1) ∗ (n− 2) ∗ ... ∗ 2 ∗ 1 = n!.

(D) n! grows very quickly as n grows.
n = 10: n! ≈ 3628800
n = 50: n! ≈ 3 ∗ 1064

n = 100: n! ≈ 9 ∗ 10157

1.5.4 Solving TSP by a Computer

1.5.4.1 Fastest computer...

(A) Fastest super computer can do (roughly)

2.5 ∗ 1015

operations a second.
(B) Assume: computer checks 2.5 ∗ 1015 solutions every second, then...

(A) n = 20 =⇒ 2 hours.
(B) n = 25 =⇒ 200 years.
(C) n = 37 =⇒ 2 ∗ 1020 years!!!

1.5.5 What is a good algorithm?

1.5.5.1 Running time...

Input size n2 ops n3 ops n4 ops n! ops

5 0 secs 0 secs 0 secs 0 secs
20 0 secs 0 secs 0 secs 16 mins
30 0 secs 0 secs 0 secs 3 · 109 years

100 0 secs 0 secs 0 secs never
8000 0 secs 0 secs 1 secs never

16000 0 secs 0 secs 26 secs never
32000 0 secs 0 secs 6 mins never
64000 0 secs 0 secs 111 mins never

200,000 0 secs 3 secs 7 days never
2,000,000 0 secs 53 mins 202.943 years never

108 4 secs 12.6839 years 109 years never
109 6 mins 12683.9 years 1013 years never
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1.5.6 What is a good algorithm?

1.5.6.1 Running time...

1.5.7 Primality
1.5.7.1 Primes is in P !

Theorem 1.5.1 (Agrawal-Kayal-Saxena’02). There is a polynomial time algorithm for
primality.

First polynomial time algorithm for testing primality. Running time is O(log12N) further
improved to about O(log6N) by others. In terms of input size n = logN , time is O(n6).

Breakthrough announced in August 2002. Three days later announced in New York
Times. Only 9 pages!

Neeraj Kayal and Nitin Saxena were undergraduates at IIT-Kanpur!

1.5.7.2 What about before 2002?

Primality testing a key part of cryptography. What was the algorithm being used before
2002?

Miller-Rabin randomized algorithm:

(A) runs in polynomial time: O(log3N) time
(B) if N is prime correctly says “yes”.
(C) if N is composite it says “yes” with probability at most 1/2100 (can be reduced further

at the expense of more running time).

Based on Fermat’s little theorem and some basic number theory.
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1.5.8 Factoring
1.5.8.1 Factoring

(A) Modern public-key cryptography based on RSA (Rivest-Shamir-Adelman) system.
(B) Relies on the difficulty of factoring a composite number into its prime factors.
(C) There is a polynomial time algorithm that decides whether a given number N is prime

or not (hence composite or not) but no known polynomial time algorithm to factor a
given number.

Lesson Intractability can be useful!

1.5.8.2 Digression: decision, search and optimization

Three variants of problems.
(A) Decision problem: answer is yes or no.

Example: Given integer N , is it a composite number?
(B) Search problem: answer is a feasible solution if it exists.

Example: Given integer N , if N is composite output a non-trivial factor p of N .
(C) Optimization problem: answer is the best feasible solution (if one exists).

Example: Given integer N , if N is composite output the smallest non-trivial factor p
of N .

For a given underlying problem:

Optimization ≥ Search ≥ Decision

1.5.8.3 Quantum Computing

Theorem 1.5.2 (Shor’1994). There is a polynomial time algorithm for factoring on a
quantum computer.

RSA and current commercial cryptographic systems can be broken if a quantum computer
can be built!

Lesson Pay attention to the model of computation.

1.5.8.4 Problems and Algorithms

Many many different problems.
(A) Adding two numbers: efficient and simple algorithm
(B) Sorting: efficient and not too difficult to design algorithm
(C) Primality testing: simple and basic problem, took a long time to find efficient algorithm
(D) Factoring: no efficient algorithm known.
(E) Halting problem: important problem in practice, undecidable!

1.6 Multiplication
1.6.0.5 Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their product.
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Grade School Multiplication Compute “partial product” by multiplying each digit of y with
x and adding the partial products.

3141
×2718
25128
3141

21987
6282
8537238

1.6.0.6 Time analysis of grade school multiplication

(A) Each partial product: Θ(n) time
(B) Number of partial products: ≤ n
(C) Adding partial products: n additions each Θ(n) (Why?)
(D) Total time: Θ(n2)
(E) Is there a faster way?

1.6.0.7 Fast Multiplication

Best known algorithm: O(n log n · 2O(log∗ n)) time [Furer 2008]

Previous best time: O(n log n log log n) [Schonhage-Strassen 1971]

Conjecture: there exists and O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!

1.6.0.8 Course Approach

Algorithm design requires a mix of skill, experience, mathematical background/maturity and
ingenuity.

Approach in this class and many others:

(A) Improve skills by showing various tools in the abstract and with concrete examples
(B) Improve experience by giving many problems to solve
(C) Motivate and inspire
(D) Creativity: you are on your own!

1.7 Model of Computation
1.7.0.9 What model of computation do we use?

Turing Machine?
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1.7.0.10 Turing Machines: Recap

(A) Infinite tape
(B) Finite state control
(C) Input at beginning of tape
(D) Special tape letter “blank” t
(E) Head can move only one cell to left

or right

Turing Machines

X1 X2 · · · Xn ! !

finite-state
control

tape

head

Unrestricted memory: an infinite tape
A finite state machine that reads/writes symbols on the tape
Can read/write anywhere on the tape
Tape is infinite in one direction only (other variants possible)

Initially, tape has input and the machine is reading (i.e., tape
head is on) the leftmost input symbol.
Transition (based on current state and symbol under head):

Change control state
Overwrite a new symbol on the tape cell under the head
Move the head left, or right.

Prabhakaran-Viswanathan CS373

1.7.0.11 Turing Machines

(A) Basic unit of data is a bit (or a single character from a finite alphabet)
(B) Algorithm is the finite control
(C) Time is number of steps/head moves
Pros and Cons:
(A) theoretically sound, robust and simple model that underpins computational complexity.
(B) polynomial time equivalent to any reasonable “real” computer: Church-Turing thesis
(C) too low-level and cumbersome, does not model actual computers for many realistic

settings

1.7.0.12 “Real” Computers vs Turing Machines

How do “real” computers differ from TMs?
(A) random access to memory
(B) pointers
(C) arithmetic operations (addition, subtraction, multiplication, division) in constant time

How do they do it?
(A) basic data type is a word: currently 64 bits
(B) arithmetic on words are basic instructions of computer
(C) memory requirements assumed to be ≤ 264 which allows for pointers and indirect ad-

dressing as well as random access

1.7.0.13 Unit-Cost RAM Model

Informal description:
(A) Basic data type is an integer/floating point number
(B) Numbers in input fit in a word
(C) Arithmetic/comparison operations on words take constant time
(D) Arrays allow random access (constant time to access A[i])
(E) Pointer based data structures via storing addresses in a word

1.7.0.14 Example

Sorting: input is an array of n numbers
(A) input size is n (ignore the bits in each number),
(B) comparing two numbers takes O(1) time,
(C) random access to array elements,

23



(D) addition of indices takes constant time,
(E) basic arithmetic operations take constant time,
(F) reading/writing one word from/to memory takes constant time.

We will usually not allow (or be careful about allowing):
(A) bitwise operations (and, or, xor, shift, etc).
(B) floor function.
(C) limit word size (usually assume unbounded word size).

1.7.0.15 Caveats of RAM Model

Unit-Cost RAM model is applicable in wide variety of settings in practice. However it is not
a proper model in several important situations so one has to be careful.
(A) For some problems such as basic arithmetic computation, unit-cost model makes no

sense. Examples: multiplication of two n-digit numbers, primality etc.
(B) Input data is very large and does not satisfy the assumptions that individual numbers

fit into a word or that total memory is bounded by 2k where k is word length.
(C) Assumptions valid only for certain type of algorithms that do not create large numbers

from initial data. For example, exponentiation creates very big numbers from initial
numbers.

1.7.0.16 Models used in class

In this course:
(A) Assume unit-cost RAM by default.
(B) We will explicitly point out where unit-cost RAM is not applicable for the problem at

hand.

1.8 Graph Basics
1.8.0.17 Why Graphs?

(A) Graphs help model networks which are ubiquitous: transportation networks (rail, roads,
airways), social networks (interpersonal relationships), information networks (web page
links) etc etc.

(B) Fundamental objects in Computer Science, Optimization, Combinatorics
(C) Many important and useful optimization problems are graph problems
(D) Graph theory: elegant, fun and deep mathematics

1.8.0.18 Graph

Definition 1.8.1. An undirected (simple) graph G =
(V,E) is a 2-tuple:
(A) V is a set of vertices (also referred to as

nodes/points)
(B) E is a set of edges where each edge e ∈ E is a set

of the form {u, v} with u, v ∈ V and u 6= v.
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Example 1.8.2. In figure, G = (V,E) where V = {1, 2, 3, 4, 5, 6, 7, 8} and
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7}, {3, 8}, {4, 5}, {5, 6}, {7, 8}}.

1.8.0.19 Notation and Convention

Notation An edge in an undirected graphs is an unordered pair of nodes and hence it is a
set. Conventionally we use (u, v) for {u, v} when it is clear from the context that the graph
is undirected.

(A) u and v are the end points of an edge {u, v}
(B) Multi-graphs allow

(A) loops which are edges with the same node appearing as both end points
(B) multi-edges: different edges between same pairs of nodes

(C) In this class we will assume that a graph is a simple graph unless explicitly stated
otherwise.

1.8.0.20 Graph Representation I

Adjacency Matrix Represent G = (V,E) with n vertices and m edges using a n×n adjacency
matrix A where

(A) A[i, j] = A[j, i] = 1 if {i, j} ∈ E and A[i, j] = A[j, i] = 0 if {i, j} 6∈ E.
(B) Advantage: can check if {i, j} ∈ E in O(1) time
(C) Disadvantage: needs Ω(n2) space even when m� n2

1.8.0.21 Graph Representation II

Adjacency Lists Represent G = (V,E) with n vertices and m edges using adjacency lists:

(A) For each u ∈ V , Adj(u) = {v | {u, v} ∈ E}, that is neighbors of u. Sometimes Adj(u)
is the list of edges incident to u.

(B) Advantage: space is O(m+ n)
(C) Disadvantage: cannot “easily” determine in O(1) time whether {i, j} ∈ E

(A) By sorting each list, one can achieve O(log n) time
(B) By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are represented using plain
vanilla (unsorted) adjacency lists.

1.8.0.22 Connectivity

Given a graph G = (V,E):

(A) A path is a sequence of distinct vertices v1, v2, . . . , vk such that {vi, vi+1} ∈ E for
1 ≤ i ≤ k − 1. The length of the path is k − 1 and the path is from v1 to vk

(B) A cycle is a sequence of distinct vertices v1, v2, . . . , vk such that {vi, vi+1} ∈ E for
1 ≤ i ≤ k − 1 and {v1, vk} ∈ E.

(C) A vertex u is connected to v if there is a path from u to v.
(D) The connected component of u, con(u), is the set of all vertices connected to u.
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1.8.0.23 Connectivity contd

Define a relation C on V × V as uCv if u is connected
to v
(A) In undirected graphs, connectivity is a reflexive,

symmetric, and transitive relation. Connected
components are the equivalence classes.

(B) Graph is connected if only one connected compo-
nent.

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u ∈ V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

1.8.0.24 Connectivity Problems

Algorithmic Problems
(A) Given graph G and nodes u and v, is u connected to v?
(B) Given G and node u, find all nodes that are connected to u.
(C) Find all connected components of G.

Can be accomplished in O(m+ n) time using BFS or DFS.

1.8.0.25 Basic Graph Search

Given G = (V,E) and vertex u ∈ V :

Explore(u):
Initialize S = {u}
while there is an edge (x, y) with x ∈ S and y 6∈ S do

add y to S

Proposition 1.8.3. Explore(u) terminates with S = con(u).

Running time: depends on implementation
(A) Breadth First Search (BFS): use queue data structure
(B) Depth First Search (DFS): use stack data structure
(C) Review CS 225 material!

1.9 DFS

1.9.1 DFS
1.9.1.1 Depth First Search

DFS is a very versatile graph exploration strategy. Hopcroft and Tarjan (Turing Award
winners) demonstrated the power of DFS to understand graph structure. DFS can be used
to obtain linear time (O(m+ n)) time algorithms for
(A) Finding cut-edges and cut-vertices of undirected graphs
(B) Finding strong connected components of directed graphs
(C) Linear time algorithm for testing whether a graph is planar
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1.9.1.2 DFS in Undirected Graphs

Recursive version.

DFS(G)
Mark all nodes u as unvisited

while there is an unvisited node u do
DFS(u)

DFS(u)
Mark u as visited

for each edge (u,v) in Ajd(u) do
if v is not marked

DFS(v)

Implemented using a global array Mark for all recursive calls.

1.9.1.3 Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7
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9
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Definition

The set of connected components of a graph is the set
{con(u) | u ∈ V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.
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1.9.1.4 DFS Tree/Forest

DFS(G)
Mark all nodes as unvisited

T is set to ∅
while ∃ unvisited node u do

DFS(u)
Output T

DFS(u)
Mark u as visited

for uv in Ajd(u) do
if v is not marked

add uv to T
DFS(v)

Edges classified into two types: uv ∈ E is a

(A) tree edge: belongs to T
(B) non-tree edge: does not belong to T

1.9.1.5 Properties of DFS tree

Proposition 1.9.1. (A) T is a forest
(B) connected components of T are same as those of G.
(C) If uv ∈ E is a non-tree edge then, in T , either:

(A) u is an ancestor of v, or
(B) v is an ancestor of u.

Question: Why are there no cross-edges?

1.9.1.6 DFS with Visit Times

Keep track of when nodes are visited.
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DFS(G)
for all u ∈ V (G) do

Mark u as unvisited

T is set to ∅
time = 0
while ∃unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each uv in Out(u) do

if v is not marked then
add edge uv to T
DFS(v)

post(u) = ++time

1.9.1.7 Scratch space
1.9.1.8 Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs
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Definition

The set of connected components of a graph is the set
{con(u) | u ∈ V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.
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1.9.1.9 pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition 1.9.2. For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof : (A) Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
(B) If DFS(v) invoked before DFS(u) finished, post(u) > post(v).
(C) If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS- soon!

1.10 Directed Graphs and Decomposition

1.11 Introduction
1.11.0.10 Directed Graphs

Definition 1.11.1. A directed graph
G = (V,E) consists of
(A) set of vertices/nodes V and
(B) a set of edges/arcs E ⊆ V × V .

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

An edge is an ordered pair of vertices. (u, v) different from (v, u).
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1.11.0.11 Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

(A) Road networks with one-way streets.
(B) Web-link graph: vertices are web-pages and there is an edge from page p to page p′ if p

has a link to p′. Web graphs used by Google with PageRank algorithm to rank pages.
(C) Dependency graphs in variety of applications: link from x to y if y depends on x. Make

files for compiling programs.
(D) Program Analysis: functions/procedures are vertices and there is an edge from x to y

if x calls y.

1.11.0.12 Representation

Graph G = (V,E) with n vertices and m edges:

(A) Adjacency Matrix : n × n asymmetric matrix A. A[u, v] = 1 if (u, v) ∈ E and
A[u, v] = 0 if (u, v) 6∈ E. A[u, v] is not same as A[v, u].

(B) Adjacency Lists : for each node u, Out(u) (also referred to as Adj(u)) and In(u) store
out-going edges and in-coming edges from u.

Default representation is adjacency lists.

1.11.0.13 Directed Connectivity

Given a graph G = (V,E):

(A) A (directed) path is a sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E
for 1 ≤ i ≤ k − 1. The length of the path is k − 1 and the path is from v1 to vk

(B) A cycle is a sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E for
1 ≤ i ≤ k − 1 and (vk, v1) ∈ E.

(C) A vertex u can reach v if there is a path from u to v. Alternatively v can be reached
from u

(D) Let rch(u) be the set of all vertices reachable from u.

1.11.0.14 Connectivity contd

Asymmetricity: A can reach B but B cannot reach A

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs
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Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Questions:
(A) Is there a notion of connected compo-

nents?
(B) How do we understand connectivity in

directed graphs?
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1.11.0.15 Connectivity and Strong Connected Components

Definition 1.11.2. Given a directed graph G, u is strongly connected to v if u can reach v
and v can reach u. In other words v ∈ rch(u) and u ∈ rch(v).

Define relation C where uCv if u is (strongly) connected to v.

Proposition 1.11.3. C is an equivalence relation, that is reflexive, symmetric and transi-
tive.

Equivalence classes of C: strong connected components of G.
They partition the vertices of G.
SCC(u): strongly connected component containing u.

1.11.0.16 Strongly Connected Components: Example
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Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges
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1.11.0.17 Directed Graph Connectivity Problems

(A) Given G and nodes u and v, can u reach v?
(B) Given G and u, compute rch(u).
(C) Given G and u, compute all v that can reach u, that is all v such that u ∈ rch(v).
(D) Find the strongly connected component containing node u, that is SCC(u).
(E) Is G strongly connected (a single strong component)?
(F) Compute all strongly connected components of G.

First four problems can be solve in O(n + m) time by adapting BFS/DFS to directed
graphs. The last one requires a clever DFS based algorithm.
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1.12 DFS in Directed Graphs
1.12.0.18 DFS in Directed Graphs

DFS(G)
Mark all nodes u as unvisited

T is set to ∅
time = 0
while there is an unvisited node u do

DFS(u)Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each edge (u, v) in Out(u) do

if v is not marked

add edge (u, v) to T
DFS(v)

post(u) = ++time

1.12.0.19 DFS Properties

Generalizing ideas from undirected graphs:
(A) DFS(u) outputs a directed out-tree T rooted at u
(B) A vertex v is in T if and only if v ∈ rch(u)
(C) For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either

disjoint are one is contained in the other.
(D) The running time of DFS(u) is O(k) where k =

∑
v∈rch(u) |Adj(v)| plus the time to

initialize the Mark array.
(E) DFS(G) takes O(m + n) time. Edges in T form a disjoint collection of of out-trees.

Output of DFS(G) depends on the order in which vertices are considered.

1.12.0.20 DFS Tree

Edges of G can be classified with respect to
the DFS tree T as:
(A) Tree edges that belong to T
(B) A forward edge is a non-tree edges

(x, y) such that pre(x) < pre(y) <
post(y) < post(x).

(C) A backward edge is a non-tree edge
(x, y) such that pre(y) < pre(x) <
post(x) < post(y).

(D) A cross edge is a non-tree edges (x, y)
such that the intervals [pre(x), post(x)]
and [pre(y), post(y)] are disjoint.

1.12.0.21 Types of Edges

A

B

C D

Cross

Forward

Backward

1.12.0.22 Directed Graph Connectivity Problems

(A) Given G and nodes u and v, can u reach v?
(B) Given G and u, compute rch(u).
(C) Given G and u, compute all v that can reach u, that is all v such that u ∈ rch(v).
(D) Find the strongly connected component containing node u, that is SCC(u).
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(E) Is G strongly connected (a single strong component)?
(F) Compute all strongly connected components of G.

1.13 Algorithms via DFS
1.13.0.23 Algorithms via DFS- I

(A) Given G and nodes u and v, can u reach v?
(B) Given G and u, compute rch(u).

Use DFS(G, u) to compute rch(u) in O(n+m) time.

1.13.0.24 Algorithms via DFS- II

(A) Given G and u, compute all v that can reach u, that is all v such that u ∈ rch(v).

Definition 1.13.1 (Reverse graph.). Given G = (V,E), Grev is the graph with edge di-
rections reversed
Grev = (V,E ′) where E ′ = {(y, x) | (x, y) ∈ E}

Compute rch(u) in Grev!
(A) Correctness: exercise
(B) Running time: O(n+m) to obtain Grev from G and O(n+m) time to compute rch(u)

via DFS. If both Out(v) and In(v) are available at each v then no need to explicitly
compute Grev. Can do it DFS(u) in Grev implicitly.

1.13.0.25 Algorithms via DFS- III

SC(G, u) = {v | u is strongly connected to v}
(A) Find the strongly connected component containing node u. That is, compute SCC(G, u).

SCC(G, u) = rch(G, u) ∩ rch(Grev, u)

Hence, SCC(G, u) can be computed with two DFSes, one in G and the other in Grev.
Total O(n+m) time.

1.13.0.26 Algorithms via DFS- IV

(A) Is G strongly connected?
Pick arbitrary vertex u. Check if SC(G, u) = V .

1.13.0.27 Algorithms via DFS- V

(A) Find all strongly connected components of G.

for each vertex u ∈ V do
find SC(G, u)

Running time: O(n(n+m)).
Q: Can we do it in O(n+m) time?
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1.13.0.28 Reading and Homework 0

Chapters 1 from Dasgupta etal book, Chapters 1-3 from Kleinberg-Tardos book.

Proving algorithms correct - Jeff Erickson’s notes (see link on website)
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Chapter 2

DFS in Directed Graphs, Strong
Connected Components, and DAGs

CS 473: Fundamental Algorithms, Spring 2013
January 19, 2013

2.0.0.29 Strong Connected Components (SCCs)

Algorithmic Problem Find all SCCs of a given directed
graph. Previous lecture:
Saw an O(n · (n+m)) time algorithm.
This lecture: O(n+m) time algorithm.

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges
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2.0.0.30 Graph of SCCs

AB C

DE F

G H

Graph G

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Meta-graph of SCCs Let S1, S2, . . . Sk be the strong connected components (i.e., SCCs)
of G. The graph of SCCs is GSCC

(A) Vertices are S1, S2, . . . Sk
(B) There is an edge (Si, Sj) if there is some u ∈ Si and v ∈ Sj such that (u, v) is an edge

in G.
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2.0.0.31 Reversal and SCCs

Proposition 2.0.2. For any graph G, the graph of SCCs of Grev is the same as the reversal
of GSCC.

Proof : Exercise.

2.0.0.32 SCCs and DAGs

Proposition 2.0.3. For any graph G, the graph GSCC has no directed cycle.

Proof : If GSCC has a cycle S1, S2, . . . , Sk then S1 ∪ S2 ∪ · · · ∪ Sk should be in the same SCC
in G. Formal details: exercise.

2.1 Directed Acyclic Graphs
2.1.0.33 Directed Acyclic Graphs

Definition 2.1.1. A directed graph G is
a directed acyclic graph (DAG) if
there is no directed cycle in G.

1

2 3

4

2.1.0.34 Sources and Sinks

source sink

1

2 3

4

Definition 2.1.2. (A) A vertex u is a
source if it has no in-coming edges.

(B) A vertex u is a sink if it has no out-
going edges.
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2.1.0.35 Simple DAG Properties

(A) Every DAG G has at least one source and at least one sink.
(B) If G is a DAG if and only if Grev is a DAG.
(C) G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

2.1.0.36 Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition 2.1.3. A topological ordering/topological sorting of G = (V,E) is an
ordering ≺ on V such that if (u, v) ∈ E then u ≺ v.

Informal equivalent definition: One can order the vertices of the graph along a line
(say the x-axis) such that all edges are from left to right.

2.1.0.37 DAGs and Topological Sort

Lemma 2.1.4. A directed graph G can be topologically ordered iff it is a DAG.

Proof : =⇒: Suppose G is not a DAG and has a topological ordering ≺. G has a cycle
C = u1, u2, . . . , uk, u1.

Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1!

That is... u1 ≺ u1.

A contradiction (to ≺ being an order).

Not possible to topologically order the vertices.

2.1.0.38 DAGs and Topological Sort

Lemma 2.1.5. A directed graph G can be topologically ordered iff it is a DAG.

Proof :[Continued] ⇐: Consider the following algorithm:

(A) Pick a source u, output it.
(B) Remove u and all edges out of u.
(C) Repeat until graph is empty.
(D) Exercise: prove this gives an ordering.
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Exercise: show above algorithm can be implemented in O(m+ n) time.

2.1.0.39 Topological Sort: An Exam-
ple

¡2-¿1

¡3-¿2 ¡4-¿3

¡5-¿4

Output: 1 2 3 4

2.1.0.40 Topological Sort: Another
Example

a b c

d e

f g

h
2.1.0.41 DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.
Question: What is a DAG with the most number of distinct topological sorts for a

given number n of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a
given number n of vertices?

2.1.1 Using DFS...

2.1.1.1 ... to check for Acylicity and compute Topological Ordering

Question Given G, is it a DAG? If it is, generate a topological sort.
DFS based algorithm:

(A) Compute DFS(G)
(B) If there is a back edge then G is not a DAG.
(C) Otherwise output nodes in decreasing post-visit order.
Correctness relies on the following:

Proposition 2.1.6. G is a DAG iff there is no back-edge in DFS(G).

Proposition 2.1.7. If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Proof : There are several possibilities:
(A) [pre(v), post(v)] comes after [pre(u), post(u)] and they are disjoint. But then, u was

visited first by the DFS, if (u, v) ∈ E(G) then DFS will visit v during the recursive
call on u. But then, post(v) < post(u). A contradiction.

(B) [pre(v), post(v)] ⊆ [pre(u), post(u)]: impossible as post(v) > post(u).
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(C) [pre(u), post(u)] ⊆ [pre(v), post(v)]. But then DFS visited v, and then visited u.
Namely there is a path in G from v to u. But then if (u, v) ∈ E(G) then there would
be a cycle in G, and it would not be a DAG. Contradiction.

(D) No other possibility - since “lifetime” intervals of DFS are either disjoint or contained
in each other.

2.1.1.2 Example

1

2 3

4

2.1.1.3 Back edge and Cycles

Proposition 2.1.8. G has a cycle iff there is a back-edge in DFS(G).

Proof : If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u
in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . .→ vk → v1.
Let vi be first node in C visited in DFS.
All other nodes in C are descendants of vi since they are reachable from vi.
Therefore, (vi−1, vi) (or (vk, v1) if i = 1) is a back edge.

2.1.1.4 Topological sorting of a DAG

Input: DAG G. With n vertices and m edges.
O(n+m) algorithms for topological sorting

(A) Put source s of G as first in the order, remove s, and repeat.
(Implementation not trivial.)

(B) Do DFS of G.
Compute post numbers.
Sort vertices by decreasing post number.

Question How to avoid sorting?
No need to sort - post numbering algorithm can output vertices...

2.1.1.5 DAGs and Partial Orders

Definition 2.1.9. A partially ordered set is a set S along with a binary relation � such
that � is

1. reflexive (a � a for all a ∈ V ),

2. anti-symmetric (a � b and a 6= b implies b 6� a), and
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3. transitive (a � b and b � c implies a � c).

Example: For numbers in the plane define (x, y) � (x′, y′) iff x ≤ x′ and y ≤ y′.
Observation: A finite partially ordered set is equivalent to a DAG. (No equal elements.)
Observation: A topological sort of a DAG corresponds to a complete (or total) ordering

of the underlying partial order.

2.1.2 What’s DAG but a sweet old fashioned notion

2.1.2.1 Who needs a DAG...

Example

(A) V : set of n products (say, n different types of tablets).
(B) Want to buy one of them, so you do market research...
(C) Online reviews compare only pairs of them.

...Not everything compared to everything.
(D) Given this partial information:

(A) Decide what is the best product.
(B) Decide what is the ordering of products from best to worst.
(C) ...

2.1.3 What DAGs got to do with it?

2.1.3.1 Or why we should care about DAGs

(A) DAGs enable us to represent partial ordering information we have about some set (very
common situation in the real world).

(B) Questions about DAGs:
(A) Is a graph G a DAG?
⇐⇒
Is the partial ordering information we have so far is consistent?

(B) Compute a topological ordering of a DAG.
⇐⇒
Find an a consistent ordering that agrees with our partial information.

(C) Find comparisons to do so DAG has a unique topological sort.
⇐⇒
Which elements to compare so that we have a consistent ordering of the items.

2.2 Linear time algorithm for finding all strong con-

nected components of a directed graph
2.2.0.2 Finding all SCCs of a Directed Graph

Problem Given a directed graph G = (V,E), output all its strong connected components.
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Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)
Compute rch(Grev, u) using DFS(Grev, u)
SCC(G, u)⇐ rch(G, u) ∩ rch(Grev, u)
∀u ∈ SCC(G, u): Mark u as visited.

Running time: O(n(n+m)) Is there an O(n+m) time algorithm?

2.2.0.3 Structure of a Directed Graph

AB C

DE F

G H

Graph G

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Reminder GSCC is created by collapsing every strong connected component to a single
vertex.

Proposition 2.2.1. For a directed graph G, its meta-graph GSCC is a DAG.

2.2.1 Linear-time Algorithm for SCCs: Ideas

2.2.1.1 Exploit structure of meta-graph...

Wishful Thinking Algorithm

(A) Let u be a vertex in a sink SCC of GSCC

(B) Do DFS(u) to compute SCC(u)
(C) Remove SCC(u) and repeat

Justification

(A) DFS(u) only visits vertices (and edges) in SCC(u)
(B) ... since there are no edges coming out a sink!
(C) DFS(u) takes time proportional to size of SCC(u)
(D) Therefore, total time O(n+m)!

2.2.1.2 Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without computing GSCC?

Answer: DFS(G) gives some information!
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B,E, F

G H

A,C,D

11 16

5 9
GSCC with post times

2.2.1.3 Post-visit times of SCCs

Definition 2.2.2. Given G and a SCC S of G, define post(S) = maxu∈S post(u) where post
numbers are with respect to some DFS(G).

2.2.1.4 An Example

AB C

DE F

G H

Graph G

[1, 16]

[2, 11] [12, 15]

[13, 14][3, 10] [6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

Graph with pre-post times for DFS(A);
black edges in tree

2.2.2 Graph of strong connected components

2.2.2.1 ... and post-visit times

Proposition 2.2.3. If S and S ′ are SCCs in G and (S, S ′) is an edge in GSCC then post(S) >
post(S ′).

Proof : Let u be first vertex in S ∪ S ′ that is visited.
(A) If u ∈ S then all of S ′ will be explored before DFS(u) completes.
(B) If u ∈ S ′ then all of S ′ will be explored before any of S.

A False Statement: If S and S ′ are SCCs in G and (S, S ′) is an edge in GSCC then for
every u ∈ S and u′ ∈ S ′, post(u) > post(u′).

2.2.2.2 Topological ordering of the strong components

Corollary 2.2.4. Ordering SCCs in decreasing order of post(S) gives a topological ordering
of GSCC

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.
So...
DFS(G) gives some information on topological ordering of GSCC!
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2.2.2.3 Finding Sources

Proposition 2.2.5. The vertex u with the highest post visit time belongs to a source SCC
in GSCC

Proof :¡2-¿

(A) post(SCC(u)) = post(u)
(B) Thus, post(SCC(u)) is highest and will be output first in topological ordering of GSCC.

2.2.2.4 Finding Sinks

Proposition 2.2.6. The vertex u with highest post visit time in DFS(Grev) belongs to a
sink SCC of G.

Proof :¡2-¿

(A) u belongs to source SCC of Grev

(B) Since graph of SCCs of Grev is the reverse of GSCC, SCC(u) is sink SCC of G.

2.2.3 Linear Time Algorithm

2.2.3.1 ...for computing the strong connected components in G

do DFS(Grev) and sort vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do
if u is not visited then

DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component

Remove Su from G

Analysis Running time is O(n+m). (Exercise)

2.2.3.2 Linear Time Algorithm: An Example - Initial steps

Graph G:

G

FE

B C

D

H

A

=⇒

Reverse graph Grev:

G

FE

B C

D

H

A
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=⇒

DFS of reverse graph:

G

FE

B C

D

H

A

=⇒

Pre/Post DFS numbering of reverse
graph:

6][1,

[7, 12]

[9, 10] [8, 11]

[13, 16]

[14, 15]

[2, 5]

[3, 4]

G

FE

B C

D

H

A

2.2.4 Linear Time Algorithm: An Example

2.2.4.1 Removing connected components: 1

Original graph G with rev post numbers:

G

FE

B C

D

H

A

16

11

612

10

15

5

4
=⇒

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

2.2.5 Linear Time Algorithm: An Example

2.2.5.1 Removing connected components: 2

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

=⇒

Do DFS from vertex H, remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

44



2.2.6 Linear Time Algorithm: An Example

2.2.6.1 Removing connected components: 3

Do DFS from vertex H, remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

=⇒

Do DFS from vertex B
Remove visited vertices:
{F,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F,B,E}

2.2.7 Linear Time Algorithm: An Example

2.2.7.1 Removing connected components: 4

Do DFS from vertex F
Remove visited vertices:
{F,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F,B,E}

=⇒

Do DFS from vertex A
Remove visited vertices:
{A,C,D}.

SCC computed:
{G}, {H}, {F,B,E}, {A,C,D}

2.2.8 Linear Time Algorithm: An Example

2.2.8.1 Final result

G

FE

B C

D

H

A
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SCC computed:
{G}, {H}, {F,B,E}, {A,C,D}

Which is the correct answer!

2.2.9 Obtaining the meta-graph...

2.2.9.1 Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph G = (V,E) show that the
meta-graph GSCC can be obtained in O(m+ n) time.

2.2.9.2 Correctness: more details

(A) let S1, S2, . . . , Sk be strong components in G
(B) Strong components of Grev and G are same and meta-graph of G is reverse of meta-graph

of Grev.
(C) consider DFS(Grev) and let u1, u2, . . . , uk be such that post(ui) = post(Si) = maxv∈Si post(v).
(D) Assume without loss of generality that post(uk) > post(uk−1) ≥ . . . ≥ post(u1) (renum-

ber otherwise). Then Sk, Sk−1, . . . , S1 is a topological sort of meta-graph of Grev and
hence S1, S2, . . . , Sk is a topological sort of the meta-graph of G.

(E) uk has highest post number and DFS(uk) will explore all of Sk which is a sink component
in G.

(F) After Sk is removed uk−1 has highest post number and DFS(uk−1) will explore all of
Sk−1 which is a sink component in remaining graph G−Sk. Formal proof by induction.

2.3 An Application to make

2.3.1 make utility

2.3.1.1 make Utility [Feldman]

(A) Unix utility for automatically building large software applications
(B) A makefile specifies

(A) Object files to be created,
(B) Source/object files to be used in creation, and
(C) How to create them
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project

main.o

utils.o

command.o

main.c

utils.c

defs.h

command.h

command.c

2.3.1.2 An Example makefile

project: main.o utils.o command.o

cc -o project main.o utils.o command.o

main.o: main.c defs.h

cc -c main.c

utils.o: utils.c defs.h command.h

cc -c utils.c

command.o: command.c defs.h command.h

cc -c command.c

2.3.1.3 makefile as a Digraph

2.3.2 Computational Problems
2.3.2.1 Computational Problems for make

(A) Is the makefile reasonable?
(B) If it is reasonable, in what order should the object files be created?
(C) If it is not reasonable, provide helpful debugging information.
(D) If some file is modified, find the fewest compilations needed to make application consis-

tent.

2.3.2.2 Algorithms for make

(A) Is the makefile reasonable? Is G a DAG?
(B) If it is reasonable, in what order should the object files be created? Find a topological

sort of a DAG.
(C) If it is not reasonable, provide helpful debugging information. Output a cycle. More

generally, output all strong connected components.
(D) If some file is modified, find the fewest compilations needed to make application consis-

tent.
(A) Find all vertices reachable (using DFS/BFS) from modified files in di-

rected graph, and recompile them in proper order. Verify that one can
find the files to recompile and the ordering in linear time.
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2.3.2.3 Take away Points

(A) Given a directed graph G, its SCCs and the associated acyclic meta-graph GSCC give a
structural decomposition of G that should be kept in mind.

(B) There is a DFS based linear time algorithm to compute all the SCCs and the meta-
graph. Properties of DFS crucial for the algorithm.

(C) DAGs arise in many application and topological sort is a key property in algorithm de-
sign. Linear time algorithms to compute a topological sort (there can be many possible
orderings so not unique).
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Chapter 3

Breadth First Search, Dijkstra’s
Algorithm for Shortest Paths

CS 473: Fundamental Algorithms, Spring 2013
January 24, 2013

3.1 Breadth First Search
3.1.0.4 Breadth First Search (BFS)

Overview

(A) BFS is obtained from BasicSearch by processing edges using a data structure called
a queue .

(B) It processes the vertices in the graph in the order of their shortest distance from the
vertex s (the start vertex).

As such...

(A) DFS good for exploring graph structure
(B) BFS good for exploring distances

3.1.0.5 Queue Data Structure

Queues

A queue is a list of elements which supports the operations:

(A) enqueue: Adds an element to the end of the list
(B) dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in the
order in which they were inserted.
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3.1.0.6 BFS Algorithm

Given (undirected or directed) graph G = (V,E) and node s ∈ V
BFS(s)

Mark all vertices as unvisited

Initialize search tree T to be empty

Mark vertex s as visited

set Q to be the empty queue

enq(s)
while Q is nonempty do

u = deq(Q)
for each vertex v ∈ Adj(u)

if v is not visited then
add edge (u, v) to T
Mark v as visited and enq(v)

Proposition 3.1.1. BFS(s) runs in O(n+m) time.

3.1.0.7 BFS: An Example in Undirected Graphs
1

2 3

4 5

6

7

8

1

2 3

4 5

6

78

1. [1] 4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.
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3.1.0.8 BFS: An Example in Directed Graphs

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

3.1.0.9 BFS with Distance

BFS(s)
Mark all vertices as unvisited and for each v set dist(v) =∞
Initialize search tree T to be empty

Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue

enq(s)
while Q is nonempty do

u = deq(Q)
for each vertex v ∈ Adj(u) do

if v is not visited do
add edge (u, v) to T
Mark v as visited, enq(v)
and set dist(v) = dist(u) + 1

3.1.0.10 Properties of BFS: Undirected Graphs

Proposition 3.1.2. The following properties hold upon termination of BFS(s)

(A) The search tree contains exactly the set of vertices in the connected component of s.

(B) If dist(u) < dist(v) then u is visited before v.

(C) For every vertex u, dist(u) is indeed the length of shortest path from s to u.

(D) If u, v are in connected component of s and e = {u, v} is an edge of G, then either e is
an edge in the search tree, or |dist(u)− dist(v)| ≤ 1.

Proof : Exercise.

3.1.0.11 Properties of BFS: Directed Graphs

Proposition 3.1.3. The following properties hold upon termination of BFS(s):

(A) The search tree contains exactly the set of vertices reachable from s

(B) If dist(u) < dist(v) then u is visited before v
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(C) For every vertex u, dist(u) is indeed the length of shortest path from s to u

(D) If u is reachable from s and e = (u, v) is an edge of G, then either e is an edge in
the search tree, or dist(v) − dist(u) ≤ 1. Not necessarily the case that dist(u) −
dist(v) ≤ 1.

Proof : Exercise.

3.1.0.12 BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty

Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list

for each u in Li do
for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited

add (u, v) to tree T
add v to Li+1

i = i+ 1

Running time: O(n+m)

3.1.0.13 Example

2 3

4 5

6

7

8

s

2 3

4 5

6

7

8

L0

s

2 3

4 5

6

7

8

L0

L1

s

2 3

4 5

6

7

8

L0

L1

L2

s
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2 3

4 5

6

7

8

s

2 3

4 5

6

7

8

L0

L1

L2

L3

s

3.1.0.14 BFS with Layers: Properties

Proposition 3.1.4. The following properties hold on termination of BFSLayers(s).
(A) BFSLayers(s) outputs a BFS tree
(B) Li is the set of vertices at distance exactly i from s
(C) If G is undirected, each edge e = {u, v} is one of three types:

(A) tree edge between two consecutive layers
(B) non-tree forward/backward edge between two consecutive layers
(C) non-tree cross-edge with both u, v in same layer
(D) =⇒ Every edge in the graph is either between two vertices that are either (i) in

the same layer, or (ii) in two consecutive layers.

3.1.0.15 Example

3.1.1 BFS with Layers: Properties

3.1.1.1 For directed graphs

Proposition 3.1.5. The following properties hold on termination of BFSLayers(s), if G
is directed.

For each edge e = (u, v) is one of four types:
(A) a tree edge between consecutive layers, u ∈ Li, v ∈ Li+1 for some i ≥ 0
(B) a non-tree forward edge between consecutive layers
(C) a non-tree backward edge
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(D) a cross-edge with both u, v in same layer

3.2 Bipartite Graphs and an application of BFS
3.2.0.2 Bipartite Graphs

Definition 3.2.1 (Bipartite Graph). Undirected graph G = (V,E) is a bipartite graph
if V can be partitioned into X and Y s.t. all edges in E are between X and Y .

X Y

3.2.0.3 Bipartite Graph Characterization

Question When is a graph bipartite?

Proposition 3.2.2. Every tree is a bipartite graph.

Proof : Root tree T at some node r. Let Li be all nodes at level i, that is, Li is all nodes at
distance i from root r. Now define X to be all nodes at even levels and Y to be all nodes at
odd level. Only edges in T are between levels.

Proposition 3.2.3. An odd length cycle is not bipartite.

3.2.0.4 Odd Cycles are not Bipartite

Proposition 3.2.4. An odd length cycle is not bipartite.

Proof : Let C = u1, u2, . . . , u2k+1, u1 be an odd cycle. Suppose C is a bipartite graph and let
X, Y be the partition. Without loss of generality u1 ∈ X. Implies u2 ∈ Y . Implies u3 ∈ X.
Inductively, ui ∈ X if i is odd ui ∈ Y if i is even. But {u1, u2k+1} is an edge and both belong
to X!

3.2.0.5 Subgraphs

Definition 3.2.5. Given a graph G = (V,E) a subgraph of G is another graph H =
(V ′, E ′) where V ′ ⊆ V and E ′ ⊆ E.

Proposition 3.2.6. If G is bipartite then any subgraph H of G is also bipartite.

Proposition 3.2.7. A graph G is not bipartite if G has an odd cycle C as a subgraph.

Proof : If G is bipartite then since C is a subgraph, C is also bipartite (by above proposition).
However, C is not bipartite!
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3.2.0.6 Bipartite Graph Characterization

Theorem 3.2.8. A graph G is bipartite if and only if it has no odd length cycle as subgraph.

Proof : Only If: G has an odd cycle implies G is not bipartite.
If: G has no odd length cycle. Assume without loss of generality that G is connected.

(A) Pick u arbitrarily and do BFS(u)
(B) X = ∪i is evenLi and Y = ∪i is oddLi
(C) Claim: X and Y is a valid partition if G has no odd length cycle.

3.2.0.7 Proof of Claim

Claim 3.2.9. In BFS(u) if a, b ∈ Li and (a, b) is an edge then there is an odd length cycle
containing (a, b).

Proof : Let v be least common ancestor of a, b in BFS tree T .
v is in some level j < i (could be u itself).
Path from v  a in T is of length j − i.
Path from v  b in T is of length j − i.
These two paths plus (a, b) forms an odd cycle of length 2(j − i) + 1.

3.2.0.8 Proof of Claim: Figure
3.2.0.9 Another tidbit

Corollary 3.2.10. There is an O(n+m) time algorithm to check if G is bipartite and output
an odd cycle if it is not.

3.3 Shortest Paths and Dijkstra’s Algorithm
3.3.0.10 Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V,E) with edge lengths (or costs). For edge
e = (u, v), `(e) = `(u, v) is its length.

(A) Given nodes s, t find shortest path from s to t.
(B) Given node s find shortest path from s to all other nodes.
(C) Find shortest paths for all pairs of nodes.

Many applications!
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3.3.1 Single-Source Shortest Paths:

3.3.1.1 Non-Negative Edge Lengths

Single-Source Shortest Path Problems
(A) Input: A (undirected or directed) graph G = (V,E) with non-negative edge lengths.

For edge e = (u, v), `(e) = `(u, v) is its length.
(B) Given nodes s, t find shortest path from s to t.
(C) Given node s find shortest path from s to all other nodes.
(A) Restrict attention to directed graphs
(B) Undirected graph problem can be reduced to directed graph problem - how?

(A) Given undirected graph G, create a new directed graph G′ by replacing each edge
{u, v} in G by (u, v) and (v, u) in G′.

(B) set `(u, v) = `(v, u) = `({u, v})
(C) Exercise: show reduction works

3.3.1.2 Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
(A) Run BFS(s) to get shortest path distances from s to all other nodes.
(B) O(m+ n) time algorithm.

Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing `(e)− 1 dummy nodes on
e

Let L = maxe `(e). New graph has O(mL) edges and O(mL + n) nodes. BFS takes
O(mL+ n) time. Not efficient if L is large.

3.3.1.3 Towards an algorithm

Why does BFS work?
BFS(s) explores nodes in increasing distance from s

Lemma 3.3.1. Let G be a directed graph with non-negative edge lengths. Let dist(s, v)
denote the shortest path length from s to v. If s = v0 → v1 → v2 → . . . → vk is a shortest
path from s to vk then for 1 ≤ i < k:
(A) s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi
(B) dist(s, vi) ≤ dist(s, vk).

Proof : Suppose not. Then for some i < k there is a path P ′ from s to vi of length strictly
less than that of s = v0 → v1 → . . . → vi. Then P ′ concatenated with vi → vi+1 . . . → vk
contains a strictly shorter path to vk than s = v0 → v1 . . .→ vk.
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3.3.1.4 A proof by picture

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6

Shorter path
from v0 to v4

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6

A shorter path
from v0 to v6. A
contradiction.

3.3.1.5 A Basic Strategy

Explore vertices in increasing order of distance from s:

(For simplicity assume that nodes are at different distances from s and that no edge has
zero length)
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Initialize for each node v, dist(s, v) =∞
Initialize S = ∅,
for i = 1 to |V | do

(* Invariant: S contains the i− 1 closest nodes to s *)

Among nodes in V \ S, find the node v that is the

ith closest to s
Update dist(s, v)
S = S ∪ {v}

How can we implement the step in the for loop?

3.3.1.6 Finding the ith closest node

(A) S contains the i− 1 closest nodes to s
(B) Want to find the ith closest node from V − S.

What do we know about the ith closest node?

Claim 3.3.2. Let P be a shortest path from s to v where v is the ith closest node. Then,
all intermediate nodes in P belong to S.

Proof : If P had an intermediate node u not in S then u will be closer to s than v. Implies
v is not the ith closest node to s - recall that S already has the i− 1 closest nodes.

3.3.2 Finding the ith closest node repeatedly

3.3.2.1 An example
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3.3.2.2 Finding the ith closest node

Corollary 3.3.3. The ith closest node is adjacent to S.

3.3.2.3 Finding the ith closest node

(A) S contains the i− 1 closest nodes to s
(B) Want to find the ith closest node from V − S.
(A) For each u ∈ V − S let P (s, u, S) be a shortest path from s to u using only nodes in S

as intermediate vertices.
(B) Let d′(s, u) be the length of P (s, u, S)

Observations: for each u ∈ V − S,
(A) dist(s, u) ≤ d′(s, u) since we are constraining the paths
(B) d′(s, u) = mina∈S(dist(s, a) + `(a, u)) - Why?

Lemma 3.3.4. If v is the ith closest node to s, then d′(s, v) = dist(s, v).

3.3.2.4 Finding the ith closest node

Lemma 3.3.5. Given:
(A) S: Set of i− 1 closest nodes to s.
(B) d′(s, u) = minx∈S(dist(s, x) + `(x, u))
If v is an ith closest node to s, then d′(s, v) = dist(s, v).

Proof : Let v be the ith closest node to s. Then there is a shortest path P from s to
v that contains only nodes in S as intermediate nodes (see previous claim). Therefore
d′(s, v) = dist(s, v).

3.3.2.5 Finding the ith closest node

Lemma 3.3.6. If v is an ith closest node to s, then d′(s, v) = dist(s, v).

Corollary 3.3.7. The ith closest node to s is the node v ∈ V − S such that d′(s, v) =
minu∈V−S d

′(s, u).

Proof : For every node u ∈ V − S, dist(s, u) ≤ d′(s, u) and for the ith closest node v,
dist(s, v) = d′(s, v). Moreover, dist(s, u) ≥ dist(s, v) for each u ∈ V − S.
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3.3.2.6 Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize S = ∅, d′(s, s) = 0
for i = 1 to |V | do

(* Invariant: S contains the i-1 closest nodes to s *)

(* Invariant: d’(s,u) is shortest path distance from u to s

using only S as intermediate nodes*)

Let v be such that d′(s, v) = minu∈V−S d
′(s, u)

dist(s, v) = d′(s, v)
S = S ∪ {v}
for each node u in V \ S do

d′(s, u)⇐ mina∈S

(
dist(s, a) + `(a, u)

)

Correctness: By induction on i using previous lemmas.
Running time: O(n · (n+m)) time.

(A) n outer iterations. In each iteration, d′(s, u) for each u by scanning all edges out of
nodes in S; O(m+ n) time/iteration.

3.3.2.7 Example

3.3.2.8 Improved Algorithm

(A) Main work is to compute the d′(s, u) values in each iteration
(B) d′(s, u) changes from iteration i to i+ 1 only because of the node v that is added to S

in iteration i.
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Initialize for each node v, dist(s, v) = d′(s, v) =∞
Initialize S = ∅, d’(s,s) = 0

for i = 1 to |V | do
// S contains the i− 1 closest nodes to s,
// and the values of d′(s, u) are current

v be node realizing d′(s, v) = minu∈V−S d
′(s, u)

dist(s, v) = d′(s, v)
S = S ∪ {v}
Update d′(s, u) for each u in V − S as follows:

d′(s, u) = min
(
d′(s, u), dist(s, v) + `(v, u)

)

Running time: O(m+ n2) time.
(A) n outer iterations and in each iteration following steps
(B) updating d′(s, u) after v added takes O(deg(v)) time so total work is O(m) since a node

enters S only once
(C) Finding v from d′(s, u) values is O(n) time

3.3.2.9 Dijkstra’s Algorithm

(A) eliminate d′(s, u) and let dist(s, u) maintain it
(B) update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s, v) =∞
Initialize S = {}, dist(s, s) = 0
for i = 1 to |V | do

Let v be such that dist(s, v) = minu∈V−S dist(s, u)
S = S ∪ {v}
for each u in Adj(v) do

dist(s, u) = min
(

dist(s, u), dist(s, v) + `(v, u)
)

Priority Queues to maintain dist values for faster running time

(A) Using heaps and standard priority queues: O((m+ n) log n)
(B) Using Fibonacci heaps: O(m+ n log n).

3.3.3 Priority Queues
3.3.3.1 Priority Queues

Data structure to store a set S of n elements where each element v ∈ S has an associated
real/integer key k(v) such that the following operations:
(A) makePQ: create an empty queue.
(B) findMin: find the minimum key in S.
(C) extractMin: Remove v ∈ S with smallest key and return it.
(D) insert(v, k(v)): Add new element v with key k(v) to S.
(E) delete(v): Remove element v from S.
(F) decreaseKey(v, k′(v)): decrease key of v from k(v) (current key) to k′(v) (new key).

Assumption: k′(v) ≤ k(v).
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(G) meld: merge two separate priority queues into one.
All operations can be performed in O(log n) time.

decreaseKey is implemented via delete and insert.

3.3.3.2 Dijkstra’s Algorithm using Priority Queues

Q⇐ makePQ()

insert(Q, (s, 0))
for each node u 6= s do

insert(Q, (u,∞))

S ⇐ ∅
for i = 1 to |V | do

(v,dist(s, v)) = extractMin(Q)

S = S ∪ {v}
for each u in Adj(v) do

decreaseKey
(
Q,
(
u,min

(
dist(s, u), dist(s, v) + `(v, u)

)))
.

Priority Queue operations:
(A) O(n) insert operations
(B) O(n) extractMin operations
(C) O(m) decreaseKey operations

3.3.3.3 Implementing Priority Queues via Heaps

Using Heaps Store elements in a heap based on the key value
(A) All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n+m) log n) time.

3.3.3.4 Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps
(A) extractMin, insert, delete, meld in O(log n) time
(B) decreaseKey in O(1) amortized time: ` decreaseKey operations for ` ≥ n take

together O(`) time
(C) Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not

necessary for Dijkstra’s algorithm)
(A) Dijkstra’s algorithm can be implemented in O(n log n + m) time. If m = Ω(n log n),

running time is linear in input size.
(B) Data structures are complicated to analyze/implement. Recent work has obtained data

structures that are easier to analyze and implement, and perform well in practice. Rank-
Pairing Heaps (European Symposium on Algorithms, September 2009!)

3.3.3.5 Shortest Path Tree

Dijkstra’s algorithm finds the shortest path distances from s to V .
Question: How do we find the paths themselves?
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Q = makePQ()

insert(Q, (s, 0))
prev(s)⇐ null
for each node u 6= s do

insert(Q, (u,∞) )

prev(u)⇐ null

S = ∅
for i = 1 to |V | do

(v,dist(s, v)) = extractMin(Q)
S = S ∪ {v}
for each u in Adj(v) do

if (dist(s, v) + `(v, u) < dist(s, u) ) then
decreaseKey(Q, (u,dist(s, v) + `(v, u)) )

prev(u) = v

3.3.3.6 Shortest Path Tree

Lemma 3.3.8. The edge set (u, prev(u)) is the reverse of a shortest path tree rooted at s.
For each u, the reverse of the path from u to s in the tree is a shortest path from s to u.

Proof :[Proof Sketch.]
(A) The edge set {(u, prev(u)) | u ∈ V } induces a directed in-tree rooted at s (Why?)
(B) Use induction on |S| to argue that the tree is a shortest path tree for nodes in V .

3.3.3.7 Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V .
How do we find shortest paths from all of V to s?

(A) In undirected graphs shortest path from s to u is a shortest path from u to s so there
is no need to distinguish.

(B) In directed graphs, use Dijkstra’s algorithm in Grev!
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Chapter 4

Shortest Path Algorithms

CS 473: Fundamental Algorithms, Spring 2013
January 26, 2013

4.1 Shortest Paths with Negative Length Edges
4.1.0.8 Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems In-
put: A directed graph G = (V,E)
with arbitrary (including negative) edge
lengths. For edge e = (u, v), `(e) =
`(u, v) is its length.
(A) Given nodes s, t find shortest path

from s to t.
(B) Given node s find shortest path from

s to all other nodes.

s

2 3

4

5

6

7 t

9

15

6

10

-8 20

30

18

11

16

-16

19 6

44

6

s

2 3

4

5

6

7 t

9

15

6

10

-8 20

30

18

11

16

-16

19

6

6

44

4.1.0.9 Negative Length Cycles

Definition 4.1.1. A cycle C is a negative length cycle if the sum of the edge lengths of C
is negative.

4.1.0.10 Shortest Paths and Negative Cycles

Given G = (V,E) with edge lengths and s, t. Suppose

(A) G has a negative length cycle C, and
(B) s can reach C and C can reach t.
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Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

(A) undefined, that is −∞, OR
(B) the length of a shortest simple path from s to t.

Lemma 4.1.2. If there is an efficient algorithm to find a shortest simple s → t path in
a graph with negative edge lengths, then there is an efficient algorithm to find the longest
simple s→ t path in a graph with positive edge lengths.

Finding the s→ t longest path is difficult. NP-Hard!

4.1.1 Shortest Paths with Negative Edge Lengths

4.1.1.1 Problems

Algorithmic Problems Input : A directed graph G = (V,E) with arbitrary (including nega-
tive) edge lengths. For edge e = (u, v), `(e) = `(u, v) is its length.

Questions :

(A) Given nodes s, t, either find a negative length cycle C that s can reach or find a shortest
path from s to t.

(B) Given node s, either find a negative length cycle C that s can reach or find shortest
path distances from s to all reachable nodes.

(C) Check if G has a negative length cycle or not.

4.1.2 Shortest Paths with Negative Edge Lengths

4.1.2.1 In Undirected Graphs

Note : With negative lengths, shortest path problems and negative cycle detection in undi-
rected graphs cannot be reduced to directed graphs by bi-directing each undirected edge.
Why?

Problem can be solved efficiently in undirected graphs but algorithms are different and
more involved than those for directed graphs. Beyond the scope of this class. If interested,
ask instructor for references.
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4.1.2.2 Why Negative Lengths?

Several Applications

(A) Shortest path problems useful in modeling many situations — in some negative lenths
are natural

(B) Negative length cycle can be used to find arbitrage opportunities in currency trading
(C) Important sub-routine in algorithms for more general problem: minimum-cost flow

4.1.3 Negative cycles

4.1.3.1 Application to Currency Trading

Currency Trading Input : n currencies and for each ordered pair (a, b) the exchange rate for
converting one unit of a into one unit of b.

Questions :

(A) Is there an arbitrage opportunity?
(B) Given currencies s, t what is the best way to convert s to t (perhaps via other interme-

diate currencies)?

Concrete example:
(A) 1 Chinese Yuan = 0.1116 Euro
(B) 1 Euro = 1.3617 US dollar
(C) 1 US Dollar = 7.1 Chinese Yuan.

Thus, if exchanging 1 $ → Yuan →
Euro → $, we get: 0.1116 ∗ 1.3617 ∗
7.1 = 1.07896$.

4.1.3.2 Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies k1, k2, . . . , kh then
one unit of i yields exch(i, k1)× exch(k1, k2) . . .× exch(kh, j) units of j.

Create currency trading directed graph G = (V,E):

(A) For each currency i there is a node vi ∈ V
(B) E = V × V : an edge for each pair of currencies
(C) edge length `(vi, vj) = − log(exch(i, j)) can be negative

Exercise: Verify that

(A) There is an arbitrage opportunity if and only if G has a negative length cycle.
(B) The best way to convert currency i to currency j is via a shortest path in G from i to

j. If d is the distance from i to j then one unit of i can be converted into 2d units of j.

4.1.4 Reducing Currency Trading to Shortest Paths

4.1.4.1 Math recall - relevant information

(A) log(α1 ∗ α2 ∗ · · · ∗ αk) = logα1 + logα2 + · · ·+ logαk.
(B) log x > 0 if and only if x > 1 .
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4.1.4.2 Dijkstra’s Algorithm and Negative Lengths

With negative cost edges, Dijkstra’s algorithm fails
1
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False assumption: Dijkstra’s algorithm is based
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on the assumption that if s = v0 → v1 → v2 . . . → vk is a shortest path from s to vk then
dist(s, vi) ≤ dist(s, vi+1) for 0 ≤ i < k. Holds true only for non-negative edge lengths.

4.1.4.3 Shortest Paths with Negative Lengths

Lemma 4.1.3. Let G be a directed graph with arbitrary edge lengths. If s = v0 → v1 →
v2 → . . .→ vk is a shortest path from s to vk then for 1 ≤ i < k:
(A) s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi
(B) False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k. Holds true only for non-negative

edge lengths.

Cannot explore nodes in increasing order of distance! We need a more basic strategy.

4.1.4.4 A Generic Shortest Path Algorithm

(A) Start with distance estimate for each node d(s, u) set to ∞
(B) Maintain the invariant that there is an s → u path of length d(s, u). Hence d(s, u) ≥

dist(s, u).
(C) Iteratively refine d(s, ·) values until they reach the correct value dist(s, ·) values at

termination

Must hold that... d(s, v) ≤ d(s, u) +
`(u, v) vs

d(s, u)

u
`(s, u)

4.1.4.5 A Generic Shortest Path Algorithm

Question: How do we make progress?

Definition 4.1.4. Given distance estimates d(s, u) for each u ∈ V , an edge e = (u, v) is
tense if d(s, v) > d(s, u) + `(u, v).

Relax(e = (u, v))
if (d(s, v) > d(s, u) + `(u, v)) then

d(s, v) = d(s, u) + `(u, v)

4.1.4.6 A Generic Shortest Path Algorithm

Invariant If a vertex u has value d(s, u) associated with it, then there is a s  u walk of
length d(s, u).

Proposition 4.1.5. Relax maintains the invariant on d(s, u) values.

Proof : Indeed, if Relax((u, v)) changed the value of d(s, v), then there is a walk to u of
length d(s, u) (by invariant), and there is a walk of length d(s, u) + `(u, v) to v through u,
which is the new value of d(s, v).
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4.1.4.7 A Generic Shortest Path Algorithm

d(s, s) = 0
for each node u 6= s do

d(s, u) =∞

while there is a tense edge do
Pick a tense edge e
Relax(e)

Output d(s, u) values

Technical assumption: If e = (u, v) is an edge and d(s, u) = d(s, v) =∞ then edge is not
tense.

4.1.4.8 Properties of the generic algorithm

Proposition 4.1.6. If u is not reachable from s then d(s, u) remains at ∞ throughout the
algorithm.

4.1.4.9 Properties of the generic algorithm

Proposition 4.1.7. If a negative length cycle C is reachable by s then there is always a
tense edge and hence the algorithm never terminates.

Proof :[Proof Sketch.] Let C = v0, v1, . . . , vk be a negative length cycle. Suppose algorithm
terminates. Since no edge of C was tense, for i = 1, 2, . . . , k we have d(s, vi) ≤ d(s, vi−1) +
`(vi−1, vi) and d(s, v0) ≤ d(s, vk) + `(vk, v0). Adding up all the inequalities we obtain that
length of C is non-negative!

Corollary 4.1.8. If the algorithm terminates then there is no negative length cycle C that
is reachable from s.

4.1.4.10 Properties of the generic algorithm

Lemma 4.1.9. If the algorithm terminates then d(s, u) = dist(s, u) for each node u (and s
cannot reach a negative cycle).

Proof of lemma; see future slides.

4.1.5 Properties of the generic algorithm

4.1.5.1 If estimate distance from source too large, then ∃ tense edge...

Lemma 4.1.10. Assume there is a path π = v1 → v2 → · · · → vk from v1 = s to vk = u
(not necessarily simple!): `(π) =

∑k−1
i=1 `(vi, vj) < d(s, u).

Then, there exists a tense edge in G.
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Proof : Assume π is the shortest (in number of edges) such path, and observe that it must be
that `(v1 → · · · vk−1) ≥ d(s, vk−1). But then, we have that d(s, vk−1) + `(vk−1, vk) ≤ `(v1 →
· · · vk−1) + `(vk−1, vk) = `(π) < d(s, vk). Namely, d(s, vk−1) + `(vk−1, vk) < d(s, vk) and the
edge (vk−1, vk) is tense.

=⇒ If for any vertex u: d(s, u) > dist(s, u) then the algorithm will continue working!

4.1.5.2 Generic Algorithm: Ordering Relax operations

d(s,s) = 0

for each node u 6= s do

d(s,u) = ∞

While there is a tense edge do

Pick a tense edge e
Relax(e)

Output d(s, u) values for u ∈ V (G)

Question: How do we pick edges to relax?

Observation: Suppose s→ v1 → . . .→ vk is a shortest path.

If Relax(s, v1), Relax(v1, v2), . . ., Relax(vk−1, vk) are done in order then d(s, vk) =
dist(s, vk)!

4.1.5.3 Ordering Relax operations

(A) Observation: Suppose s→ v1 → . . .→ vk is a shortest path.

If Relax(s, v1), Relax(v1, v2), . . ., Relax(vk−1, vk) are done in order then d(s, vk) =
dist(s, vk)! (Why?)

(B) We don’t know the shortest paths so how do we know the order to do the Relax opera-
tions?

4.1.5.4 Ordering Relax operations

(A) We don’t know the shortest paths so how do we know the order to do the Relax opera-
tions?

(B) We don’t!
(A) Relax all edges (even those not tense) in some arbitrary order
(B) Iterate |V | − 1 times
(C) First iteration will do Relax(s, v1) (and other edges), second round Relax(v1, v2)

and in iteration k we do Relax(vk−1, vk).
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4.1.5.5 Bellman-Ford Algorithm

for each u ∈ V do
d(s, u)←∞

d(s, s)← 0

for i = 1 to |V | − 1 do
for each edge e = (u, v) do

Relax(e)

for each u ∈ V do
dist(s, u)← d(s, u)

4.1.5.6 Bellman-Ford Algorithm: Scanning Edges

One possible way to scan edges in each iteration.

Q is an empty queue

for each u ∈ V do
d(s, u) =∞
enq(Q, u)

d(s, s) = 0

for i = 1 to |V | − 1 do
for j = 1 to |V | do

u = deq(Q)
for each edge e in Adj(u) do

Relax(e)
enq(Q, u)

for each u ∈ V do
dist(s, u) = d(s, u)

4.1.5.7 Example
4.1.5.8 Example
4.1.5.9 Correctness of the Bellman-Ford Algorithm

Lemma 4.1.11. G: a directed graph with arbitrary edge lengths, v: a node in V s.t. there is
a shortest path from s to v with i edges. Then, after i iterations of the loop in Bellman-Ford,
d(s, v) = dist(s, v)

Proof : By induction on i.

(A) Base case: i = 0. d(s, s) = 0 and d(s, s) = dist(s, s).
(B) Induction Step: Let s→ v1 . . .→ vi−1 → v be a shortest path from s to v of i hops.

(A) vi−1 has a shortest path from s of i − 1 hops or less. (Why?). By induction,
d(s, vi−1) = dist(s, vi−1) after i− 1 iterations.

(B) In iteration i, Relax(vi−1, vi) sets d(s, vi) = dist(s, vi).
(C) Note: Relax does not change d(s, u) once d(s, u) = dist(s, u).
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Figure 4.1: One iteration of Bellman-Ford that Relaxes all edges by processing nodes in the
order s, a, b, c, d, e, f . Red edges indicate the prev pointers (in reverse)
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Figure 4.2: 6 iterations of Bellman-Ford starting with the first one from previous slide. No
changes in 5th iteration and 6th iteration.
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4.1.5.10 Correctness of Bellman-Ford Algorithm

Corollary 4.1.12. After |V | − 1 iterations of Bellman-Ford, d(s, u) = dist(s, u) for any
node u that has a shortest path from s.

Note: If there is a negative cycle C such that s can reach C then we do not know whether
d(s, u) = dist(s, u) or not even if dist(s, u) is well-defined.

Question: How do we know whether there is a negative cycle C reachable from s?

4.1.5.11 Bellman-Ford to detect Negative Cycles

for each u ∈ V do
d(s, u) =∞

d(s, s) = 0

for i = 1 to |V | − 1 do
for each edge e = (u, v) do

Relax(e)

for each edge e = (u, v) do
if e = (u, v) is tense then

Stop and output that s can reach

a negative length cycle

Output for each u ∈ V : d(s, u)

4.1.5.12 Correctness

Lemma 4.1.13. G has a negative cycle reachable from s if and only if there is a tense edge
e after |V | − 1 iterations of Bellman-Ford.

Proof :[Proof Sketch.] G has no negative length cycle reachable from s implies that all nodes
u have a shortest path from s. Therefore d(s, u) = dist(s, u) after the |V | − 1 iterations.
Therefore, there cannot be any tense edges left.

If there is a negative cycle C then there is a tense edge after |V | − 1 (in fact any number
of) iterations. See lemma about properties of the generic shortest path algorithm.

75



4.1.5.13 Finding the Paths and a Shortest Path Tree

for each u ∈ V do
d(s, u) =∞
prev(u) = null

d(s, s) = 0
for i = 1 to |V | − 1 do

for each edge e = (u, v) do
Relax(e)

if there is a tense edge e then
Output that s can reach a negative cycle C

else
for each u ∈ V do

output d(s, u)

Relax(e = (u, v))
if (d(s, v) > d(s, u) + `(u, v)) then

d(s, v) = d(s, u) + `(u, v)
prev(v) = u

Note: prev pointers induce a shortest path tree.

4.1.5.14 Negative Cycle Detection

Negative Cycle Detection Given directed graph G with arbitrary edge lengths, does it have
a negative length cycle?

(A) Bellman-Ford checks whether there is a negative cycle C that is reachable from a specific
vertex s. There may negative cycles not reachable from s.

(B) Run Bellman-Ford |V | times, once from each node u?

4.1.5.15 Negative Cycle Detection

(A) Add a new node s′ and connect it to all nodes of G with zero length edges. Bellman-
Ford from s′ will fill find a negative length cycle if there is one. Exercise: why does
this work?

(B) Negative cycle detection can be done with one Bellman-Ford invocation.

4.1.5.16 Running time for Bellman-Ford

(A) Input graph G = (V,E) with m = |E| and n = |V |.
(B) n outer iterations and m Relax() operations in each iteration. Each Relax() operation

is O(1) time.
(C) Total running time: O(mn).
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4.1.5.17 Dijkstra’s Algorithm with Relax()

for each node u 6= s do
d(s, u) =∞

d(s, s) = 0
S = ∅
while (S 6= V ) do

Let v be node in V − S with min d value

S = S ∪ {v}
for each edge e in Adj(v) do

Relax(e)

4.2 Shortest Paths in DAGs
4.2.0.18 Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graphG = (V,E) with arbitrary (including negative) edge lengths.
For edge e = (u, v), `(e) = `(u, v) is its length.

(A) Given nodes s, t find shortest path from s to t.
(B) Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs
(A) No cycles and hence no negative length cycles! Hence can find shortest paths even for

negative length edges
(B) Can order nodes using topological sort

4.2.0.19 Algorithm for DAGs

(A) Want to find shortest paths from s. Ignore nodes not reachable from s.
(B) Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:
(A) shortest path from s to vi cannot use any node from vi+1, . . . , vn
(B) can find shortest paths in topological sort order.

4.2.0.20 Algorithm for DAGs

for i = 1 to n do
d(s, vi) =∞

d(s, s) = 0

for i = 1 to n− 1 do
for each edge e in Adj(vi) do

Relax(e)

return d(s, ·) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m+ n) time algorithm! Works for negative edge lengths and hence can
find longest paths in a DAG.
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4.2.0.21 Takeaway Points

(A) Shortest paths with potentially negative length edges arise in a variety of applications.
Longest simple path problem is difficult (no known efficient algorithm and NP-Hard).
We restrict attention to shortest walks and they are well defined only if there are no
negative length cycles reachable from the source.

(B) A generic shortest path algorithm starts with distance estimates to the source and
iteratively refines them by considering edges one at a time. The algorithm is guaranteed
to terminate with correct distances if there are no negative length cycle. If a negative
length cycle is reachable from the source it is guaranteed not to terminate.

(C) Dijkstra’s algorithm can also be thought of as an instantiation of the generic algorithm.

4.2.0.22 Points continued

(A) Bellman-Ford algorithm is an instantiation of the generic algorithm that in each iteration
relaxes all the edges. It recognizes negative length cycles if there is a tense edges in
the nth iteration. For a vertex u with a shortest path to the source with i edges the
algorithm has the correct distance after i iterations. Running time of Bellman-Ford
algorithm is O(nm).

(B) Bellman-Ford can be adapted to find a negative length cycle in the graph by adding a
new vertex.

(C) If we have a DAG then it has no negative length cycle and hence shortest paths exists
even with negative lengths. One can compute single-source shortest paths in a DAG in
linear time. This implies that one can also compute longest paths in a DAG in linear
time.
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Chapter 5

Reductions, Recursion and Divide
and Conquer

CS 473: Fundamental Algorithms, Spring 2013
February 2, 2013

5.1 Reductions and Recursion
5.1.0.23 Reduction

Reducing problem A to problem B:

(A) Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant? A: With a blue elephant gun.

Q: How do you hunt a red elephant? A: Hold his trunk shut until he turns blue, and
then shoot him with the blue elephant gun.

Q: How do you shoot a white elephant? A: Embarrass it till it becomes red. Now use
your algorithm for hunting red elephants.

5.1.0.24 UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

for i = 1 to n− 1 do
for j = i+ 1 to n do

if (A[i] = A[j])
return YES

return NO

Running time: O(n2)
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5.1.0.25 Reduction to Sorting

Sort A
for i = 1 to n− 1 do

if (A[i] = A[i+ 1]) then
return YES

return NO

Running time: O(n) plus time to sort an array of n numbers
Important point: algorithm uses sorting as a black box

5.1.0.26 Two sides of Reductions

Suppose problem A reduces to problem B
(A) Positive direction: Algorithm for B implies an algorithm for A
(B) Negative direction: Suppose there is no “efficient” algorithm for A then it implies no

efficient algorithm for B (technical condition for reduction time necessary for this)
Example: Distinct Elements reduces to Sorting in O(n) time
(A) An O(n log n) time algorithm for Sorting implies an O(n log n) time algorithm for Dis-

tinct Elements problem.
(B) If there is no o(n log n) time algorithm for Distinct Elements problem then there is no

o(n log n) time algorithm for Sorting.

5.2 Recursion
5.2.0.27 Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction
(A) reduce problem to a smaller instance of itself
(B) self-reduction
(A) Problem instance of size n is reduced to one or more instances of size n− 1 or less.
(B) For termination, problem instances of small size are solved by some other method as

base cases

5.2.0.28 Recursion

(A) Recursion is a very powerful and fundamental technique
(B) Basis for several other methods

(A) Divide and conquer
(B) Dynamic programming
(C) Enumeration and branch and bound etc
(D) Some classes of greedy algorithms

(C) Makes proof of correctness easy (via induction)
(D) Recurrences arise in analysis
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Algorithms Lecture 1: Recursion

subproblems. Eventually, the recursive reductions must stop with an elementary base case that
is solved by some other method; otherwise, the algorithm will never terminate. This finiteness
condition is usually easy to satisfy, but we should always be wary of ‘obvious’ recursive algorithms
that actually recurse forever.

1.1 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the French mathematician François Éduoard Ana-
tole Lucas in 1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas d’Amiens’).
The following year, the French scientist Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the body
of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top
one. This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it. When the sixty-four discs
shall have been thus transferred from the needle on which at the creation God placed them to
one of the other needles, tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the
hardwired constant sixty-four.4 How can we move a tower of n disks from one needle to another,
using a third needles as an occasional placeholder, never placing any disk on top of a smaller disk?

The Tower of Hanoi puzzle

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the beginning,
because all the other disks are covering it; we have to move those n − 1 disks to the third needle
before we can move the nth disk. And then after we move the nth disk, we have to move those
n− 1 disks back on top of it. So now all we have to figure out is how to. . .

3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
4Recognizing that the underlying mathematical abstraction would be unchanged, we may also freely use ‘cookies’ and

‘dowels’ instead of ‘discs’ and ‘needles’. Ha ha. . . underlying!

2

5.2.0.29 Selection Sort

Sort a given array A[1..n] of integers.

Recursive version of Selection sort.

SelectSort(A[1..n]):
if n = 1 return
Find smallest number in A. Let A[i] be smallest number

Swap A[1] and A[i]
SelectSort(A[2..n])

T (n): time for SelectSort on an n element array.

T (n) = T (n− 1) + n for n > 1 and T (1) = 1 for n = 1

T (n) = Θ(n2).

5.2.0.30 Tower of Hanoi

Move stack of n disks from peg 0 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?

5.2.0.31 Tower of Hanoi via Recursion
5.2.0.32 Recursive Algorithm

Hanoi(n, src, dest, tmp):

if (n > 0) then
Hanoi(n− 1, src, tmp, dest)

Move disk n from src to dest

Hanoi(n− 1, tmp, dest, src)

T (n): time to move n disks via recursive strategy

T (n) = 2T (n− 1) + 1 n > 1 and T (1) = 1
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Algorithms Lecture 1: Recursion

STOP!! That’s it! We’re done! We’ve successfully reduced the n-disk Tower of Hanoi problem to
two instances of the (n − 1)-disk Tower of Hanoi problem, which we can gleefully hand off to the
Recursion Fairy (or, to carry the original story further, to the junior monks at the temple).

recursion

recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Our algorithm does make one subtle but important assumption: there is a largest disk. In other
words, our recursive algorithm works for any n ≥ 1, but it breaks down when n = 0. We must
handle that base case directly. Fortunately, the monks at Benares, being good Buddhists, are quite
adept at moving zero disks from one needle to another.

The base case for the Tower of Hanoi algorithm; there is no bottom disk

While it’s tempting to think about how all those smaller disks get moved—in other words,
what happens when the recursion is unfolded—it’s not necessary. In fact, for more complicated
problems, opening up the recursion is a distraction. Our only task is to reduce the problem to one
or more simpler instances, or to solve the problem directly if such a reduction is impossible. Our
algorithm is trivially correct when n = 0. For any n ≥ 1, the Recursion Fairy correctly moves (or
more formally, the inductive hypothesis implies that our algorithm correctly moves) the top n − 1
disks, so our algorithm is clearly correct.

Here’s the recursive Hanoi algorithm in more typical pseudocode.

HANOI(n, src, dst, tmp):
if n > 0

HANOI(n, src, tmp, dst)
move disk n from src to dst
HANOI(n, tmp, dst, src)

Let T (n) denote the number of moves required to transfer n disks—the running time of our
algorithm. Our vacuous base case implies that T (0) = 0, and the more general recursive algorithm
implies that T (n) = 2T (n − 1) + 1 for any n ≥ 1. The annihilator method lets us quickly derive a
closed form solution T (n) = 2n − 1 . In particular, moving a tower of 64 disks requires 264 − 1 =
18,446,744,073,709,551,615 individual moves. Thus, even at the impressive rate of one move per
second, the monks at Benares will be at work for approximately 585 billion years before, with a
thunderclap, the world will vanish.

The Hanoi algorithm has two very simple non-recursive formulations, for those of us who do
not have an army of assistants to take care of smaller piles. Let’s label the needles 0, 1, and 2,

3

5.2.0.33 Analysis

T (n) = 2T (n− 1) + 1

= 22T (n− 2) + 2 + 1

= . . .

= 2iT (n− i) + 2i−1 + 2i−2 + . . .+ 1

= . . .

= 2n−1T (1) + 2n−2 + . . .+ 1

= 2n−1 + 2n−2 + . . .+ 1

= (2n − 1)/(2− 1) = 2n − 1

5.2.0.34 Non-Recursive Algorithms for Tower of Hanoi

Pegs numbered 0, 1, 2

Non-recursive Algorithm 1:
(A) Always move smallest disk forward if n is even, backward if n is odd.
(B) Never move the same disk twice in a row.
(C) Done when no legal move.

Non-recursive Algorithm 2:
(A) Let ρ(n) be the smallest integer k such that n/2k is not an integer. Example: ρ(40) = 4,

ρ(18) = 2.
(B) In step i move disk ρ(i) forward if n− i is even and backward if n− i is odd.

Moves are exactly same as those of recursive algorithm. Prove by induction.

5.3 Divide and Conquer
5.3.0.35 Divide and Conquer Paradigm

Divide and Conquer is a common and useful type of recursion Approach
(A) Break problem instance into smaller instances - divide step
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(B) Recursively solve problem on smaller instances
(C) Combine solutions to smaller instances to obtain a solution to the original instance -

conquer step
Question: Why is this not plain recursion?
(A) In divide and conquer, each smaller instance is typically at least a constant factor smaller

than the original instance which leads to efficient running times.
(B) There are many examples of this particular type of recursion that it deserves its own

treatment.

5.4 Merge Sort

5.4.1 Merge Sort
5.4.1.1 Sorting

Input Given an array of n elements

Goal Rearrange them in ascending order

5.4.2 Merge Sort [von Neumann]

5.4.2.1 MergeSort

1. Input: Array A[1 . . . n]
A L G O R I T H M S

2. Divide into subarrays A[1 . . .m] and A[m+ 1 . . . n], where m = bn/2c
A L G O R I T H M S

3. Recursively MergeSort A[1 . . .m] and A[m+ 1 . . . n]

A G L O R H I M S T

4. ¡5-¿Merge the sorted arrays

A G H I L M O R S T

5.4.2.2 Merging Sorted Arrays

(A) Use a new array C to store the merged array
(B) Scan A and B from left-to-right, storing elements in C in order

¡1 > A ¡2 > G ¡3− 4 > L O R ¡1− 3 > H ¡4 > I M S T
A G H I L M O R S T

(C) Merge two arrays using only constantly more extra space (in-place merge sort): doable
but complicated and typically impractical.
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n

n/2 n/2

n/4 n/4 n/4 n/4

5.4.3 Analysis
5.4.3.1 Running Time

T (n): time for merge sort to sort an n element array

T (n) = T (bn/2c) + T (dn/2e) + cn

What do we want as a solution to the recurrence?
Almost always only an asymptotically tight bound. That is we want to know f(n) such

that T (n) = Θ(f(n)).
(A) T (n) = O(f(n)) - upper bound
(B) T (n) = Ω(f(n)) - lower bound

5.4.4 Solving Recurrences
5.4.4.1 Solving Recurrences: Some Techniques

(A) Know some basic math: geometric series, logarithms, exponentials, elementary calculus
(B) Expand the recurrence and spot a pattern and use simple math
(C) Recursion tree method — imagine the computation as a tree
(D) Guess and verify — useful for proving upper and lower bounds even if not tight

bounds
Albert Einstein: “Everything should be made as simple as possible, but not simpler.”
Know where to be loose in analysis and where to be tight. Comes with practice, practice,

practice!

5.4.5 Recursion Trees

5.4.5.1 MergeSort: n is a power of 2

(A) Unroll the recurrence. T (n) = 2T (n/2) + cn
(B) Identify a pattern. At the ith level total work is cn.
(C) Sum over all levels. The number of levels is log n. So total is cn log n = O(n log n).
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5.4.6 Recursion Trees

5.4.6.1 An illustrated example...
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5.4.7 MergeSort Analysis

5.4.7.1 When n is not a power of 2

(A) When n is not a power of 2, the running time of MergeSort is expressed as

T (n) = T (bn/2c) + T (dn/2e) + cn

(B) n1 = 2k−1 < n ≤ 2k = n2 (n1, n2 powers of 2).
(C) T (n1) < T (n) ≤ T (n2) (Why?).
(D) T (n) = Θ(n log n) since n/2 ≤ n1 < n ≤ n2 ≤ 2n.

5.4.7.2 Recursion Trees

MergeSort: n is not a power of 2

T (n) = T (bn/2c) + T (dn/2e) + cn

Observation: For any number x, bx/2c+ dx/2e = x.

5.4.8 MergeSort Analysis

5.4.8.1 When n is not a power of 2: Guess and Verify

If n is power of 2 we saw that T (n) = Θ(n log n).
Can guess that T (n) = Θ(n log n) for all n.
Verify? proof by induction!

Induction Hypothesis: T (n) ≤ 2cn log n for all n ≥ 1
Base Case: n = 1. T (1) = 0 since no need to do any work and 2cn log n = 0 for n = 1.
Induction Step Assume T (k) ≤ 2ck log k for all k < n and prove it for k = n.
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5.4.8.2 Induction Step

We have

T (n) = T (bn/2c) + T (dn/2e) + cn

≤ 2cbn/2c logbn/2c+ 2cdn/2e logdn/2e+ cn (by induction)

≤ 2cbn/2c logdn/2e+ 2cdn/2e logdn/2e+ cn

≤ 2c(bn/2c+ dn/2e) logdn/2e+ cn

≤ 2cn logdn/2e+ cn

≤ 2cn log(2n/3) + cn (since dn/2e ≤ 2n/3 for all n ≥ 2)

≤ 2cn log n+ cn(1− 2 log 3/2)

≤ 2cn log n+ cn(log 2− log 9/4)

≤ 2cn log n

5.4.8.3 Guess and Verify

The math worked out like magic!
Why was 2cn log n chosen instead of say 4cn log n?

(A) Do not know upfront what constant to choose.
(B) Instead assume that T (n) ≤ αcn log n for some constant α.

α will be fixed later.
(C) Need to prove that for α large enough the algebra succeeds.
(D) In our case... need α such that α log 3/2 > 1.
(E) Typically, do the algebra with α and then show that it works...

... if α is chosen to be sufficiently large constant.
How do we know which function to guess? We don’t so we try several “reasonable” functions.
With practice and experience we get better at guessing the right function.

5.4.9 Guess and Verify

5.4.9.1 What happens if the guess is wrong?

(A) Guessed that the solution to the MergeSort recurrence is T (n) = O(n).
(B) Try to prove by induction that T (n) ≤ αcn for some const’ α.

Induction Step: attempt

T (n) = T (bn/2c) + T (dn/2e) + cn

≤ αcbn/2c+ αcdn/2e+ cn

≤ αcn+ cn

≤ (α + 1)cn

But need to show that T (n) ≤ αcn!
(C) So guess does not work for any constant α. Suggests that our guess is incorrect.
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5.4.9.2 Selection Sort vs Merge Sort

(A) Selection Sort spends O(n) work to reduce problem from n to n − 1 leading to O(n2)
running time.

(B) Merge Sort spends O(n) time after reducing problem to two instances of size n/2 each.
Running time is O(n log n)

Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can we do better by
splitting into more than 2 arrays? Say k arrays of size n/k each?

5.5 Quick Sort
5.5.0.3 Quick Sort

Quick Sort [Hoare]

1. ¡4¿Pick a pivot element from array

2. ¡2-3¿Split array into 3 subarrays: those smaller than pivot, those larger than pivot,
and the pivot itself. Linear scan of array does it. Time is O(n)

3. Recursively sort the subarrays, and concatenate them.

Example:
(A) array: 16, 12, 14, 20, 5, 3, 18, 19, 1
(B) pivot: 16
(C) split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
(D) put them together with pivot in middle

5.5.0.4 Time Analysis

(A) Let k be the rank of the chosen pivot. Then, T (n) = T (k − 1) + T (n− k) +O(n)
(B) If k = dn/2e then T (n) = T (dn/2e − 1) + T (bn/2c) + O(n) ≤ 2T (n/2) + O(n). Then,

T (n) = O(n log n).
(A) Theoretically, median can be found in linear time.

(C) Typically, pivot is the first or last element of array. Then,

T (n) = max
1≤k≤n

(T (k − 1) + T (n− k) +O(n))

In the worst case T (n) = T (n − 1) + O(n), which means T (n) = O(n2). Happens if
array is already sorted and pivot is always first element.

5.6 Fast Multiplication

5.7 The Problem
5.7.0.5 Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their product.
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Grade School Multiplication Compute “partial product” by multiplying each digit of y with
x and adding the partial products.

3141
×2718
25128
3141

21987
6282
8537238

5.8 Algorithmic Solution

5.8.1 Grade School Multiplication
5.8.1.1 Time Analysis of Grade School Multiplication

(A) Each partial product: Θ(n)
(B) Number of partial products: Θ(n)
(C) Addition of partial products: Θ(n2)
(D) Total time: Θ(n2)

5.8.1.2 A Trick of Gauss

Carl Fridrich Gauss: 1777–1855 “Prince of Mathematicians”
Observation: Multiply two complex numbers: (a+ bi) and (c+ di)

(a+ bi)(c+ di) = ac− bd+ (ad+ bc)i

How many multiplications do we need?
Only 3! If we do extra additions and subtractions.

Compute ac, bd, (a+ b)(c+ d). Then (ad+ bc) = (a+ b)(c+ d)− ac− bd

5.8.2 Divide and Conquer Solution
5.8.2.1 Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

(A) x = xn−1xn−2 . . . x0 and y = yn−1yn−2 . . . y0

(B) x = 10n/2xL + xR where xL = xn−1 . . . xn/2 and xR = xn/2−1 . . . x0

(C) y = 10n/2yL + yR where yL = yn−1 . . . yn/2 and yR = yn/2−1 . . . y0

Therefore

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR
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5.8.2.2 Example

1234× 5678 = (100× 12 + 34)× (100× 56 + 78)

= 10000× 12× 56

+100× (12× 78 + 34× 56)

+34× 78

5.8.2.3 Time Analysis

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts
(adding enough 0’s to the right)

T (n) = 4T (n/2) +O(n) T (1) = O(1)

T (n) = Θ(n2). No better than grade school multiplication!

Can we invoke Gauss’s trick here?

5.8.3 Karatsuba’s Algorithm
5.8.3.1 Improving the Running Time

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR
Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR). Time Analysis Running time

is given by

T (n) = 3T (n/2) +O(n) T (1) = O(1)

which means T (n) = O(nlog2 3) = O(n1.585)

5.8.3.2 State of the Art

Schönhage-Strassen 1971: O(n log n log log n) time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: O(n log n2O(log∗ n)) time

Conjecture There is an O(n log n) time algorithm.
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5.8.3.3 Analyzing the Recurrences

(A) Basic divide and conquer: T (n) = 4T (n/2) +O(n), T (1) = 1. Claim: T (n) = Θ(n2).
(B) Saving a multiplication: T (n) = 3T (n/2)+O(n), T (1) = 1. Claim: T (n) = Θ(n1+log 1.5)

Use recursion tree method:
(A) In both cases, depth of recursion L = log n.
(B) Work at depth i is 4in/2i and 3in/2i respectively: number of children at depth i times

the work at each child
(C) Total work is therefore n

∑L
i=0 2i and n

∑L
i=0(3/2)i respectively.

5.8.3.4 Recursion tree analysis
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Chapter 6

Recurrences, Closest Pair and
Selection

CS 473: Fundamental Algorithms, Spring 2013
February 7, 2013

6.1 Recurrences

6.1.0.5 Solving Recurrences

Two general methods:

(A) Recursion tree method: need to do sums
(A) elementary methods, geometric series
(B) integration

(B) Guess and Verify
(A) guessing involves intuition, experience and trial & error
(B) verification is via induction

6.1.0.6 Recurrence: Example I

(A) Consider T (n) = 2T (n/2) + n/ log n.
(B) Construct recursion tree, and observe pattern. ith level has 2i nodes, and problem size

at each node is n/2i and hence work at each node is n
2i
/ log n

2i
.
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(C) Summing over all levels

T (n) =

logn−1∑

i=0

2i
[

(n/2i)

log(n/2i)

]

=

logn−1∑

i=0

n

log n− i

= n

logn∑

j=1

1

j
= nHlogn = Θ(n log log n)

6.1.0.7 Recurrence: Example II

(A) Consider...

(B) What is the depth of recursion?
√
n,
√√

n,

√√√
n, . . . , O(1).

(C) Number of levels: n2−L = 2 means L = log log n.
(D) Number of children at each level is 1, work at each node is 1
(E) Thus, T (n) =

∑L
i=0 1 = Θ(L) = Θ(log log n).

6.1.0.8 Recurrence: Example III

(A) Consider T (n) =
√
nT (
√
n) + n.

(B) Using recursion trees: number of levels L = log log n
(C) Work at each level? Root is n, next level is

√
n×√n = n, so on. Can check that each

level is n.
(D) Thus, T (n) = Θ(n log log n)

6.1.0.9 Recurrence: Example IV

(A) Consider T (n) = T (n/4) + T (3n/4) + n.
(B) Using recursion tree, we observe the tree has leaves at different levels (a lop-sided tree).
(C) Total work in any level is at most n. Total work in any level without leaves is exactly

n.
(D) Highest leaf is at level log4 n and lowest leaf is at level log4/3 n
(E) Thus, n log4 n ≤ T (n) ≤ n log4/3 n, which means T (n) = Θ(n log n)

6.2 Closest Pair

6.2.1 The Problem
6.2.1.1 Closest Pair - the problem

Input Given a set S of n points on the plane

Goal Find p, q ∈ S such that d(p, q) is minimum
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6.2.1.2 Applications

(A) Basic primitive used in graphics, vision, molecular modelling
(B) Ideas used in solving nearest neighbor, Voronoi diagrams, Euclidean MST

6.2.2 Algorithmic Solution
6.2.2.1 Algorithm: Brute Force

(A) Compute distance between every pair of points and find minimum.
(B) Takes O(n2) time.
(C) Can we do better?

6.2.3 Special Case
6.2.3.1 Closest Pair: 1-d case

Input Given a set S of n points on a line

Goal Find p, q ∈ S such that d(p, q) is minimum

Algorithm

(A) Sort points based on coordinate
(B) Compute the distance between successive points, keeping track of the closest pair.

Running time O(n log n) Can we do this in better running time? Can reduce Distinct
Elements Problem (see lecture 1) to this problem in O(n) time. Do you see how?

6.2.3.2 Generalizing 1-d case

Can we generalize 1-d algorithm to 2-d?

Sort according to x or y-coordinate??

No easy generalization.
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6.2.4 Divide and Conquer
6.2.4.1 First Attempt

Divide and Conquer I
(A) ¡2-¿Partition into 4 quadrants of roughly equal size.Not always!
(B) Find closest pair in each quadrant recursively
(C) Combine solutions

6.2.4.2 New Algorithm

Divide and Conquer II
(A) Divide the set of points into two equal parts via vertical line
(B) Find closest pair in each half recursively
(C) Find closest pair with one point in each half
(D) Return the best pair among the above 3 solutions

6.2.5 Towards a fast solution
6.2.5.1 New Algorithm

Divide and Conquer II
(A) ¡2-3¿Divide the set of points into two equal parts via vertical line
(B) Find closest pair in each half recursively
(C) ¡4-¿Find closest pair with one point in each half
(D) Return the best pair among the above 3 solutions
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δ

(A) Sort points based on x-coordinate and pick the median. Time = O(n log n)
(B) How to find closest pair with points in different halves? O(n2) is trivial. Better?

6.2.5.2 Combining Partial Solutions

(A) Does it take O(n2) to combine solutions?
(B) Let δ be the distance between closest pairs, where both points belong to the same half.

6.2.5.3 Combining Partial Solutions

(A) Let δ be the distance between closest pairs, where both points belong to the same half.
(B) Need to consider points within δ of dividing line

δ

δ δ
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6.2.5.4 Sparsity of Band XXX

δ

Divide the band into square boxes of size δ/2

Lemma 6.2.1. Each box has at most one point

Proof : If not, then there are a pair of points (both belonging
to one half) that are at most

√
2δ/2 < δ apart!

6.2.5.5 Searching within the Band

δ

Lemma 6.2.2. Suppose a, b are both in the band d(a, b) < δ
then a, b have at most two rows of boxes between them.

Proof : Each row of boxes has height δ/2. If more than two
rows then d(a, b) > 2 · δ/2!

6.2.5.6 Searching within the Band

δ

Corollary 6.2.3. Order points according to their y-coordinate. If p, q are
such that d(p, q) < δ then p and q are within 11 positions in the sorted
list.

Proof :
(A) ≤ 2 points between them if p and q in same row.
(B) ≤ 6 points between them if p and q in two consecutive rows.
(C) ≤ 10 points between if p and q one row apart.
(D) =⇒ More than ten points between them in the sorted y order than

p and q are more than two rows apart.
(E) =⇒ d(p, q) > δ. A contradiction.
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6.2.5.7 The Algorithm

ClosestPair(P):
1. <2-3>Find vertical line L splits P into equal halves: P1 and P2

2. δ1 ← ClosestPair(P1).
3. δ2 ← ClosestPair(P2).
4. δ = min(δ1, δ2)
5. <4-5>Delete points from P further than δ from L
6. <6-7>Sort P based on y-coordinate into an array A
7. <8-9>for i = 1 to |A| − 1 do

<8-9>for j = i+ 1 to min{i+ 11, |A|} do
<8-9>if (dist(A[i], A[j]) < δ) update δ and closest pair

(A) Step 1, involves sorting and scanning. Takes O(n log n) time.
(B) Step 5 takes O(n) time.
(C) Step 6 takes O(n log n) time
(D) Step 7 takes O(n) time.

6.2.6 Running Time Analysis
6.2.6.1 Running Time

The running time of the algorithm is given by

T (n) ≤ 2T (n/2) +O(n log n)

Thus, T (n) = O(n log2 n). Improved Algorithm Avoid repeated sorting of points in band:
two options
(A) Sort all points by y-coordinate and store the list. In conquer step use this to avoid

sorting
(B) Each recursive call returns a list of points sorted by their y-coordinates. Merge in

conquer step in linear time.
Analysis: T (n) ≤ 2T (n/2) +O(n) = O(n log n)

6.3 Selecting in Unsorted Lists

6.3.1 Quick Sort
6.3.1.1 Quick Sort

Quick Sort [Hoare]
(A) ¡4¿Pick a pivot element from array
(B) ¡2-3¿Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and

the pivot itself. Linear scan of array does it. Time is O(n)
(C) Recursively sort the subarrays, and concatenate them.
Example:
(A) array: 16, 12, 14, 20, 5, 3, 18, 19, 1
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(B) pivot: 16
(C) split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
(D) put them together with pivot in middle

6.3.1.2 Time Analysis

(A) Let k be the rank of the chosen pivot. Then, T (n) = T (k − 1) + T (n− k) +O(n)
(B) If k = dn/2e then T (n) = T (dn/2e − 1) + T (bn/2c) + O(n) ≤ 2T (n/2) + O(n). Then,

T (n) = O(n log n).
(A) Theoretically, median can be found in linear time.

(C) Typically, pivot is the first or last element of array. Then,

T (n) = max
1≤k≤n

(T (k − 1) + T (n− k) +O(n))

In the worst case T (n) = T (n − 1) + O(n), which means T (n) = O(n2). Happens if
array is already sorted and pivot is always first element.

6.3.2 Selection
6.3.2.1 Problem - Selection

Input Unsorted array A of n integers

Goal Find the jth smallest number in A (rank j number)

Example 6.3.1. A = {4, 6, 2, 1, 5, 8, 7} and j = 4. The jth smallest element is 5.

Median: j = b(n+ 1)/2c

6.3.3 Näıve Algorithm
6.3.3.1 Algorithm I

(A) Sort the elements in A
(B) Pick jth element in sorted order

Time taken = O(n log n)

Do we need to sort? Is there an O(n) time algorithm?

6.3.3.2 Algorithm II

If j is small or n− j is small then

(A) Find j smallest/largest elements in A in O(jn) time. (How?)
(B) Time to find median is O(n2).
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6.3.4 Divide and Conquer
6.3.4.1 Divide and Conquer Approach

(A) Pick a pivot element a from A
(B) Partition A based on a.

Aless = {x ∈ A | x ≤ a} and Agreater = {x ∈ A | x > a}
(C) |Aless| = j: return a
(D) |Aless| > j: recursively find jth smallest element in Aless

(E) |Aless| < j: recursively find kth smallest element in Agreater where k = j − |Aless|.

6.3.4.2 Time Analysis

(A) Partitioning step: O(n) time to scan A
(B) How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].
Say A is sorted in increasing order and j = n.

Exercise: show that algorithm takes Ω(n2) time

6.3.4.3 A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤
|Agreater| ≤ 3n/4. If we apply recursion,

T (n) ≤ T (3n/4) +O(n)

Implies T (n) = O(n)!
How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.
Can we choose pivot deterministically?

6.3.5 Median of Medians

6.3.6 Divide and Conquer Approach

6.3.6.1 A game of medians

Idea

(A) Break input A into many subarrays: L1, . . . Lk.
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(B) Find median mi in each subarray Li.
(C) Find the median x of the medians m1, . . . ,mk.
(D) Intuition: The median x should be close to being a good median of all the numbers in

A.
(E) Use x as pivot in previous algorithm.

But we have to be...

More specific...

(A) Size of each group?
(B) How to find median of medians?

6.3.7 Choosing the pivot

6.3.7.1 A clash of medians

(A) Partition array A into dn/5e lists of 5 items each.
L1 = {A[1], A[2], . . . , A[5]}, L2 = {A[6], . . . , A[10]}, . . ., Li = {A[5i+ 1], . . . , A[5i− 4]},
. . ., Ldn/5e = {A[5dn/5e − 4, . . . , A[n]}.

(B) For each i find median bi of Li using brute-force in O(1) time. Total O(n) time
(C) Let B = {b1, b2, . . . , bdn/5e}
(D) Find median b of B

Lemma 6.3.2. Median of B is an approximate median of A. That is, if b is used a pivot
to partition A, then |Aless| ≤ 7n/10 + 6 and |Agreater| ≤ 7n/10 + 6.

6.3.8 Algorithm for Selection

6.3.8.1 A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . , A[5i]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j − |Aless|)

How do we find median of B? Recursively!
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6.3.9 Running time of deterministic median selection

6.3.9.1 A dance with recurrences

T (n) = T (dn/5e) + max{T (|Aless|), T (|Agreater)|}+O(n)

From Lemma,

T (n) ≤ T (dn/5e) + T (b7n/10 + 6c) +O(n)

and

T (1) = 1

Exercise: show that T (n) = O(n)

Lemma 6.3.3. For T (n) ≤ T (dn/5e) + T (b7n/10 + 6c) +O(n), it holds that T (n) = O(n).

Proof : We claim that T (n) ≤ cn, for some constant c. We have that T (i) ≤ c for all
i = 1, . . . , 1000, by picking c to be sufficiently large. This implies the base of the induction.
Similarly, we can assume that the O(n) in the above recurrence is smaller than cn/100, by
picking c to be sufficiently large.

So, assume the claim holds for any i < n, and we will prove it for n. By induction, we
have

T (n) ≤ T (dn/5e) + T (b7n/10 + 6c) +O(n)

≤ c(n/5 + 1) + c(7n/10 + 6) + cn/100

= cn(1/5 + 7/10 + 1/100 + 1/n+ 6/n) ≤ cn,

for n > 1000.

6.3.9.2 Median of Medians: Proof of Lemma

Figure 6.1: Shaded elements are all
greater than b

Proposition 6.3.4. There are at least 3n/10− 6
elements greater than the median of medians b.

Proof : At least half of the dn/5e groups have at
least 3 elements larger than b, except for last group
and the group containing b. So b is less than

3(d(1/2)dn/5ee − 2) ≥ 3n/10− 6
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6.3.9.3 Median of Medians: Proof of Lemma

Proposition 6.3.5. There are at least 3n/10 − 6 elements greater than the median of me-
dians b.

Corollary 6.3.6. |Aless| ≤ 7n/10 + 6.

Via symmetric argument,

Corollary 6.3.7. |Agreater| ≤ 7n/10 + 6.

6.3.9.4 Questions to ponder

(A) Why did we choose lists of size 5? Will lists of size 3 work?
(B) Write a recurrence to analyze the algorithm’s running time if we choose a list of size k.

6.3.9.5 Median of Medians Algorithm

Due to:M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!

6.3.9.6 Takeaway Points

(A) Recursion tree method and guess and verify are the most reliable methods to analyze
recursions in algorithms.

(B) Recursive algorithms naturally lead to recurrences.
(C) Some times one can look for certain type of recursive algorithms (reverse engineering)

by understanding recurrences and their behavior.
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Chapter 7

Binary Search, Introduction to
Dynamic Programming

CS 473: Fundamental Algorithms, Spring 2013
February 9, 2013

7.1 Exponentiation, Binary Search

7.2 Exponentiation
7.2.0.7 Exponentiation

Input Two numbers: a and integer n ≥ 0

Goal Compute an

Obvious algorithm:

SlowPow(a,n):

x = 1;

for i = 1 to n do

x = x*a

Output x

O(n) multiplications.

7.2.0.8 Fast Exponentiation

Observation: an = abn/2cadn/2e = abn/2cabn/2cadn/2e−bn/2c.

FastPow(a,n):
if (n = 0) return 1
x =FastPow(a,bn/2c)
x = x ∗ x
if (n is odd) then

x = x ∗ a
return x
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T (n): number of multiplications for n

T (n) ≤ T (bn/2c) + 2

T (n) =Θ(log n)

7.2.0.9 Complexity of Exponentiation

Question: Is SlowPow() a polynomial time algorithm? FastPow?

Input size: O(log a+ log n)
Output size: O(n log a).

Not necessarily polynomial in input size!

Both SlowPow and FastPow are polynomial in output size.

7.2.0.10 Exponentiation modulo a given number

Exponentiation in applications:

Input Three integers: a, n ≥ 0, p ≥ 2 (typically a prime)

Goal Compute an mod p

Input size: Θ(log a+ log n+ log p)
Output size: O(log p) and hence polynomial in input size.

Observation: xy mod p = ((x mod p)(y mod p)) mod p

7.2.0.11 Exponentiation modulo a given number

Input Three integers: a, n ≥ 0, p ≥ 2 (typically a prime)

Goal Compute an mod p

FastPowMod(a,n,p):
if (n = 0) return 1
x =FastPowMod(a,bn/2c,p)
x = x ∗ x mod p
if (n is odd)

x = x ∗ a mod p
return x

FastPowMod is a polynomial time algorithm. SlowPowMod is not (why?).
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7.3 Binary Search
7.3.0.12 Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?

BinarySearch(A[a..b], x):
if (b− a < 0) return NO

mid = A[b(a+ b)/2c]
if (x = mid) return YES

if (x < mid)
return BinarySearch(A[a..b(a+ b)/2c − 1], x)

else
return BinarySearch(A[b(a+ b)/2c+ 1..b],x)

Analysis: T (n) = T (bn/2c) +O(1). T (n) = O(log n).
Observation: After k steps, size of array left is n/2k

7.3.0.13 Another common use of binary search

(A) Optimization version: find solution of best (say minimum) value
(B) Decision version: is there a solution of value at most a given value v?
Reduce optimization to decision (may be easier to think about):
(A) Given instance I compute upper bound U(I) on best value
(B) Compute lower bound L(I) on best value
(C) Do binary search on interval [L(I), U(I)] using decision version as black box
(D) O(log(U(I)− L(I))) calls to decision version if U(I), L(I) are integers

7.3.0.14 Example

(A) Problem: shortest paths in a graph.
(B) Decision version: given G with non-negative integer edge lengths, nodes s, t and

bound B, is there an s-t path in G of length at most B?
(C) Optimization version: find the length of a shortest path between s and t in G.
Question: given a black box algorithm for the decision version, can we obtain an algorithm
for the optimization version?

7.3.0.15 Example continued

Question: given a black box algorithm for the decision version, can we obtain an algorithm
for the optimization version?
(A) Let U be maximum edge length in G.
(B) Minimum edge length is L.
(C) s-t shortest path length is at most (n− 1)U and at least L.
(D) Apply binary search on the interval [L, (n − 1)U ] via the algorithm for the decision

problem.
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(E) O(log((n− 1)U − L)) calls to the decision problem algorithm sufficient. Polynomial in
input size.

7.4 Introduction to Dynamic Programming
7.4.0.16 Recursion

Reduction: Reduce one problem to another

Recursion

A special case of reduction

(A) reduce problem to a smaller instance of itself
(B) self-reduction

(A) Problem instance of size n is reduced to one or more instances of size n− 1 or less.
(B) For termination, problem instances of small size are solved by some other method as

base cases.

7.4.0.17 Recursion in Algorithm Design

(A) Tail Recursion : problem reduced to a single recursive call after some work. Easy to
convert algorithm into iterative or greedy algorithms. Examples: Interval scheduling,
MST algorithms, etc.

(B) Divide and Conquer : Problem reduced to multiple independent sub-problems that
are solved separately. Conquer step puts together solution for bigger problem.

Examples: Closest pair, deterministic median selection, quick sort.
(C) Dynamic Programming : problem reduced to multiple (typically) dependent or over-

lapping sub-problems. Use memoization to avoid recomputation of common solutions
leading to iterative bottom-up algorithm.

7.5 Fibonacci Numbers
7.5.0.18 Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n− 1) + F (n− 2) and F (0) = 0, F (1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

(A) F (n) = (φn − (1− φ)n)/
√

5 where φ is the golden ratio (1 +
√

5)/2 ' 1.618.
(B) limn→∞F (n+ 1)/F (n) = φ
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7.5.0.19 Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n− 1) + Fib(n− 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n− 1) + T (n− 2) + 1 and T (0) = T (1) = 0

Roughly same as F (n)

T (n) = Θ(φn)

The number of additions is exponential in n. Can we do better?

7.5.0.20 An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i]⇐ F [i− 1] + F [i− 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

7.5.0.21 What is the difference?

(A) Recursive algorithm is computing the same numbers again and again.
(B) Iterative algorithm is storing computed values and building bottom up the final value.

Memoization.

Dynamic Programming: Fnding a recursion that can be effectively/efficiently memo-
ized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input
size.
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7.5.0.22 Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an
iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n− 1) + Fib(n− 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

7.5.0.23 Automatic explicit memoization

Initialize table/array M of size n such that M [i] = −1 for i = 0, . . . , n.

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M [n] 6= −1) (* M [n] has stored value of Fib(n) *)

return M [n]
M [n]⇐ Fib(n− 1) + Fib(n− 2)
return M [n]

Need to know upfront the number of subproblems to allocate memory

7.5.0.24 Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val⇐ Fib(n− 1) + Fib(n− 2)
Store (n, val) in D
return val
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7.5.0.25 Explicit vs Implicit Memoization

(A) Explicit memoization or iterative algorithm preferred if one can analyze problem ahead
of time. Allows for efficient memory allocation and access.

(B) Implicit and automatic memoization used when problem structure or algorithm is either
not well understood or in fact unknown to the underlying system.
(A) Need to pay overhead of data-structure.
(B) Functional languages such as LISP automatically do memoization, usually via hash-

ing based dictionaries.

7.5.0.26 Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take O(n) time?

(A) input is n and hence input size is Θ(log n)
(B) output is F (n) and output size is Θ(n). Why?
(C) Hence output size is exponential in input size so no polynomial time algorithm possible!
(D) Running time of iterative algorithm: Θ(n) additions but number sizes are O(n) bits

long! Hence total time is O(n2), in fact Θ(n2). Why?
(E) Running time of recursive algorithm is O(nφn) but can in fact shown to be O(φn) by

being careful. Doubly exponential in input size and exponential even in output size.

7.6 Brute Force Search, Recursion and Backtracking
7.6.0.27 Maximum Independent Set in a Graph

Definition 7.6.1. Given undirected graph G = (V,E) a subset of nodes S ⊆ V is an inde-
pendent set (also called a stable set) if for there are no edges between nodes in S. That is,
if u, v ∈ S then (u, v) 6∈ E.

A

B

C

DE

F

Some independent sets in graph above:

7.6.0.28 Maximum Independent Set Problem

Input Graph G = (V,E)

Goal Find maximum sized independent set in G
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A

B

C

DE

F

7.6.0.29 Maximum Weight Independent Set Problem

Input Graph G = (V,E), weights w(v) ≥ 0 for v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

7.6.0.30 Maximum Weight Independent Set Problem

(A) No one knows an efficient (polynomial time) algorithm for this problem
(B) Problem is NP-Complete and it is believed that there is no polynomial time algorithm

Brute-force algorithm: Try all subsets of vertices.

7.6.0.31 Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet(G = (V,E)):
max = 0
for each subset S ⊆ V do

check if S is an independent set

if S is an independent set and w(S) > max then
max = w(S)

Output max

Running time: suppose G has n vertices and m edges
(A) 2n subsets of V
(B) checking each subset S takes O(m) time
(C) total time is O(m2n)

7.6.0.32 A Recursive Algorithm

Let V = {v1, v2, . . . , vn}.
For a vertex u let N(u) be its neighbors.
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Observation 7.6.2. vn: Vertex in the graph.
One of the following two cases is true

Case 1 vn is in some maximum independent set.

Case 2 vn is in no maximum independent set.

RecursiveMIS(G):
if G is empty then Output 0
a = RecursiveMIS(G− vn)
b = w(vn) + RecursiveMIS(G− vn −N(vn))
Output max(a, b)

7.6.1 Recursive Algorithms

7.6.1.1 ..for Maximum Independent Set

Running time:

T (n) = T (n− 1) + T
(
n− 1− deg(vn)

)
+O(1 + deg(vn))

where deg(vn) is the degree of vn. T (0) = T (1) = 1 is base case.
Worst case is when deg(vn) = 0 when the recurrence becomes

T (n) = 2T (n− 1) +O(1)

Solution to this is T (n) = O(2n).

7.6.1.2 Backtrack Search via Recursion

(A) Recursive algorithm generates a tree of computation where each node is a smaller prob-
lem (subproblem)

(B) Simple recursive algorithm computes/explores the whole tree blindly in some order.
(C) Backtrack search is a way to explore the tree intelligently to prune the search space

(A) Some subproblems may be so simple that we can stop the recursive algorithm and
solve it directly by some other method

(B) Memoization to avoid recomputing same problem
(C) Stop the recursion at a subproblem if it is clear that there is no need to explore

further.
(D) Leads to a number of heuristics that are widely used in practice although the worst

case running time may still be exponential.

7.6.1.3 Example
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Chapter 8

Dynamic Programming

CS 473: Fundamental Algorithms, Spring 2013
February 14, 2013

8.1 Longest Increasing Subsequence

8.1.1 Longest Increasing Subsequence
8.1.1.1 Sequences

Definition 8.1.1. Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is num-
ber of elements in the list.

Definition 8.1.2. ai1 , . . . , aik is a subsequence of a1, . . . , an if 1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition 8.1.3. A sequence is increasing if a1 < a2 < . . . < an. It is non-decreasing
if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and non-increasing.

8.1.2 Sequences

8.1.2.1 Example...

Example 8.1.4. (A) Sequence: 6, 3, 5, 2, 7, 8, 1, 9
(B) Subsequence of above sequence: 5, 2, 1
(C) Increasing sequence: 3, 5, 9, 17, 54
(D) Decreasing sequence: 34, 21, 7, 5, 1
(E) Increasing subsequence of the first sequence: 2, 7, 9.

8.1.2.2 Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1 , ai2 , . . . , aik of maximum length
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Example 8.1.5. (A) Sequence: 6, 3, 5, 2, 7, 8, 1
(B) Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
(C) Longest increasing subsequence: 3, 5, 7, 8

8.1.2.3 Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A

algLISNaive(A[1..n]):
max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if a given sequence is
increasing.

8.1.3 Recursive Approach: Take 1

8.1.3.1 LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

(A) Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n− 1)])
(B) Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation 8.1.6. if A[n] is in the longest increasing subsequence then all the elements
before it must be smaller.

8.1.3.2 Recursive Approach: Take 1

algLIS(A[1..n]):
if (n = 0) then return 0
m = algLIS(A[1..(n− 1)])
B is subsequence of A[1..(n− 1)] with

only elements less than A[n]
(* let h be size of B, h ≤ n− 1 *)

m = max(m, 1 + algLIS(B[1..h]))
Output m

Recursion for running time: T (n) ≤ 2T (n− 1) +O(n).

Easy to see that T (n) is O(n2n).
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8.1.3.3 Recursive Approach: Take 2

LIS(A[1..n]):
(A) Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n− 1)])
(B) Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation 8.1.7. For second case we want to find a subsequence in A[1..(n−1)] that is re-
stricted to numbers less than A[n]. This suggests that a more general problem is LIS smaller(A[1..n], x)
which gives the longest increasing subsequence in A where each number in the sequence is
less than x.

8.1.3.4 Recursive Approach: Take 2

LIS smaller(A[1..n], x) : length of longest increasing subsequence in A[1..n] with all num-
bers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n− 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n− 1)], A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

Recursion for running time: T (n) ≤ 2T (n− 1) +O(1).
Question: Is there any advantage?

8.1.3.5 Recursive Algorithm: Take 2

Observation 8.1.8. The number of different subproblems generated by LIS smaller(A[1..n], x)
is O(n2).

Memoization the recursive algorithm leads to an O(n2) running time!
Question: What are the recursive subproblem generated by LIS smaller(A[1..n], x)?

(A) For 0 ≤ i < n LIS smaller(A[1..i], y) where y is either x or one of A[i+ 1], . . . , A[n].

Observation 8.1.9. previous recursion also generates only O(n2) subproblems. Slightly
harder to see.

8.1.3.6 Recursive Algorithm: Take 3

Definition 8.1.10. LISEnding(A[1..n]): length of longest increasing sub-sequence that ends
in A[n].

Question: can we obtain a recursive expression?

LISEnding(A[1..n]) = max
i:A[i]<A[n]

(
1 + LISEnding(A[1..i])

)
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8.1.3.7 Recursive Algorithm: Take 3

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n− 1 do

if (A[i] < A[n]) then

m = max
(
m, 1 + LIS ending alg(A[1..i])

)

return m

LIS(A[1..n]):
return maxni=1LIS ending alg(A[1 . . . i])

Question: How many distinct subproblems generated by LIS ending alg(A[1..n])? n.

8.1.3.8 Iterative Algorithm via Memoization

Compute the values LIS ending alg(A[1..i]) iteratively in a bottom up fashion.

LIS ending alg(A[1..n]):
Array L[1..n] (* L[i] = value of LIS ending alg(A[1..i]) *)

for i = 1 to n do
L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do
L[i] = max(L[i], 1 + L[j])

return L

LIS(A[1..n]):
L = LIS ending alg(A[1..n])
return the maximum value in L

8.1.3.9 Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m,L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2), Space: Θ(n)

8.1.3.10 Example

Example 8.1.11. (A) Sequence: 6, 3, 5, 2, 7, 8, 1
(B) Longest increasing subsequence: 3, 5, 7, 8
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(A) L[i] is value of longest increasing subsequence ending in A[i]
(B) Recursive algorithm computes L[i] from L[1] to L[i− 1]
(C) Iterative algorithm builds up the values from L[1] to L[n]

8.1.3.11 Memoizing LIS smaller

LIS(A[1..n]):
A[n+ 1] =∞ (* add a sentinel at the end *)

Array L[(n+ 1), (n+ 1)] (* two-dimensional array*)

(* L[i, j] for j ≥ i stores the value LIS smaller(A[1..i],A[j]) *)

for j = 1 to n+ 1 do
L[0, j] = 0

for i = 1 to n+ 1 do
for j = i to n+ 1 do

L[i, j] = L[i− 1, j]
if (A[i] < A[j]) then

L[i, j] = max(L[i, j], 1 + L[i− 1, i])

return L[n, (n+ 1)]

Correctness: Via induction following the recursion (take 2)
Running time: O(n2), Space: Θ(n2)

8.1.4 Longest increasing subsequence

8.1.4.1 Another way to get quadratic time algorithm

(A) G =({s, 1, . . . , n} , {}): directed graph.
(A) ∀i, j: If i < j and A[i] < A[j] then

add the edge i→ j to G.
(B) ∀i: Add s→ i.

(B) The graph G is a DAG. LIS corresponds to longest path in G starting at s.
(C) We know how to compute this in O(|V (G)|+ |E(G)|) = O(n2).

Comment: One can compute LIS in O(n log n) time with a bit more work.

8.1.4.2 Dynamic Programming

(A) Find a “smart” recursion for the problem in which the number of distinct subproblems
is small; polynomial in the original problem size.

(B) Estimate the number of subproblems, the time to evaluate each subproblem and the
space needed to store the value. This gives an upper bound on the total running time
if we use automatic memoization.

(C) Eliminate recursion and find an iterative algorithm to compute the problems bottom
up by storing the intermediate values in an appropriate data structure; need to find the
right way or order the subproblem evaluation. This leads to an explicit algorithm.

(D) Optimize the resulting algorithm further
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8.2 Weighted Interval Scheduling

8.2.1 Weighted Interval Scheduling

8.2.2 The Problem
8.2.2.1 Weighted Interval Scheduling

Input A set of jobs with start times, finish times and weights (or profits).

Goal Schedule jobs so that total weight of jobs is maximized.

(A) Two jobs with overlapping intervals cannot both be scheduled!

2 1 2 3
1 4 10

10 1 1

2 1 2 3
1 4 10

10 1 1

8.2.3 Greedy Solution

8.2.4 Interval Scheduling

8.2.4.1 Greedy Solution

Input A set of jobs with start and finish times to be scheduled on a resource; special case
where all jobs have weight 1.

Goal Schedule as many jobs as possible.

(A) Greedy strategy of considering jobs according to finish times produces optimal
schedule (to be seen later).

8.2.4.2 Greedy Strategies

(A) Earliest finish time first
(B) Largest weight/profit first
(C) Largest weight to length ratio first
(D) Shortest length first
(E) . . .

None of the above strategies lead to an optimum solution.
Moral: Greedy strategies often don’t work!
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Example 8.2.2.

1

2

3

4

5

6

v1 = 2

v2 = 4

v3 = 4

v4 = 7

v5 = 2

v6 = 1

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 0

p(5) = 3

p(6) = 3

8.2.5 Reduction to...

8.2.5.1 Max Weight Independent Set Problem

(A) Given weighted interval scheduling instance I create an instance of max weight inde-
pendent set on a graph G(I) as follows.
(A) For each interval i create a vertex vi with weight wi.
(B) Add an edge between vi and vj if i and j overlap.

(B) Claim: max weight independent set in G(I) has weight equal to max weight set of
intervals in I that do not overlap

8.2.6 Reduction to...

8.2.6.1 Max Weight Independent Set Problem

(A) There is a reduction from Weighted Interval Scheduling to Independent Set.
(B) Can use structure of original problem for efficient algorithm?
(C) Independent Set in general is NP-Complete.

We do not know an efficient (polynomial time) algorithm for independent set! Can we
take advantage of the interval structure to find an efficient algorithm?

8.2.7 Recursive Solution
8.2.7.1 Conventions

Definition 8.2.1. (A) Let the requests be sorted according to finish time, i.e., i < j implies
fi ≤ fj

(B) Define p(j) to be the largest i (less than j) such that job i and job j are not in conflict

8.2.7.2 Towards a Recursive Solution

Observation 8.2.3. Consider an optimal schedule O
[¡+-¿]

Case n ∈ O : None of the jobs between n and p(n) can be scheduled. Moreover O must
contain an optimal schedule for the first p(n) jobs.

Case n 6∈ O : O is an optimal schedule for the first n− 1 jobs.
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Figure 8.1: Bad instance for recursive algorithm

8.2.7.3 A Recursive Algorithm

Let Oi be value of an optimal schedule for the first i jobs.

Schedule(n):
if n = 0 then return 0
if n = 1 then return w(v1)
Op(n) ←Schedule(p(n))
On−1 ←Schedule(n− 1)
if (Op(n) + w(vn) < On−1) then

On = On−1
else

On = Op(n) + w(vn)
return On

Time Analysis Running time is T (n) = T (p(n)) + T (n− 1) +O(1) which is . . .

8.2.7.4 Bad Example

Running time on this instance is

T (n) = T (n− 1) + T (n− 2) +O(1) = Θ(φn)

where φ ≈ 1.618 is the golden ratio.
(Because... T (n) is the n Fibonacci number.)

8.2.7.5 Analysis of the Problem

8.2.8 Dynamic Programming
8.2.8.1 Memo(r)ization

Observation 8.2.4. (A) Number of different sub-problems in recursive algorithm is O(n);
they are O1, O2, . . . , On−1

(B) Exponential time is due to recomputation of solutions to sub-problems

Solution Store optimal solution to different sub-problems, and perform recursive call only
if not already computed.
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Figure 8.2: Label of node indicates size of sub-problem. Tree of sub-problems grows very
quickly

8.2.8.2 Recursive Solution with Memoization

schdIMem(j)
if j = 0 then return 0
if M [j] is defined then (* sub-problem already solved *)

return M [j]
if M [j] is not defined then

M [j] = max
(
w(vj) + schdIMem(p(j)), schdIMem(j − 1)

)

return M [j]

Time Analysis

¡+-¿ Each invocation, O(1) time plus: either return a computed value, or generate 2 recursive
calls and fill one M [·]

¡+-¿ Initially no entry of M [] is filled; at the end all entries of M [] are filled

¡+-¿ So total time is O(n) (Assuming input is presorted...)

8.2.8.3 Automatic Memoization

Fact Many functional languages (like LISP) automatically do memoization for recursive
function calls!

8.2.8.4 Back to Weighted Interval Scheduling

Iterative Solution

M [0] = 0
for i = 1 to n do

M [i] = max
(
w(vi) +M [p(i)],M [i− 1]

)

M : table of subproblems

(A) Implicitly dynamic programming fills the values of M .
(B) Recursion determines order in which table is filled up.
(C) Think of decomposing problem first (recursion) and then worry about setting up table

— this comes naturally from recursion.
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8.2.8.5 Example

30

70

80

20 10

1

2

3

4

5

p(5) = 2, p(4) = 1, p(3) = 1, p(2) = 0, p(1) = 0

8.2.9 Computing Solutions
8.2.9.1 Computing Solutions + First Attempt

(A) Memoization + Recursion/Iteration allows one to compute the optimal value. What
about the actual schedule?

M [0] = 0
S[0] is empty schedule

for i = 1 to n do

M [i] = max
(
w(vi) +M [p(i)], M [i− 1]

)

if w(vi) +M [p(i)] < M [i− 1] then
S[i] = S[i− 1]

else
S[i] = S[p(i)] ∪ {i}

(B) Näıvely updating S[] takes O(n) time
(C) Total running time is O(n2)
(D) Using pointers and linked lists running time can be improved to O(n).

8.2.9.2 Computing Implicit Solutions

Observation 8.2.5. Solution can be obtained from M [] in O(n) time, without any additional
information
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findSolution( j )

if (j = 0) then return empty schedule

if (vj +M [p(j)] > M [j − 1]) then
return findSolution(p(j)) ∪{j}

else
return findSolution(j − 1)

Makes O(n) recursive calls, so findSolution runs in O(n) time.

8.2.9.3 Computing Implicit Solutions

A generic strategy for computing solutions in dynamic programming:
(A) Keep track of the decision in computing the optimum value of a sub-problem. decision

space depends on recursion
(B) Once the optimum values are computed, go back and use the decision values to compute

an optimum solution.
Question: What is the decision in computing M [i]?

A: Whether to include i or not.

8.2.9.4 Computing Implicit Solutions

M [0] = 0
for i = 1 to n do

M [i] = max(vi +M [p(i)],M [i− 1])
if (vi +M [p(i)] > M [i− 1])then

Decision[i] = 1 (* 1: i included in solution M [i] *)

else
Decision[i] = 0 (* 0: i not included in solution M [i] *)

S = ∅, i = n
while (i > 0) do

if (Decision[i] = 1) then
S = S ∪ {i}
i = p(i)

else
i = i− 1

return S
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Chapter 9

More Dynamic Programming

CS 473: Fundamental Algorithms, Spring 2013
February 16, 2013

9.1 Maximum Weighted Independent Set in Trees
9.1.0.5 Maximum Weight Independent Set Problem

Input Graph G = (V,E) and weights w(v) ≥ 0 for each v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}
9.1.0.6 Maximum Weight Independent Set in a Tree

Input Tree T = (V,E) and weights w(v) ≥ 0 for each v ∈ V

Goal Find maximum weight independent set in T

Maximum weight independent set in above tree: ??

9.1.0.7 Towards a Recursive Solution

For an arbitrary graph G:
(A) Number vertices as v1, v2, . . . , vn
(B) Find recursively optimum solutions without vn (recurse on G−vn) and with vn (recurse

on G− vn −N(vn) & include vn).

125



r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

(C) Saw that if graph G is arbitrary there was no good ordering that resulted in a small
number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

9.1.0.8 Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each subtree of T hanging at a
child of r.

Case r ∈ O : None of the children of r can be in O. O−{r} contains an optimum solution
for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of T hanging at nodes in T .

9.1.0.9 A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) = max

{∑
v child of uOPT (v),

w(u) +
∑

v grandchild of uOPT (v)

9.1.0.10 Iterative Algorithm

(A) Compute OPT (u) bottom up. To evaluate OPT (u) need to have computed values of
all children and grandchildren of u

(B) What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a
tree.
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9.1.0.11 Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M [vi] = max

( ∑
vj child of vi

M [vj ],

w(vi) +
∑

vj grandchild of vi
M [vj ]

)

return M [vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

(A) Naive bound: O(n2) since each M [vi] evaluation may take O(n) time and there are n
evaluations.

(B) Better bound: O(n). A value M [vj] is accessed only by its parent and grand parent.

9.1.0.12 Example
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9.1.0.13 Dominating set

Definition 9.1.1. G = (V,E). The set X ⊆ V is a dominating set, if any vertex v ∈ V is
either in X or is adjacent to a vertex in X.
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Problem 9.1.2. Given weights
on vertices, compute the mini-
mum weight dominating set in
G.

Dominating Set is NP-Hard!
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9.2 DAGs and Dynamic Programming
9.2.0.14 Recursion and DAGs

Observation 9.2.1. Let A be a recursive algorithm for problem Π. For each instance I of
Π there is an associated DAG G(I).

(A) Create directed graph G(I) as follows...
(B) For each sub-problem in the execution of A on I create a node.
(C) If sub-problem v depends on or recursively calls sub-problem u add directed edge (u, v)

to graph.
(D) G(I) is a DAG. Why? If G(I) has a cycle then A will not terminate on I.

9.2.1 Iterative Algorithm for...

9.2.1.1 Dynamic Programming and DAGs

Observation 9.2.2. An iterative algorithm B obtained from a recursive algorithm A for a
problem Π does the following:

For each instance I of Π, it computes a topological sort of G(I) and eval-
uates sub-problems according to the topological ordering.

(A) Sometimes the DAG G(I) can be obtained directly without thinking about the recursive
algorithm A

(B) In some cases (not all) the computation of an optimal solution reduces to a short-
est/longest path in DAG G(I)

(C) Topological sort based shortest/longest path computation is dynamic programming!

9.2.2 A quick reminder...

9.2.2.1 A Recursive Algorithm for weighted interval scheduling

Let Oi be value of an optimal schedule for the first i jobs.

Schedule(n):
if n = 0 then return 0
if n = 1 then return w(v1)
Op(n) ←Schedule(p(n))
On−1 ←Schedule(n− 1)
if (Op(n) + w(vn) < On−1) then

On = On−1
else

On = Op(n) + w(vn)
return On
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9.2.3 Weighted Interval Scheduling via...

9.2.3.1 Longest Path in a DAG

Given intervals, create a DAG as follows:
(A) Create one node for each interval, plus a dummy sink node 0 for interval 0, plus a

dummy source node s.
(B) For each interval i add edge (i, p(i)) of the length/weight of vi.
(C) Add an edge from s to n of length 0.
(D) For each interval i add edge (i, i− 1) of length 0.

9.2.3.2 Example
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p(5) = 2, p(4) = 1, p(3) = 1, p(2) = 0, p(1) = 0

0 1

2

3
4

5

s30

20

70
80

10

9.2.3.3 Relating Optimum Solution

Given interval problem instance I let G(I) denote the DAG constructed as described.

Claim 9.2.3. Optimum solution to weighted interval scheduling instance I is given by longest
path from s to 0 in G(I).

Assuming claim is true,
(A) If I has n intervals, DAG G(I) has n + 2 nodes and O(n) edges. Creating G(I) takes

O(n log n) time: to find p(i) for each i. How?
(B) Longest path can be computed in O(n) time — recall O(m + n) algorithm for short-

est/longest paths in DAGs.

9.2.3.4 DAG for Longest Increasing Sequence

Given sequence a1, a2, . . . , an create DAG as follows:
(A) add sentinel a0 to sequence where a0 is less than smallest element in sequence
(B) for each i there is a node vi
(C) if i < j and ai < aj add an edge (vi, vj)
(D) find longest path from v0
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9.3 Edit Distance and Sequence Alignment
9.3.0.5 Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker suggest a
nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a distance between them?

Edit Distance: minimum number of “edits” to transform x into y.

9.3.0.6 Edit Distance

Definition 9.3.1. Edit distance between two words X and Y is the number of letter in-
sertions, letter deletions and letter substitutions required to obtain Y from X.

Example 9.3.2. The edit distance between FOOD and MONEY is at most 4:

FOOD→ MOOD→ MONOD→ MONED→ MONEY

9.3.0.7 Edit Distance: Alternate View

Alignment Place words one on top of the other, with gaps in the first word indicating
insertions, and gaps in the second word indicating deletions.

F O O D
M O N E Y

130



Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once,
and there is no “crossing”: i < i′ and i is matched to j implies i′ is matched to j′ > j. In the
above example, this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an alignment is the number
of mismatched columns plus number of unmatched indices in both strings.

9.3.0.8 Edit Distance Problem

Problem Given two words, find the edit distance between them, i.e., an alignment of smallest
cost.

9.3.0.9 Applications

(A) Spell-checkers and Dictionaries
(B) Unix diff

(C) DNA sequence alignment . . . but, we need a new metric

9.3.0.10 Similarity Metric

Definition 9.3.3. For two strings X and Y , the cost of alignment M is
(A) [Gap penalty] For each gap in the alignment, we incur a cost δ.
(B) [Mismatch cost] For each pair p and q that have been matched in M , we incur cost

αpq; typically αpp = 0.
Edit distance is special case when δ = αpq = 1.

9.3.0.11 An Example

Example 9.3.4.

o c u r r a n c e
o c c u r r e n c e Cost = δ + αae

Alternative:
o c u r r a n c e
o c c u r r e n c e Cost = 3δ

Or a really stupid solution (delete string, insert other string):

o c u r r a n c e
o c c u r r e n c e

Cost = 19δ.

9.3.0.12 Sequence Alignment

Input Given two words X and Y , and gap penalty δ and mismatch costs αpq

Goal Find alignment of minimum cost
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9.3.1 Edit distance

9.3.1.1 Basic observation

Let X = αx and Y = βy
α, β: strings.
x and y single characters.

Think about optimal edit distance between X and Y as alignment, and consider last
column of alignment of the two strings:

α x
β y

or
α x
βy

or
αx
β y

Observation 9.3.5. Prefixes must have optimal alignment!

9.3.1.2 Problem Structure

Observation 9.3.6. Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (m,n) are not matched
then either the mth position of X remains unmatched or the nth position of Y remains
unmatched.

(A) Case xm and yn are matched.
(A) Pay mismatch cost αxmyn plus cost of aligning strings x1 · · ·xm−1 and y1 · · · yn−1

(B) Case xm is unmatched.
(A) Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn

(C) Case yn is unmatched.
(A) Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1

9.3.1.3 Subproblems and Recurrence

Optimal Costs Let Opt(i, j) be optimal cost of aligning x1 · · ·xi and y1 · · · yj. Then

Opt(i, j) = min





αxiyj + Opt(i− 1, j − 1),

δ + Opt(i− 1, j),

δ + Opt(i, j − 1)

Base Cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j
9.3.1.4 Dynamic Programming Solution

for all i do M [i, 0] = iδ
for all j do M [0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M [i, j] = min





αxiyj
+M [i− 1, j − 1],

δ +M [i− 1, j],

δ +M [i, j − 1]
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Figure 9.1: Iterative algorithm in previous slide computes values in row order. Optimal value
is a shortest path from (0, 0) to (m,n) in DAG.

Analysis

(A) Running time is O(mn).
(B) Space used is O(mn).

9.3.1.5 Matrix and DAG of Computation

9.3.1.6 Sequence Alignment in Practice

(A) Typically the DNA sequences that are aligned are about 105 letters long!
(B) So about 1010 operations and 1010 bytes needed
(C) The killer is the 10GB storage
(D) Can we reduce space requirements?

9.3.1.7 Optimizing Space

(A) Recall

M(i, j) = min





αxiyj +M(i− 1, j − 1),

δ +M(i− 1, j),

δ +M(i, j − 1)

(B) Entries in jth column only depend on (j−1)st column and earlier entries in jth column
(C) Only store the current column and the previous column reusing space; N(i, 0) stores

M(i, j − 1) and N(i, 1) stores M(i, j)
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Figure 9.2: M(i, j) only depends on previous column values. Keep only two columns and
compute in column order.

9.3.1.8 Computing in column order to save space
9.3.1.9 Space Efficient Algorithm

for all i do N [i, 0] = iδ
for j = 1 to n do

N [0, 1] = jδ (* corresponds to M(0, j) *)

for i = 1 to m do

N [i, 1] = min





αxiyj +N [i− 1, 0]

δ +N [i− 1, 1]

δ +N [i, 0]

for i = 1 to m do
Copy N [i, 0] = N [i, 1]

Analysis Running time is O(mn) and space used is O(2m) = O(m)

9.3.1.10 Analyzing Space Efficiency

(A) From the m× n matrix M we can construct the actual alignment (exercise)
(B) Matrix N computes cost of optimal alignment but no way to construct the actual

alignment
(C) Space efficient computation of alignment? More complicated algorithm — see text book.

9.3.1.11 Takeaway Points

(A) Dynamic programming is based on finding a recursive way to solve the problem. Need
a recursion that generates a small number of subproblems.

(B) Given a recursive algorithm there is a natural DAG associated with the subproblems
that are generated for given instance; this is the dependency graph. An iterative algo-
rithm simply evaluates the subproblems in some topological sort of this DAG.
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(C) The space required to evaluate the answer can be reduced in some cases by a careful
examination of that dependency DAG of the subproblems and keeping only a subset of
the DAG at any time.
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Chapter 10

More Dynamic Programming

CS 473: Fundamental Algorithms, Spring 2013
February 21, 2013

10.1 All Pairs Shortest Paths
10.1.0.12 Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V,E) with edge lengths (or costs). For edge
e = (u, v), `(e) = `(u, v) is its length.

(A) Given nodes s, t find shortest path from s to t.
(B) Given node s find shortest path from s to all other nodes.
(C) Find shortest paths for all pairs of nodes.

10.1.0.13 Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V,E) with edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

(A) Given nodes s, t find shortest path from s to t.
(B) Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time: O((m+n) log n) with
heaps and O(m+ n log n) with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).
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10.1.0.14 All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V,E) with edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

(A) Find shortest paths for all pairs of nodes.
Apply single-source algorithms n times, once for each vertex.

(A) Non-negative lengths. O(nm log n) with heaps and O(nm + n2 log n) using advanced
priority queues.

(B) Arbitrary edge lengths: O(n2m).
Θ(n4) if m = Ω(n2).

Can we do better?

10.1.0.15 Shortest Paths and Recursion

(A) Compute the shortest path distance from s to t recursively?
(B) What are the smaller sub-problems?

Lemma 10.1.1. Let G be a directed graph with arbitrary edge lengths. If s = v0 → v1 →
v2 → . . .→ vk is a shortest path from s to vk then for 1 ≤ i < k:
(A) s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges

10.1.0.16 Hop-based Recur’: Single-Source Shortest Paths

Single-source problem: fix source s.

OPT (v, k): shortest path dist. from s to v using at most k edges.

Note: dist(s, v) = OPT (v, n− 1). Recursion for OPT (v, k):

OPT (v, k) = min

{
minu∈V (OPT (u, k − 1) + c(u, v)).

OPT (v, k − 1)

Base case: OPT (v, 1) = c(s, v) if (s, v) ∈ E otherwise ∞
Leads to Bellman-Ford algorithm — see text book.
OPT (v, k) values are also of independent interest: shortest paths with at most k hops

10.1.0.17 All-Pairs: Recursion on index of intermediate nodes

(A) Number vertices arbitrarily as v1, v2, . . . , vn
(B) dist(i, j, k): shortest path distance between vi and vj among all paths in which the

largest index of an intermediate node is at most k
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dist(i, j, 0) = 100

dist(i, j, 1) = 9

dist(i, j, 2) = 8

dist(i, j, 3) = 5

10.1.0.18 All-Pairs: Recursion on index of intermediate nodes

i j

kdist(i, k, k − 1) dist(k, j, k − 1)

dist(i, j, k − 1)

dist(i, j, k) = min

{
dist(i, j, k − 1)

dist(i, k, k − 1) + dist(k, j, k − 1)

Base case: dist(i, j, 0) = c(i, j) if (i, j) ∈ E, otherwise ∞
Correctness: If i → j shortest path goes through k then k occurs only once on the path
— otherwise there is a negative length cycle.

10.1.1 Floyd-Warshall Algorithm

10.1.1.1 for All-Pairs Shortest Paths

Check if G has a negative cycle // Bellman-Ford: O(mn) time

if there is a negative cycle then return ‘‘Negative cycle’’

for i = 1 to n do
for j = 1 to n do

dist(i, j, 0) = c(i, j) (* c(i, j) =∞ if (i, j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

dist(i, j, k) = min

{
dist(i, j, k − 1),

dist(i, k, k − 1) + dist(k, j, k − 1)

Correctness: Recursion works under the assumption that all shortest paths are defined (no
negative length cycle).

Running Time: Θ(n3), Space: Θ(n3).
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10.1.2 Floyd-Warshall Algorithm

10.1.2.1 for All-Pairs Shortest Paths

Do we need a separate algorithm to check if there is negative cycle?

for i = 1 to n do
for j = 1 to n do

dist(i, j, 0) = c(i, j) (* c(i, j) =∞ if (i, j) /∈ E, 0 if i = j *)

not edge, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
dist(i, j, k) = min(dist(i, j, k − 1), dist(i, k, k − 1) + dist(k, j, k − 1))

for i = 1 to n do
if (dist(i, i, n) < 0) then

Output that there is a negative length cycle in G

Correctness: exercise

10.1.2.2 Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

(A) Create a n× n array Next that stores the next vertex on shortest path for each pair of
vertices

(B) With array Next, for any pair of given vertices i, j can compute a shortest path in O(n)
time.

10.1.3 Floyd-Warshall Algorithm

10.1.3.1 Finding the Paths

for i = 1 to n do
for j = 1 to n do

dist(i, j, 0) = c(i, j) (* c(i, j) =∞ if (i, j) not edge, 0 if i = j *)

Next(i, j) = −1
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (dist(i, j, k − 1) > dist(i, k, k − 1) + dist(k, j, k − 1)) then
dist(i, j, k) = dist(i, k, k − 1) + dist(k, j, k − 1)
Next(i, j) = k

for i = 1 to n do
if (dist(i, i, n) < 0) then

Output that there is a negative length cycle in G
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Exercise: Given Next array and any two vertices i, j describe an O(n) algorithm to find a
i-j shortest path.

10.1.3.2 Summary of results on shortest paths

Single vertex
No negative edges Dijkstra O(n log n+m)
Edges cost might be negative
But no negative cycles

Bellman Ford O(nm)

All Pairs Shortest Paths

No negative edges n * Dijkstra O(n2 log n+ nm)

No negative cycles n * Bellman Ford O(n2m) = O(n4)
No negative cycles Floyd-Warshall O(n3)

10.2 Knapsack
10.2.0.3 Knapsack Problem

Input Given a Knapsack of capacity W lbs. and n objects with ith object having weight
wi and value vi; assume W,wi, vi are all positive integers

Goal Fill the Knapsack without exceeding weight limit while maximizing value.

Basic problem that arises in many applications as a sub-problem.

10.2.0.4 Knapsack Example

Example 10.2.1.

Item I1 I2 I3 I4 I5

Value 1 6 18 22 28
Weight 1 2 5 6 7

If W = 11, the best is {I3, I4} giving value 40.

Special Case When vi = wi, the Knapsack problem is called the Subset Sum Prob-
lem.

10.2.0.5 Greedy Approach

(A) Pick objects with greatest value
(A) Let W = 2, w1 = w2 = 1, w3 = 2, v1 = v2 = 2 and v3 = 3; greedy strategy will

pick {3}, but the optimal is {1, 2}
(B) Pick objects with smallest weight

(A) Let W = 2, w1 = 1, w2 = 2, v1 = 1 and v2 = 3; greedy strategy will pick {1}, but
the optimal is {2}

(C) Pick objects with largest vi/wi ratio
(A) Let W = 4, w1 = w2 = 2, w3 = 3, v1 = v2 = 3 and v3 = 5; greedy strategy will

pick {3}, but the optimal is {1, 2}
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(B) Can show that a slight modification always gives half the optimum profit: pick the
better of the output of this algorithm and the largest value item. Also, the algo-
rithms gives better approximations when all item weights are small when compared
to W .

10.2.0.6 Towards a Recursive Solution

First guess: Opt(i) is the optimum solution value for items 1, . . . , i.

Observation 10.2.2. Consider an optimal solution O for 1, . . . , i

Case item i 6∈ O O is an optimal solution to items 1 to i− 1

Case item i ∈ O Then O−{i} is an optimum solution for items 1 to n− 1 in knapsack of
capacity W − wi.
Subproblems depend also on remaining capacity. Cannot write subproblem only in terms
of Opt(1), . . . ,Opt(i− 1).

Opt(i, w): optimum profit for items 1 to i in knapsack of size w
Goal: compute Opt(n,W )

10.2.0.7 Dynamic Programming Solution

Definition 10.2.3. Let Opt(i, w) be the optimal way of picking items from 1 to i, with total
weight not exceeding w.

Opt(i, w) =





0 if i = 0
Opt(i− 1, w) if wi > w

max

{
Opt(i− 1, w)

Opt(i− 1, w − wi) + vi
otherwise

10.2.0.8 An Iterative Algorithm

for w = 0 to W do
M [0, w] = 0

for i = 1 to n do
for w = 1 to W do

if (wi > w) then
M [i, w] = M [i− 1, w]

else
M [i, w] = max(M [i− 1, w],M [i− 1, w − wi] + vi)

Running Time
(A) Time taken is O(nW )
(B) Input has size O(n+logW +

∑n
i=1(log vi+logwi)); so running time not polynomial but

“pseudo-polynomial”!
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10.2.0.9 Knapsack Algorithm and Polynomial time

(A) Input size for Knapsack: O(n) + logW +
∑n

i=1(logwi + log vi).
(B) Running time of dynamic programming algorithm: O(nW ).
(C) Not a polynomial time algorithm.
(D) Example: W = 2n and wi, vi ∈ [1..2n]. Input size is O(n2), running time is O(n2n)

arithmetic/comparisons.
(E) Algorithm is called a pseudo-polynomial time algorithm because running time is

polynomial if numbers in input are of size polynomial in the combinatorial size of
problem.

(F) Knapsack is NP-Hard if numbers are not polynomial in n.

10.3 Traveling Salesman Problem
10.3.0.10 Traveling Salesman Problem

Input A graph G = (V,E) with non-negative edge costs/lengths. c(e) for edge e

Goal Find a tour of minimum cost that visits each node.

No polynomial time algorithm known. Problem is NP-Hard.

10.3.0.11 Drawings using TSP
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10.3.0.12 Example: optimal tour for cities of a country (which one?)

10.3.0.13 An Exponential Time Algorithm

How many different tours are there? n!

Stirling’s formula: n! ' √n(n/e)n which is Θ(2cn logn) for some constant c > 1

Can we do better? Can we get a 2O(n) time algorithm?
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10.3.0.14 Towards a Recursive Solution

(A) Order vertices as v1, v2, . . . , vn
(B) OPT (S): optimum TSP tour for the vertices S ⊆ V in the graph restricted to S. Want

OPT (V ).
Can we compute OPT (S) recursively?

(A) Say v ∈ S. What are the two neighbors of v in optimum tour in S?
(B) If u,w are neighbors of v in an optimum tour of S then removing v gives an optimum

path from u to w visiting all nodes in S − {v}.
Path from u to w is not a recursive subproblem! Need to find a more general problem to

allow recursion.

10.3.0.15 A More General Problem: TSP Path

Input A graph G = (V,E) with non-negative edge costs/lengths(c(e) for edge e) and two
nodes s, t

Goal Find a path from s to t of minimum cost that visits each node exactly once.

Can solve TSP using above. Do you see how?
Recursion for optimum TSP Path problem:

(A) OPT (u, v, S): optimum TSP Path from u to v in the graph restricted to S (here
u, v ∈ S).

10.3.1 A More General Problem: TSP Path

10.3.1.1 Continued...

What is the next node in the optimum path from u to v? Suppose it is w. Then what is
OPT (u, v, S)?

OPT (u, v, S) = c(u,w) +OPT (w, v, S − {u})
We do not know w! So try all possibilities for w.

10.3.1.2 A Recursive Solution

OPT (u, v, S) = minw∈S,w 6=u,v

(
c(u,w) +OPT (w, v, S − {u})

)

What are the subproblems for the original problem OPT (s, t, V )?
OPT (u, v, S) for u, v ∈ S, S ⊆ V .

How many subproblems?
(A) number of distinct subsets S of V is at most 2n

(B) number of pairs of nodes in a set S is at most n2

(C) hence number of subproblems is O(n22n)
Exercise: Show that one can compute TSP using above dynamic program in O(n32n)

time and O(n22n) space.
Disadvantage of dynamic programming solution: memory!
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10.3.1.3 Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization
(A) How to come up with the recursion?
(B) How to recognize that dynamic programming may apply?

10.3.1.4 Some Tips

(A) Problems where there is a natural linear ordering: sequences, paths, intervals, DAGs
etc. Recursion based on ordering (left to right or right to left or topological sort) usually
works.

(B) Problems involving trees: recursion based on subtrees.
(C) More generally:

(A) Problem admits a natural recursive divide and conquer
(B) If optimal solution for whole problem can be simply composed from optimal solution

for each separate pieces then plain divide and conquer works directly
(C) If optimal solution depends on all pieces then can apply dynamic programming if

interface/interaction between pieces is limited. Augment recursion to not simply
find an optimum solution but also an optimum solution for each possible way to
interact with the other pieces.

10.3.1.5 Examples

(A) Longest Increasing Subsequence: break sequence in the middle say. What is the inter-
action between the two pieces in a solution?

(B) Sequence Alignment: break both sequences in two pieces each. What is the interaction
between the two sets of pieces?

(C) Independent Set in a Tree: break tree at root into subtrees. What is the interaction
between the sutrees?

(D) Independent Set in an graph: break graph into two graphs. What is the interaction?
Very high!

(E) Knapsack: Split items into two sets of half each. What is the interaction?
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Chapter 11

Greedy Algorithms

CS 473: Fundamental Algorithms, Spring 2013
February 26, 2013

11.1 Problems and Terminology

11.2 Problem Types
11.2.0.6 Problem Types

(A) Decision Problem: Is the input a YES or NO input?
Example: Given graph G, nodes s, t, is there a path from s to t in G?

(B) Search Problem: Find a solution if input is a YES input.
Example: Given graph G, nodes s, t, find an s-t path.

(C) Optimization Problem: Find a best solution among all solutions for the input.
Example: Given graph G, nodes s, t, find a shortest s-t path.

11.2.0.7 Terminology

(A) A problem Π consists of an infinite collection of inputs {I1, I2, . . . , }. Each input is
referred to as an instance.

(B) The size of an instance I is the number of bits in its representation.
(C) For an instance I, sol(I) is a set of feasible solutions to I. Typical implicit assumption:

given instance I and y ∈ Σ∗, there is a way to check (efficiently!) if y ∈ sol(I). In other
words, problem is in NP.

(D) For optimization problems each solution s ∈ sol(I) has an associated value. Typical
implicit assumption: given s, can compute value efficiently.

11.2.0.8 Problem Types

(A) Decision Problem: Given I output whether sol(I) = ∅ or not.
(B) Search Problem: Given I, find a solution s ∈ sol(I) if sol(I) 6= ∅.
(C) Optimization Problem: Given I,
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(A) Minimization problem. Find a solution s ∈ sol(I) of minimum value
(B) Maximization problem. Find a solution s ∈ sol(I) of maximum value
(C) Notation: opt(I): interchangeably (when there is no confusion) used to denote the

value of an optimum solution or some fixed optimum solution.

11.3 Greedy Algorithms: Tools and Techniques

11.3.0.9 What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

(A) make decision incrementally in small steps without backtracking
(B) decision at each step is based on improving local or current state in a myopic fashion

without paying attention to the global situation
(C) decisions often based on some fixed and simple priority rules

11.3.0.10 Pros and Cons of Greedy Algorithms

Pros:

(A) Usually (too) easy to design greedy algorithms
(B) Easy to implement and often run fast since they are simple
(C) Several important cases where they are effective/optimal
(D) Lead to a first-cut heuristic when problem not well understood

Cons:

(A) Very often greedy algorithms don’t work. Easy to lull oneself into believing they work
(B) Many greedy algorithms possible for a problem and no structured way to find effective

ones

CS 473: Every greedy algorithm needs a proof of correctness

11.3.0.11 Greedy Algorithm Types

Crude classification:

(A) Non-adaptive: fix some ordering of decisions a priori and stick with the order
(B) Adaptive: make decisions adaptively but greedily/locally at each step

Plan:

(A) See several examples
(B) Pick up some proof techniques
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11.4 Interval Scheduling

11.4.1 Interval Scheduling

11.4.1.1

Input A set of jobs with start and finish times to be scheduled on a resource (example:
classes and class rooms)

Goal Schedule as many jobs as possible

(A) Two jobs with overlapping intervals cannot both be scheduled!

11.4.2 The Algorithm
11.4.2.1 Greedy Template

R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty do
<2->choose i ∈ R
add i to X
remove from R all requests that overlap with i

return the set X

Main task: Decide the order in which to process requests in R

11.4.2.2 Earliest Start Time

Process jobs in the order of their starting times, beginning with those that start earliest.

11.4.2.3 Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest
processing.

11.4.2.4 Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

11.4.2.5 Earliest Finish Time

Process jobs in the order of their finishing times, beginning with those that finish earliest.
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11.4.3 Correctness
11.4.3.1 Optimal Greedy Algorithm

R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

add i to X
remove from R all requests that overlap with i

return X

Theorem 11.4.1. The greedy algorithm that picks jobs in the order of their finishing times
is optimal.

11.4.3.2 XXXX Proving Optimality

(A) Correctness: Clearly the algorithm returns a set of jobs that does not have any con-
flicts

(B) For a set of requests R, let O be an optimal set and let X be the set returned by the
greedy algorithm. Then O = X? Not likely! Instead we will show that |O| = |X|
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f(i1) f(j1)

i1

j1

j2

f(j2) time

Figure 11.1: Since i1 has the earliest finish time, any interval that conflicts with it does so
at f(i1). This implies j1 and j2 conflict.

11.4.3.3 Proof of Optimality: Key Lemma

Lemma 11.4.2. Let i1 be first interval picked by Greedy. There exists an optimum solution
that contains i1.

Proof : Let O be an arbitrary optimum solution. If i1 ∈ O we are done.
Claim: If i1 6∈ O then there is exactly one interval j1 ∈ O that conflicts with i1. (proof

later)
(A) Form a new set O′ by removing j1 from O and adding i1, that is O′ = (O−{j1})∪{i1}.
(B) From claim, O′ is a feasible solution (no conflicts).
(C) Since |O′| = |O|, O′ is also an optimum solution and it contains i1.

11.4.3.4 Proof of Claim

Claim 11.4.3. If i1 6∈ O then there is exactly one interval j1 ∈ O that conflicts with i1.

Proof :
(A) Suppose j1, j2 ∈ O such that j1 6= j2 and both j1 and j2 conflict with i1.
(B) Since i1 has earliest finish time, j1 and i1 overlap at f(i1).
(C) For same reason j2 also overlaps with i1 at f(i1).
(D) Implies that j1, j2 overlap at f(i1) contradicting the feasibility of O.
See figure in next slide.

11.4.3.5 Figure for proof of Claim
11.4.3.6 Proof of Optimality of Earliest Finish Time First

Proof :[Proof by Induction on number of intervals] Base Case: n = 1. Trivial since Greedy
picks one interval.
Induction Step: Assume theorem holds for i < n.
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Let I be an instance with n intervals
I ′: I with i1 and all intervals that overlap with i1 removed
G(I), G(I ′): Solution produced by Greedy on I and I ′

From Lemma, there is an optimum solution O to I and i1 ∈ O.
Let O′ = O − {i1}. O′ is a solution to I ′.

|G(I)| = 1 + |G(I ′)| (from Greedy description)

≤ 1 + |O′| (By induction, G(I ′) is optimum for I ′)

= |O|

11.4.4 Running Time
11.4.4.1 Implementation and Running Time

Initially R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty

<3>choose i ∈ R such that finishing time of i is least

<4>if i does not overlap with requests in X
add i to X

<5>remove i from R
return the set X

(A) Presort all requests based on finishing time. O(n log n) time
(B) Now choosing least finishing time is O(1)
(C) Keep track of the finishing time of the last request added to A. Then check if starting

time of i later than that
(D) Thus, checking non-overlapping is O(1)
(E) Total time O(n log n+ n) = O(n log n)

11.4.5 Extensions and Comments
11.4.5.1 Comments

(A) Interesting Exercise: smallest interval first picks at least half the optimum number of
intervals.

(B) All requests need not be known at the beginning. Such online algorithms are a subject
of research

11.4.6 Interval Partitioning

11.4.7 The Problem
11.4.7.1 Scheduling all Requests

Input A set of lectures, with start and end times
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Goal Find the minimum number of classrooms, needed to schedule all the lectures such two
lectures do not occur at the same time in the same room.
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Figure 11.2: A schedule requiring 4 class-
rooms
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Figure 11.3: A schedule requiring 3 class-
rooms

11.4.8 The Algorithm

11.4.8.1 Greedy Algorithm

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty do
choose i ∈ R such that start time of i is earliest

if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d+ 1

and schedule lecture i in d+ 1
d = d+ 1

What order should we process requests in? According to start times (breaking ties arbitrar-
ily)
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11.4.9 Example of algorithm execution

11.4.9.1 “Few things are harder to put up with than a good example.” – Mark
Twain
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11.4.10 Correctness
11.4.10.1 Depth of Lectures

Definition 11.4.4. (A) For a set of lectures R, k are said to be in conflict if there is
some time t such that there are k lectures going on at time t.

(B) The depth of a set of lectures R is the maximum number of lectures in conflict at any
time.
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s(j)

j

no such job
scheduled before j

11.4.10.2 Depth and Number of Class-rooms

Lemma 11.4.5. For any set R of lectures, the number of class-rooms required is at least the
depth of R.

Proof : All lectures that are in conflict must be scheduled in different rooms.

11.4.10.3 Number of Class-rooms used by Greedy Algorithm

Lemma 11.4.6. Let d be the depth of the set of lectures R. The number of class-rooms used
by the greedy algorithm is d.

Proof :

(A) Suppose the greedy algorithm uses more that d rooms. Let j be the first lecture that is
scheduled in room d+ 1.

(B) Since we process lectures according to start times, there are d lectures that start (at or)
before j and which are in conflict with j.

(C) Thus, at the start time of j, there are at least d+1 lectures in conflict, which contradicts
the fact that the depth is d.

11.4.10.4 Figure
11.4.10.5 Correctness

Observation 11.4.7. The greedy algorithm does not schedule two overlapping lectures in
the same room.

Theorem 11.4.8. The greedy algorithm is correct and uses the optimal number of class-
rooms.
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1 2 3 4 5 6
ti 3 2 1 4 3 2
di 6 8 9 9 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 2 6 1 5 4

l1 = 2 l5 = 0 l4 = 6

11.4.11 Running Time
11.4.11.1 Implementation and Running Time

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty

<1-2>choose i ∈ R such that start time of i is earliest

<3->if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d+ 1 and schedule lecture i in d+ 1
d = d+ 1

(A) Presort according to start times. Picking lecture with earliest start time can be done
in O(1) time.

(B) Keep track of the finish time of last lecture in each room.
(C) ¡4¿Checking conflict takes O(d) time.¡5¿With priority queues, checking conflict takes

O(log d) time.
(D) Total time ¡4¿= O(n log n+ nd)¡5¿= O(n log n+ n log d) = O(n log n)

11.5 Scheduling to Minimize Lateness

11.5.1 The Problem
11.5.1.1 Scheduling to Minimize Lateness

(A) Given jobs with deadlines and processing times to be scheduled on a single resource.
(B) If a job i starts at time si then it will finish at time fi = si+ ti, where ti is its processing

time. di: deadline.
(C) The lateness of a job is li = max(0, fi − di).
(D) Schedule all jobs such that L = max li is minimized.

11.5.1.2 A Simpler Feasibility Problem

(A) Given jobs with deadlines and processing times to be scheduled on a single resource.
(B) If a job i starts at time si then it will finish at time fi = si+ ti, where ti is its processing

time.
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(C) Schedule all jobs such that each of them completes before its deadline (in other words
L = maxi li = 0).

Definition 11.5.1. A schedule is feasible if all jobs finish before their deadline.

11.5.2 The Algorithm
11.5.2.1 Greedy Template

Initially R is the set of all requests

curr time = 0
while R is not empty do

<2->choose i ∈ R
curr time = curr time+ ti
if (curr time > di) then

return ‘‘no feasible schedule’’

return ‘‘found feasible schedule’’

Main task: Decide the order in which to process jobs in R

11.5.2.2 Three Algorithms

(A) Shortest job first — sort according to ti.
(B) Shortest slack first — sort according to di − ti.
(C) EDF = Earliest deadline first — sort according to di.
Counter examples for first two: exercise

11.5.2.3 Earliest Deadline First

Theorem 11.5.2. Greedy with EDF rule for picking requests correctly decides if there is a
feasible schedule.

Proof via an exchange argument.
Idle time: time during which machine is not working.

Lemma 11.5.3. If there is a feasible schedule then there is one with no idle time before all
jobs are finished.

11.5.2.4 Inversions

Definition 11.5.4. A schedule S is said to have an inversion if there are jobs i and j
such that S schedules i before j, but di > dj.

Claim 11.5.5. If a schedule S has an inversion then there is an inversion between two
adjacently scheduled jobs.

Proof: exercise.
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11.5.2.5 Main Lemma

Lemma 11.5.6. If there is a feasible schedule, then there is one with no inversions.

Proof :[Proof Sketch] Let S be a schedule with minimum number of inversions.

(A) If S has 0 inversions, done.
(B) Suppose S has one or more inversions. By claim there are two adjacent jobs i and j

that define an inversion.
(C) Swap positions of i and j.
(D) New schedule is still feasible. (Why?)
(E) New schedule has one fewer inversion — contradiction!

11.5.2.6 Back to Minimizing Lateness

Goal: schedule to minimize L = maxi li.

How can we use algorithm for simpler feasibility problem?

Given a lateness bound L, can we check if there is a schedule such that maxi li ≤ L?

Yes! Set d′i = di + L for each job i. Use feasibility algorithm with new deadlines.

How can we find minimum L? Binary search!

11.5.2.7 Binary search for finding minimum lateness

L = Lmin = 0
Lmax =

∑
i ti // why is this sufficient?

While Lmin < Lmax do

L = b(Lmax + Lmin)/2c
check if there is a feasible schedule with lateness L
if ‘‘yes’’ then Lmax = L
else Lmin = L+ 1

end while

return L

Running time: O(n log n · log T ) where T =
∑

i ti
(A) O(n log n) for feasibility test (sort by deadlines)
(B) O(log T ) calls to feasibility test in binary search

11.5.2.8 Do we need binary search?

What happens in each call?
EDF algorithm with deadlines d′i = di + L.

Greedy with EDF schedules the jobs in the same order for all L!!!

Maybe there is a direct greedy algorithm for minimizing maximum lateness?
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11.5.2.9 Greedy Algorithm for Minimizing Lateness

Initially R is the set of all requests

curr time = 0
curr late = 0
while R is not empty

choose i ∈ R with earliest deadline

curr time = curr time+ ti
late = curr time− di
curr late = max(late, curr late)

return curr late

Exercise: argue directly that above algorithm is correct
Can be easily implemented in O(n log n) time after sorting jobs.

11.5.2.10 Greedy Analysis: Overview

(A) Greedy’s first step leads to an optimum solution. Show that there is an optimum
solution leading from the first step of Greedy and then use induction. Example, Interval
Scheduling.

(B) Greedy algorithm stays ahead. Show that after each step the solution of the greedy
algorithm is at least as good as the solution of any other algorithm. Example, Interval
scheduling.

(C) Structural property of solution. Observe some structural bound of every solution
to the problem, and show that greedy algorithm achieves this bound. Example, Interval
Partitioning.

(D) Exchange argument. Gradually transform any optimal solution to the one produced
by the greedy algorithm, without hurting its optimality. Example, Minimizing lateness.

11.5.2.11 Takeaway Points

(A) Greedy algorithms come naturally but often are incorrect. A proof of correctness is an
absolute necessity.

(B) Exchange arguments are often the key proof ingredient. Focus on why the first step of
the algorithm is correct: need to show that there is an optimum/correct solution with
the first step of the algorithm.

(C) Thinking about correctness is also a good way to figure out which of the many greedy
strategies is likely to work.

161



162



Chapter 12

Greedy Algorithms for Minimum
Spanning Trees

CS 473: Fundamental Algorithms, Spring 2013
March 1, 2013

12.1 Greedy Algorithms: Minimum Spanning Tree

12.2 Minimum Spanning Tree

12.2.1 The Problem
12.2.1.1 Minimum Spanning Tree

Input Connected graph G = (V,E) with edge costs

Goal Find T ⊆ E such that (V, T ) is connected and total cost of all edges in T is smallest

(A) T is the minimum spanning tree (MST) of G
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12.2.1.2 Applications

(A) Network Design
(A) Designing networks with minimum cost but maximum connectivity

(B) Approximation algorithms
(A) Can be used to bound the optimality of algorithms to approximate Traveling Sales-

man Problem, Steiner Trees, etc.
(C) Cluster Analysis

12.2.2 The Algorithms

12.2.2.1 Greedy Template

Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)

while E is not empty do
choose i ∈ E
if (i satisfies condition)

add i to T
return the set T

Main Task: In what order should edges be processed? When should we add edge to
spanning tree?

12.2.2.2 Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T as long
as they don’t form a cycle.
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12.2.2.3 Prim’s Algorithm

T maintained by algorithm will be a tree. Start with a node in T . In each iteration, pick
edge with least attachment cost to T .
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Order of edges considered:
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12.2.2.4 Reverse Delete Algorithm

Initially E is the set of all edges in G
T is E (* T will store edges of a MST *)

while E is not empty do
choose i ∈ E of largest cost

if removing i does not disconnect T then
remove i from T

return the set T

Returns a minimum spanning tree.

12.2.3 Correctness
12.2.3.1 Correctness of MST Algorithms

(A) Many different MST algorithms
(B) All of them rely on some basic properties of MSTs, in particular the Cut Property

to be seen shortly.

12.2.4 Assumption

12.2.4.1 And for now . . .

Assumption 12.2.1. Edge costs are distinct, that is no two edge costs are equal.

12.2.4.2 Cuts

Definition 12.2.2. Given a graph G = (V,E), a cut is a partition of the vertices of the
graph into two sets (S, V \ S).

Edges having an endpoint on both sides are the edges of the cut.

A cut edge is crossing the cut.

S V \ S S V \ S
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12.2.4.3 Safe and Unsafe Edges

Definition 12.2.3. An edge e = (u, v) is a safe edge if there is some partition of V into S
and V \S and e is the unique minimum cost edge crossing S (one end in S and the other in
V \ S).

Definition 12.2.4. An edge e = (u, v) is an unsafe edge if there is some cycle C such that
e is the unique maximum cost edge in C.

Proposition 12.2.5. If edge costs are distinct then every edge is either safe or unsafe.

Proof : Exercise.

12.2.5 Safe edge

12.2.5.1 Example...

Every cut identifies one safe edge...

S V \ S
13

7

3

5

11

S V \ S
13

7

3

5

11

Safe edge in the cut (S, V \ S)
...the cheapest edge in the cut.

Note: An edge e may be a safe edge for many cuts!

12.2.6 Unsafe edge

12.2.6.1 Example...

Every cycle identifies one unsafe edge...
5

7

2

15

3

5
7

2

15

3

15

...the most expensive edge in the cycle.

12.2.6.2 Example

And all safe edges are in the MST in this case...
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Figure 12.1: Graph with unique edge costs. Safe edges are red, rest are unsafe.

12.2.6.3 Key Observation: Cut Property

Lemma 12.2.6. If e is a safe edge then every minimum spanning tree contains e.

Proof :

(A) Suppose (for contradiction) e is not in MST T .
(B) Since e is safe there is an S ⊂ V such that e is the unique min cost edge crossing S.
(C) Since T is connected, there must be some edge f with one end in S and the other in

V \ S
(D) Since cf > ce, T

′ = (T \ {f}) ∪ {e} is a spanning tree of lower cost! Error: T ′ may
not be a spanning tree!!

12.2.7 Error in Proof: Example

12.2.7.1 Problematic example. S = {1, 2, 7}, e = (7, 3), f = (1, 6). T − f + e is not
a spanning tree.
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(D)
(A) (A) Consider adding the edge f .
(B) (B) It is safe because it is the cheapest edge in the cut.
(C) (C) Lets throw out the edge e currently in the spanning tree which is more expensive

than f and is in the same cut. Put it f instead...
(D) (D) New graph of selected edges is not a tree anymore. BUG.

12.2.7.2 Proof of Cut Property

Proof :
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(A) Suppose e = (v, w) is not in MST T and e is min weight edge in cut (S, V \S). Assume
v ∈ S.

(B) T is spanning tree: there is a unique path P from v to w in T
(C) Let w′ be the first vertex in P belonging to V \ S; let v′ be the vertex just before it on

P , and let e′ = (v′, w′)
(D) T ′ = (T \ {e′}) ∪ {e} is spanning tree of lower cost. (Why?)
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12.2.7.3 Proof of Cut Property (contd)

Observation 12.2.7. T ′ = (T \ {e′}) ∪ {e} is a spanning tree.

Proof : T ′ is connected.

Removed e′ = (v′, w′) from T but v′ and w′ are connected by the path P − f + e in T ′.
Hence T ′ is connected if T is.

T ′ is a tree

T ′ is connected and has n− 1 edges (since T had n− 1 edges) and hence T ′ is a tree

12.2.7.4 Safe Edges form a Tree

Lemma 12.2.8. Let G be a connected graph with distinct edge costs, then the set of safe
edges form a connected graph.

Proof :

(A) Suppose not. Let S be a connected component in the graph induced by the safe edges.
(B) Consider the edges crossing S, there must be a safe edge among them since edge costs

are distinct and so we must have picked it.

12.2.7.5 Safe Edges form an MST

Corollary 12.2.9. Let G be a connected graph with distinct edge costs, then set of safe edges
form the unique MST of G.

Consequence: Every correct MST algorithm when G has unique edge costs includes
exactly the safe edges.

12.2.7.6 Cycle Property

Lemma 12.2.10. If e is an unsafe edge then no MST of G contains e.

Proof : Exercise. See text book.

Note: Cut and Cycle properties hold even when edge costs are not distinct. Safe and unsafe
definitions do not rely on distinct cost assumption.
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12.2.7.7 Correctness of Prim’s Algorithm

Prim’s Algorithm Pick edge with minimum attachment cost to current tree, and add to
current tree.

Proof :[Proof of correctness]
(A) If e is added to tree, then e is safe and belongs to every MST.

(A) Let S be the vertices connected by edges in T when e is added.
(B) e is edge of lowest cost with one end in S and the other in V \ S and hence e is

safe.
(B) Set of edges output is a spanning tree

(A) Set of edges output forms a connected graph: by induction, S is connected in each
iteration and eventually S = V .

(B) Only safe edges added and they do not have a cycle

12.2.7.8 Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm Pick edge of lowest cost and add if it does not form a cycle with existing
edges.

Proof :[Proof of correctness]
(A) If e = (u, v) is added to tree, then e is safe

(A) When algorithm adds e let S and S’ be the connected components containing u
and v respectively

(B) e is the lowest cost edge crossing S (and also S’).
(C) If there is an edge e′ crossing S and has lower cost than e, then e′ would come

before e in the sorted order and would be added by the algorithm to T
(B) Set of edges output is a spanning tree : exercise

12.2.7.9 Correctness of Reverse Delete Algorithm

Reverse Delete Algorithm Consider edges in decreasing cost and remove an edge if it does
not disconnect the graph

Proof :[Proof of correctness] Argue that only unsafe edges are removed (see text book).

12.2.7.10 When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost
to each edge
Formal argument: Order edges lexicographically to break ties
(A) ei ≺ ej if either c(ei) < c(ej) or (c(ei) = c(ej) and i < j)
(B) Lexicographic ordering extends to sets of edges. If A,B ⊆ E, A 6= B then A ≺ B if

either c(A) < c(B) or (c(A) = c(B) and A \B has a lower indexed edge than B \ A)
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(C) Can order all spanning trees according to lexicographic order of their edge sets. Hence
there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic
ordering.

12.2.7.11 Edge Costs: Positive and Negative

(A) Algorithms and proofs don’t assume that edge costs are non-negative! MST algorithms
work for arbitrary edge costs.

(B) Another way to see this: make edge costs non-negative by adding to each edge a large
enough positive number. Why does this work for MSTs but not for shortest paths?

(C) Can compute maximum weight spanning tree by negating edge costs and then computing
an MST.

12.3 Data Structures for MST: Priority Queues and

Union-Find

12.4 Data Structures

12.4.1 Implementing Prim’s Algorithm

12.4.2 Implementing Prim’s Algorithm

12.4.2.1 Implementing Prim’s Algorithm

Prim ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

<2>while S 6= V do
<3>pick e = (v, w) ∈ E such that

v ∈ S and w ∈ V − S
e has minimum cost

T = T ∪ e
S = S ∪ w

return the set T

Analysis

(A) Number of iterations = O(n), where n is number of vertices
(B) Picking e is O(m) where m is the number of edges
(C) Total time O(nm)
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12.4.3 Implementing Prim’s Algorithm

12.4.3.1 More Efficient Implementation

Prim ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w, v)
for v 6∈ S, e(v) = w such that w ∈ S and c(w, v) is minimum

while S 6= V do
<2->pick v with minimum a(v)
T = T ∪ {(e(v), v)}
S = S ∪ {v}
<2->update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v).

12.4.4 Priority Queues
12.4.4.1 Priority Queues

Data structure to store a set S of n elements where each element v ∈ S has an associated
real/integer key k(v) such that the following operations
(A) makeQ: create an empty queue
(B) findMin: find the minimum key in S
(C) extractMin: Remove v ∈ S with smallest key and return it
(D) add(v, k(v)): Add new element v with key k(v) to S
(E) Delete(v): Remove element v from S
(F) decreaseKey (v, k′(v)): decrease key of v from k(v) (current key) to k′(v) (new key).

Assumption: k′(v) ≤ k(v)
(G) meld: merge two separate priority queues into one

12.4.4.2 Prim’s using priority queues

E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w, v)
for v 6∈ S, e(v) = w such that w ∈ S and c(w, v) is minimum

while S 6= V do
<2>pick v with minimum a(v)
T = T ∪ {(e(v), v)}
S = S ∪ {v}
<3>update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v)
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(A) Requires O(n) extractMin operations
(B) Requires O(m) decreaseKey operations

12.4.4.3 Running time of Prim’s Algorithm

O(n) extractMin operations and O(m) decreaseKey operations
(A) Using standard Heaps, extractMin and decreaseKey take O(log n) time. Total:

O((m+ n) log n)
(B) Using Fibonacci Heaps, O(log n) for extractMin andO(1) (amortized) for decreaseKey.

Total: O(n log n+m).
Prim’s algorithm and Dijkstra’s algorithms are similar. Where is the difference?

12.4.5 Implementing Kruskal’s Algorithm
12.4.5.1 Kruskal’s Algorithm

Kruskal ComputeMST
Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)

while E is not empty do
<2-3>choose e ∈ E of minimum cost

<4-5>if (T ∪ {e} does not have cycles)

add e to T
return the set T

(A) Presort edges based on cost. Choosing minimum can be done in O(1) time
(B) Do BFS/DFS on T ∪ {e}. Takes O(n) time
(C) Total time O(m logm) +O(mn) = O(mn)

12.4.5.2 Implementing Kruskal’s Algorithm Efficiently

Kruskal ComputeMST
Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty do
pick e = (u, v) ∈ E of minimum cost

<2->if u and v belong to different sets

add e to T
<2->merge the sets containing u and v

return the set T

Need a data structure to check if two elements belong to same set and to merge two sets.

12.4.6 Union-Find Data Structure
12.4.6.1 Union-Find Data Structure

Data Structure Store disjoint sets of elements that supports the following operations
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(A) makeUnionFind(S) returns a data structure where each element of S is in a separate
set

(B) find(u) returns the name of set containing element u. Thus, u and v belong to the same
set if and only if find(u) = find(v)

(C) union(A,B) merges two sets A and B. Here A and B are the names of the sets.
Typically the name of a set is some element in the set.

12.4.6.2 Implementing Union-Find using Arrays and Lists

Using lists
(A) Each set stored as list with a name associated with the list.
(B) For each element u ∈ S a pointer to the its set. Array for pointers: component[u] is

pointer for u.
(C) makeUnionFind (S) takes O(n) time and space.

12.4.6.3 Example
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12.4.6.4 Implementing Union-Find using Arrays and Lists

(A) find(u) reads the entry component[u]: O(1) time
(B) union(A,B) involves updating the entries component[u] for all elements u in A and B:

O(|A|+ |B|) which is O(n)
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12.4.6.5 Improving the List Implementation for Union

New Implementation As before use component[u] to store set of u.
Change to union(A,B):
(A) with each set, keep track of its size
(B) assume |A| ≤ |B| for now
(C) Merge the list of A into that of B: O(1) time (linked lists)
(D) Update component[u] only for elements in the smaller set A
(E) Total O(|A|) time. Worst case is still O(n).
find still takes O(1) time

12.4.6.6 Example
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Union(find(u), find(v))

s

t

u

v
w
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y
z

s t

z

v xu w y

The smaller set (list) is appended to the largest set (list)

12.4.6.7 Improving the List Implementation for Union

Question Is the improved implementation provably better or is it simply a nice heuristic?

Theorem 12.4.1. Any sequence of k union operations, starting from makeUnionFind(S)
on set S of size n, takes at most O(k log k).

Corollary 12.4.2. Kruskal’s algorithm can be implemented in O(m logm) time.

Sorting takesO(m logm) time, O(m) finds takeO(m) time andO(n) unions takeO(n log n)
time.

12.4.6.8 Amortized Analysis

Why does theorem work?
Key Observation union(A,B) takes O(|A|) time where |A| ≤ |B|. Size of new set is

≥ 2|A|. Cannot double too many times.

12.4.6.9 Proof of Theorem

Proof :
(A) Any union operation involves at most 2 of the original one-element sets; thus at least

n− 2k elements have never been involved in a union
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(B) Also, maximum size of any set (after k unions) is 2k
(C) union(A,B) takes O(|A|) time where |A| ≤ |B|.
(D) Charge each element in A constant time to pay for O(|A|) time.
(E) How much does any element get charged?
(F) If component[v] is updated, set containing v doubles in size
(G) component[v] is updated at most log 2k times
(H) Total number of updates is 2k log 2k = O(k log k)

12.4.6.10 Improving Worst Case Time

Better data structure Maintain elements in a forest of in-trees; all elements in one tree belong
to a set with root’s name.
(A) find(u): Traverse from u to the root
(B) union(A,B): Make root of A (smaller set) point to root of B. Takes O(1) time.

12.4.6.11 Details of Implementation

XXXXXXX
Each element u ∈ S has a pointer parent(u) to its ancestor.

makeUnionFind(S)
for each u in S do

parent(u) = u

find(u)
while (parent(u) 6= u) do

u = parent(u)
return u

union(component(u), component(v))

(* parent(u) = u & parent(v) = v *)

if (|component(u)| ≤ |component(v)|) then
parent(u) = v

else
parent(v) = u

set new component size to |component(u)|+ |component(v)|

12.4.6.12 Analysis

Theorem 12.4.3. The forest based implementation for a set of size n, has the following
complexity for the various operations: makeUnionFind takes O(n), union takes O(1),
and find takes O(log n).

Proof :
(A) find(u) depends on the height of tree containing u.
(B) Height of u increases by at most 1 only when the set containing u changes its name.
(C) If height of u increases then size of the set containing u (at least) doubles.
(D) Maximum set size is n; so height of any tree is at most O(log n).
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12.4.6.13 Further Improvements: Path Compression

Observation 12.4.4. Consecutive calls of find(u) take O(log n) time each, but they traverse
the same sequence of pointers.

Idea: Path Compression Make all nodes encountered in the find(u) point to root.

12.4.6.14 Path Compression: Example

r

v

w

u
after find(u)

r

v

w

uu u

12.4.6.15 Path Compression

find(u):
if (parent(u) 6= u) then

parent(u) = find(parent(u))
return parent(u)

Question Does Path Compression help?
Yes!

Theorem 12.4.5. With Path Compression, k operations (find and/or union) take O(kα(k,min{k, n}))
time where α is the inverse Ackermann function.

12.4.6.16 Ackermann and Inverse Ackermann Functions

Ackermann function A(m,n) defined for m,n ≥ 0 recursively

A(m,n) =





n+ 1 if m = 0
A(m− 1, 1) if m > 0 and n = 0
A(m− 1, A(m,n− 1)) if m > 0 and n > 0

A(3, n) = 2n+3 − 3
A(4, 3) = 265536 − 3

α(m,n) is inverse Ackermann function defined as

α(m,n) = min{i | A(i, bm/nc) ≥ log2 n}

For all practical purposes α(m,n) ≤ 5
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12.4.6.17 Lower Bound for Union-Find Data Structure

Amazing result:

Theorem 12.4.6 (Tarjan). For Union-Find, any data structure in the pointer model
requires Ω(mα(m,n)) time for m operations.

12.4.6.18 Running time of Kruskal’s Algorithm

Using Union-Find data structure:
(A) O(m) find operations (two for each edge)
(B) O(n) union operations (one for each edge added to T )
(C) Total time: O(m logm) for sorting plus O(mα(n)) for union-find operations. Thus

O(m logm) time despite the improved Union-Find data structure.

12.4.6.19 Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps: O(n log n+m).
If m is O(n) then running time is Ω(n log n).

Question Is there a linear time (O(m+ n) time) algorithm for MST?
(A) O(m log∗m) time [Fredman and Tarjan, 1987].
(B) O(m+ n) time using bit operations in RAM model [Fredman and Willard, 1994].
(C) O(m+ n) expected time (randomized algorithm) [Karger et al., 1995].
(D) O((n+m)α(m,n)) time [Chazelle, 2000].
(E) Still open: Is there an O(n+m) time deterministic algorithm in the comparison model?
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Chapter 13

Introduction to Randomized
Algorithms: QuickSort and
QuickSelect

CS 473: Fundamental Algorithms, Spring 2013
March 6, 2013

13.1 Introduction to Randomized Algorithms

13.2 Introduction
13.2.0.20 Randomized Algorithms
13.2.0.21 Example: Randomized QuickSort

QuickSort [Hoare, 1962]
(A) Pick a pivot element from array
(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the

pivot itself.
(C) Recursively sort the subarrays, and concatenate them.

Randomized QuickSort
(A) Pick a pivot element uniformly at random from the array
(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the

pivot itself.
(C) Recursively sort the subarrays, and concatenate them.

Input x Output y
Deterministic Algorithm
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Input x Output yr
Randomized Algorithm

random bits r

13.2.0.22 Example: Randomized Quicksort

Recall: QuickSort can take Ω(n2) time to sort array of size n.

Theorem 13.2.1. Randomized QuickSort sorts a given array of length n in O(n log n)
expected time.

Note: On every input randomized QuickSort takes O(n log n) time in expectation. On
every input it may take Ω(n2) time with some small probability.

13.2.0.23 Example: Verifying Matrix Multiplication

Problem Given three n× n matrices A,B,C is AB = C?
Deterministic algorithm:

(A) Multiply A and B and check if equal to C.
(B) Running time? O(n3) by straight forward approach. O(n2.37) with fast matrix multi-

plication (complicated and impractical).

13.2.0.24 Example: Verifying Matrix Multiplication

Problem Given three n× n matrices A,B,C is AB = C?
Randomized algorithm:

(A) Pick a random n× 1 vector r.
(B) Return the answer of the equality ABr = Cr.
(C) Running time? O(n2)!

Theorem 13.2.2. If AB = C then the algorithm will always say YES. If AB 6= C then
the algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times
independently to reduce the probability of a false positive to 1/2100.

13.2.0.25 Why randomized algorithms?

(A) Many many applications in algorithms, data structures and computer science!
(B) In some cases only known algorithms are randomized or randomness is provably neces-

sary.
(C) Often randomized algorithms are (much) simpler and/or more efficient.
(D) Several deep connections to mathematics, physics etc.
(E) . . .
(F) Lots of fun!
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13.2.0.26 Where do I get random bits?

Question: Are true random bits available in practice?
(A) Buy them!
(B) CPUs use physical phenomena to generate random bits.
(C) Can use pseudo-random bits or semi-random bits from nature. Several fundamental

unresolved questions in complexity theory on this topic. Beyond the scope of this
course.

(D) In practice pseudo-random generators work quite well in many applications.
(E) The model is interesting to think in the abstract and is very useful even as a theo-

retical construct. One can derandomize randomized algorithms to obtain deterministic
algorithms.

13.2.0.27 Average case analysis vs Randomized algorithms

Average case analysis:
(A) Fix a deterministic algorithm.
(B) Assume inputs comes from a probability distribution.
(C) Analyze the algorithm’s average performance over the distribution over inputs.

Randomized algorithms:
(A) Algorithm uses random bits in addition to input.
(B) Analyze algorithms average performance over the given input where the average is over

the random bits that the algorithm uses.
(C) On each input behaviour of algorithm is random. Analyze worst-case over all inputs of

the (average) performance.

13.3 Basics of Discrete Probability
13.3.0.28 Discrete Probability

We restrict attention to finite probability spaces.

Definition 13.3.1. A discrete probability space is a pair (Ω,Pr) consists of finite set Ω of
elementary events and function p : Ω → [0, 1] which assigns a probability Pr[ω] for each
ω ∈ Ω such that

∑
ω∈Ω Pr[ω] = 1.

Example 13.3.2. An unbiased coin. Ω = {H,T} and Pr[H] = Pr[T ] = 1/2.

Example 13.3.3. A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for 1 ≤ i ≤
6.

13.3.1 Discrete Probability

13.3.1.1 And more examples

Example 13.3.4. A biased coin. Ω = {H,T} and Pr[H] = 2/3,Pr[T ] = 1/3.
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Example 13.3.5. Two independent unbiased coins. Ω = {HH,TT,HT, TH} and Pr[HH] =
Pr[TT ] = Pr[HT ] = Pr[TH] = 1/4.

Example 13.3.6. A pair of (highly) correlated dice.
Ω = {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
Pr[i, i] = 1/6 for 1 ≤ i ≤ 6 and Pr[i, j] = 0 if i 6= j.

13.3.1.2 Events

Definition 13.3.7. Given a probability space (Ω,Pr) an event is a subset of Ω. In other
words an event is a collection of elementary events. The probability of an event A, denoted
by Pr[A], is

∑
ω∈A Pr[ω].

The complement event of an event A ⊆ Ω is the event Ω \A frequently denoted by Ā.

13.3.2 Events

13.3.2.1 Examples

Example 13.3.8. A pair of independent dice. Ω = {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
(A) Let A be the event that the sum of the two numbers on the dice is even.

Then A =
{

(i, j) ∈ Ω
∣∣∣ (i+ j) is even

}
.

Pr[A] = |A|/36 = 1/2.

(B) Let B be the event that the first die has 1. Then B =
{

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
}

.

Pr[B] = 6/36 = 1/6.

13.3.2.2 Independent Events

Definition 13.3.9. Given a probability space (Ω,Pr) and two events A,B are independent
if and only if Pr[A ∩B] = Pr[A] Pr[B]. Otherwise they are dependent. In other words A,B
independent implies one does not affect the other.

Example 13.3.10. Two coins. Ω = {HH,TT,HT, TH} and Pr[HH] = Pr[TT ] = Pr[HT ] =
Pr[TH] = 1/4.
(A) A is the event that the first coin is heads and B is the event that second coin is tails.

A,B are independent.
(B) A is the event that the two coins are different. B is the event that the second coin is

heads. A,B independent.

13.3.3 Independent Events

13.3.3.1 Examples

Example 13.3.11. A is the event that both are not tails and B is event that second coin is
heads. A,B are dependent.
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13.3.4 Union bound

13.3.4.1 The probability of the union of two events, is no bigger than the prob-
ability of the sum of their probabilities.

Lemma 13.3.12. For any two events E and F, we have that Pr
[
E ∪ F

]
≤ Pr

[
E
]

+Pr
[
F
]
.

Proof : Consider E and F to be a collection of elmentery events (which they are). We have

Pr
[
E ∪ F

]
=
∑

x∈E∪F

Pr[x]

≤
∑

x∈E

Pr[x] +
∑

x∈F

Pr[x] = Pr
[
E
]

+ Pr
[
F
]
.

13.3.4.2 Random Variables

Definition 13.3.13. Given a probability space (Ω,Pr) a (real-valued) random variable X
over Ω is a function that maps each elementary event to a real number. In other words
X : Ω→ R.

Example 13.3.14. A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for 1 ≤
i ≤ 6.
(A) X : Ω→ R where X(i) = i mod 2.
(B) Y : Ω→ R where Y (i) = i2.

Definition 13.3.15. A binary random variable is one that takes on values in {0, 1}.

13.3.4.3 Indicator Random Variables

Special type of random variables that are quite useful.

Definition 13.3.16. Given a probability space (Ω,Pr) and an event A ⊆ Ω the indicator
random variable XA is a binary random variable where XA(ω) = 1 if ω ∈ A and XA(ω) = 0
if ω 6∈ A.

Example 13.3.17. A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for 1 ≤
i ≤ 6. Let A be the even that i is divisible by 3. Then XA(i) = 1 if i = 3, 6 and 0 otherwise.

13.3.4.4 Expectation

Definition 13.3.18. For a random variable X over a probability space (Ω,Pr) the expec-
tation of X is defined as

∑
ω∈Ω Pr[ω]X(ω). In other words, the expectation is the average

value of X according to the probabilities given by Pr[·].
Example 13.3.19. A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for 1 ≤
i ≤ 6.
(A) X : Ω→ R where X(i) = i mod 2. Then E[X] = 1/2.
(B) Y : Ω→ R where Y (i) = i2. Then E[Y ] =

∑6
i=1

1
6
· i2 = 91/6.
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13.3.4.5 Expectation

Proposition 13.3.20. For an indicator variable XA, E[XA] = Pr[A].

Proof :

E[XA] =
∑

y∈Ω

XA(y) Pr[y]

=
∑

y∈A

1 ·Pr[y] +
∑

y∈Ω\A

0 ·Pr[y]

=
∑

y∈A

Pr[y]

= Pr[A] .

13.3.4.6 Linearity of Expectation

Lemma 13.3.21. Let X, Y be two random variables (not necessarily independent) over a
probability space (Ω,Pr). Then E[X + Y ] = E[X] + E[Y ].

Proof :

E[X + Y ] =
∑

ω∈Ω

Pr[ω] (X(ω) + Y (ω))

=
∑

ω∈Ω

Pr[ω]X(ω) +
∑

ω∈Ω

Pr[ω]Y (ω) = E[X] + E[Y ] .

Corollary 13.3.22. E[a1X1 + a2X2 + . . .+ anXn] =
∑n

i=1 ai E[Xi].

13.4 Analyzing Randomized Algorithms
13.4.0.7 Types of Randomized Algorithms

Typically one encounters the following types:
(A) Las Vegas randomized algorithms: for a given input x output of algorithm is

always correct but the running time is a random variable. In this case we are interested
in analyzing the expected running time.

(B) Monte Carlo randomized algorithms: for a given input x the running time is
deterministic but the output is random; correct with some probability. In this case we
are interested in analyzing the probability of the correct output (and also the running
time).

(C) Algorithms whose running time and output may both be random.
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13.4.0.8 Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π:

(A) Let Q(x) be the time for Q to run on input x of length |x|.
(B) Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max
x:|x|=n

Q(x).

Randomized algorithm R for a problem Π:

(A) Let R(x) be the time for Q to run on input x of length |x|.
(B) R(x) is a random variable: depends on random bits used by R.
(C) E[R(x)] is the expected running time for R on x
(D) Worst-case analysis: expected time on worst input of size n

Trand−wc(n) = max
x:|x|=n

E[Q(x)] .

13.4.0.9 Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π:

(A) LetM(x) be the time forM to run on input x of length |x|. For Monte Carlo, assumption
is that run time is deterministic.

(B) Let Pr[x] be the probability that M is correct on x.
(C) Pr[x] is a random variable: depends on random bits used by M .
(D) Worst-case analysis: success probability on worst input

Prand−wc(n) = min
x:|x|=n

Pr[x] .

13.5 Why does randomization help?

13.5.0.10 Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many
heads? ...we get a binomial distribution.
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13.5.0.11 Massive randomness.. Is not that random.

This is known as concentration of mass .
This is a very special case of the law of large numbers.

13.5.1 Side note...

13.5.1.1 Law of large numbers (weakest form)...

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution looks like (converges to)
the normal/Gaussian distribution.

13.5.1.2 Massive randomness.. Is not that random.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the
strategic level.

13.5.1.3 Binomial distribution

Xn = numbers of heads when flipping a coin n times.
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Claim

Pr
[
Xn = i

]
=

(ni)
2n

.

Where:
(
n
k

)
= n!

(n−k)!k!
.

Indeed,
(
n
i

)
is the number of ways to choose i elements out of n elements (i.e., pick which

i coin flip come up heads).
Each specific such possibility (say 0100010...) had probability 1/2n.
We are interested in the bad event Pr[Xn ≤ n/4] (way too few heads). We are going to

prove this probability is tiny.

13.5.2 Binomial distribution

13.5.2.1 Playing around with binomial coefficients

Lemma 13.5.1. n! ≥ (n/e)n.

Proof :
nn

n!
≤

∞∑

i=0

ni

i!
= en,

by the Taylor expansion of ex =
∑∞

i=0
xi

i!
. This implies that (n/e)n ≤ n!, as required.

13.5.3 Binomial distribution

13.5.3.1 Playing around with binomial coefficients

Lemma 13.5.2. For any k ≤ n, we have
(
n
k

)
≤
(
ne
k

)k
.

Proof :
(
n

k

)
=

n!

(n− k)!k!
=
n(n− 1)(n− 2) . . . (n− k + 1)

k!

≤ nk

k!
≤ nk
(
k
e

)k =
(ne
k

)k
.

since k! ≥ (k/e)k (by previous lemma).

13.5.4 Binomial distribution

13.5.4.1 Playing around with binomial coefficients

Pr
[
Xn ≤

n

4

]
=

n/4∑

k=0

1

2n

(
n

k

)
≤ 1

2n
2 ·
(
n

n/4

)
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For k ≤ n/4 the above sequence behave like a geometric variable.

(
n

k + 1

)
/

(
n

k

)
=

n!

(k + 1)!(n− k − 1)!
/

n!

(k)!(n− k)!

=
n− k
k + 1

≥ (3/4)n

n/4 + 1
≥ 2.

13.5.5 Binomial distribution

13.5.5.1 Playing around with binomial coefficients

Pr
[
Xn ≤

n

4

]
≤ 1

2n
2 ·
(
n

n/4

)
≤ 1

2n
2 ·
(
ne

n/4

)n/4
≤ 2 ·

(
4e

24

)n/4

≤ 2 · 0.68n/4.

We just proved the following theorem.

Theorem 13.5.3. Let Xn be the random variable which is the number of heads when flipping
an unbiased coin independently n times. Then

Pr
[
Xn ≤

n

4

]
≤ 2 · 0.68n/4 and Pr

[
Xn ≥

3n

4

]
≤ 2 · 0.68n/4.

13.6 Randomized Quick Sort and Selection

13.7 Randomized Quick Sort
13.7.0.2 Randomized QuickSort

Randomized QuickSort

(A) Pick a pivot element uniformly at random from the array.
(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the

pivot itself.
(C) Recursively sort the subarrays, and concatenate them.

13.7.0.3 Example

(A) array: 16, 12, 14, 20, 5, 3, 18, 19, 1
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13.7.0.4 Analysis via Recurrence

(A) Given array A of size n, let Q(A) be number of comparisons of randomized QuickSort
on A.

(B) Note that Q(A) is a random variable.
(C) Let Aileft and Airight be the left and right arrays obtained if:

pivot is of rank i in A.

Q(A) = n+
n∑

i=1

Pr
[
pivot has rank i

] (
Q(Aileft) +Q(Airight)

)
.

Since each element of A has probability exactly of 1/n of being chosen:

Q(A) = n+
n∑

i=1

1

n

(
Q(Aileft) +Q(Airight)

)
.

13.7.0.5 Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected running time of randomized
QuickSort on arrays of size n.

We have, for any A:

Q(A) = n+
n∑

i=1

Pr
[
pivot has rank i

] (
Q(Aileft) +Q(Airight)

)

Therefore, by linearity of expectation:

E
[
Q(A)

]
= n+

n∑

i=1

Pr

[
pivot is

of rank i

](
E
[
Q(Aileft)

]
+ E

[
Q(Airight)

])
.

⇒ E
[
Q(A)

]
≤ n+

n∑

i=1

1

n
(T (i− 1) + T (n− i)) .

13.7.0.6 Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected running time of randomized
QuickSort on arrays of size n.

We derived:

E
[
Q(A)

]
≤ n+

n∑

i=1

1

n
(T (i− 1) + T (n− i)) .

Note that above holds for any A of size n. Therefore

max
A:|A|=n

E[Q(A)] = T (n) ≤ n+
n∑

i=1

1

n
(T (i− 1) + T (n− i)) .
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13.7.0.7 Solving the Recurrence

T (n) ≤ n+
n∑

i=1

1

n
(T (i− 1) + T (n− i))

with base case T (1) = 0.

Lemma 13.7.1. T (n) = O(n log n).

Proof : (Guess and) Verify by induction.
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Chapter 14

Randomized Algorithms: QuickSort
and QuickSelect

CS 473: Fundamental Algorithms, Spring 2013
March 8, 2013

14.1 Slick analysis of QuickSort
14.1.0.8 A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:
(A) For 1 ≤ i < j < n let Rij be the event that rank i element is compared with rank j

element.
(B) Xij is the indicator random variable for Rij. That is, Xij = 1 if rank i is compared with

rank j element, otherwise 0.

Q(A) =
∑

1≤i<j≤n

Xij

and hence by linearity of expectation,

E
[
Q(A)

]
=

∑

1≤i<j≤n
E
[
Xij

]
=

∑

1≤i<j≤n

Pr
[
Rij

]
.

14.1.0.9 A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij]?

7 5 9 1 3 4 8 6 With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of comparing 5 to 8 is Pr[R4,7].
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(A) If pivot too small (say 3 [rank 2]). Partition and call recursively:

7 5 9 1 3 4 8 6
=⇒ 7 5 93 4 8 61

Decision if to compare 5 to 8 is moved to subproblem.
(B) If pivot too large (say 9 [rank 8]):

7 5 9 1 3 4 8 67 5 9 1 3 4 8 6
=⇒ 7 5 1 3 4 8 6 9

Decision if to compare 5 to 8 moved to subproblem.

14.1.1 A Slick Analysis of QuickSort

14.1.1.1 Question: What is Pr[Ri,j]?

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of comparing 5
to 8 is Pr[R4,7].

(A) If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6

(B) If pivot is 8 (rank 7). Bingo!

7 5 9 1 3 4 8 6
=⇒ 7 5 91 3 4 6 8

(C) If pivot in between the two numbers (say 6 [rank 5]):

7 5 9 1 3 4 8 6
=⇒ 75 91 3 4 6 8

5 and 8 will never be compared to each other.

14.1.2 A Slick Analysis of QuickSort

14.1.2.1 Question: What is Pr[Ri,j]?

Conclusion:

Ri,j happens if and only if:

ith or jth ranked element is the first pivot out of
ith to jth ranked elements.

How to analyze this?

Thinking acrobatics!

(A) Assign every element in the array a random priority (say in [0, 1]).
(B) Choose pivot to be the element with lowest priority in subproblem.
(C) Equivalent to picking pivot uniformly at random

(as QuickSort do).
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14.1.3 A Slick Analysis of QuickSort

14.1.3.1 Question: What is Pr[Ri,j]?

How to analyze this?

Thinking acrobatics!

(A) Assign every element in the array a random priority (say in [0, 1]).
(B) Choose pivot to be the element with lowest priority in subproblem.

=⇒ Ri,j happens if either i or j have lowest priority out of elements rank i to j,

There are k = j − i+ 1 relevant elements.

Pr
[
Ri,j

]
=

2

k
=

2

j − i+ 1
.

14.1.3.2 A Slick Analysis of QuickSort

Question: What is Pr[Rij]?

Lemma 14.1.1. Pr
[
Rij

]
= 2

j−i+1
.

Proof : Let a1, . . . , ai, . . . , aj, . . . , an be elements ofA in sorted order. Let S = {ai, ai+1, . . . , aj}
Observation: If pivot is chosen outside S then all of S either in left array or right array.

Observation: ai and aj separated when a pivot is chosen from S for the first time. Once
separated no comparison.

Observation: ai is compared with aj if and only if either ai or aj is chosen as a pivot
from S at separation...

14.1.4 A Slick Analysis of QuickSort

14.1.4.1 Continued...

Lemma 14.1.2. Pr
[
Rij

]
= 2

j−i+1
.

Proof : Let a1, . . . , ai, . . . , aj, . . . , an be sort of A. Let S = {ai, ai+1, . . . , aj}
Observation: ai is compared with aj if and only if either ai or aj is chosen as a pivot

from S at separation.

Observation: Given that pivot is chosen from S the probability that it is ai or aj is
exactly 2/|S| = 2/(j−i+1) since the pivot is chosen uniformly at random from the array.
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14.1.5 A Slick Analysis of QuickSort

14.1.5.1 Continued...

E
[
Q(A)

]
=

∑

1≤i<j≤n
E[Xij] =

∑

1≤i<j≤n

Pr[Rij] .

Lemma 14.1.3. Pr[Rij] = 2
j−i+1

.

E
[
Q(A)

]
=

∑

1≤i<j≤n
Pr
[
Rij

]
=

∑

1≤i<j≤n

2

j − i+ 1

=
n−1∑

i=1

n∑

j=i+1

2

j − i+ 1
= 2

n−1∑

i=1

n∑

i<j

1

j − i+ 1
≤ 2

n−1∑

i=1

n−i+1∑

∆=2

1

∆

≤ 2

n−1∑

i=1

(Hn−i+1 − 1) ≤ 2
∑

1≤i<n
Hn

≤ 2nHn = O(n log n)

14.2 QuickSelect with high probability

14.2.1 Yet another analysis of QuickSort

14.2.1.1 You should never trust a man who has only one way to spell a word

Consider element e in the array.

Consider the subproblems it participates in during QuickSort execution:

S1, S2, . . . , Sk.

Definition

e is lucky in the jth iteration if |Sj | ≤ (3/4) |Sj−1|.

Key observation

The event e is lucky in jth iteration

is independent of

the event that e is lucky in kth iteration,

(If j 6= k)

Xj = 1 iff e is lucky in the jth iteration.
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14.2.2 Yet another analysis of QuickSort

14.2.2.1 Continued...

Claim

Pr[Xj = 1] = 1/2.

Proof :
(A) Xj determined by j recursive subproblem.
(B) Subproblem has nj−1 = |Xj−1| elements.
(C) If jth pivot rank ∈ [nj−1/4, (3/4)nj−1], then e lucky in jth iter.
(D) Prob. e is lucky ≥ |[nj−1/4, (3/4)nj−1]| /nj−1 = 1/2.

Observation

If X1 +X2 + . . . Xk = dlog4/3 ne then e subproblem is of size one. Done!

14.2.3 Yet another analysis of QuickSort

14.2.3.1 Continued...

Observation

Probability e participates in ≥ k = 40dlog4/3 ne subproblems. Is equal to

Pr
[
X1 +X2 + . . .+Xk ≤ dlog4/3 ne

]

≤ Pr[X1 +X2 + . . .+Xk ≤ k/4]

≤ 2 · 0.68k/4 ≤ 1/n5.

Conclusion

QuickSort takes O(n log n) time with high probability.

14.3 Randomized Selection
14.3.0.2 Randomized Quick Selection

Input Unsorted array A of n integers

Goal Find the jth smallest number in A (rank j number)

Randomized Quick Selection
(A) Pick a pivot element uniformly at random from the array
(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot

itself.
(C) Return pivot if rank of pivot is j.
(D) Otherwise recurse on one of the arrays depending on j and their sizes.
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14.3.0.3 Algorithm for Randomized Selection

Assume for simplicity thatA has distinct elements.

QuickSelect(A, j):
Pick pivot x uniformly at random from A
Partition A into Aless, x, and Agreater using x as pivot

if (|Aless| = j − 1) then
return x

if (|Aless| ≥ j) then
return QuickSelect(Aless, j)

else
return QuickSelect(Agreater, j − |Aless| − 1)

14.3.0.4 QuickSelect analysis

(A) S1, S2, . . . , Sk be the subproblems considered by the algorithm.
Here |S1| = n.

(B) Si would be successful if |Si| ≤ (3/4) |Si−1|
(C) Y1 = number of recursive calls till first successful iteration.

Clearly, total work till this happens is O(Y1n).
(D) ni = size of the subproblem immediately after the (i− 1)th successful iteration.
(E) Yi = number of recursive calls after the (i−1)th successful call, till the ith successful iteration.
(F) Running time is O(

∑
i niYi).

14.3.0.5 QuickSelect analysis

Example

Si = subarray used in ith recursive call

|Si| = size of this subarray

Red indicates successful iteration.
Inst’ S1 S2 S3 S4 S5 S6 S7 S8 S9

|Si| 100 70 60 50 40 30 25 5 2

Succ’ Y1 = 2 Y2 = 4 Y3 = 2 Y4 = 1

ni = n1 = 100 n2 = 60 n3 = 25 n4 = 2

(A) All the subproblems after (i − 1)th successful iteration till ith successful iteration have size
≤ ni.

(B) Total work: O(
∑

i niYi).

14.3.0.6 QuickSelect analysis

Total work: O(
∑

i niYi).

We have:

(A) ni ≤ (3/4)ni−1 ≤ (3/4)i−1n.
(B) Yi is a random variable with geometric distribution

Probability of Yi = k is 1/2i.
(C) E[Yi] = 2.
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As such, expected work is proportional to

E

[∑

i

niYi

]
=
∑

i

E
[
niYi

]
≤
∑

i

E
[
(3/4)i−1nYi

]

= n
∑

i

(3/4)i−1
E
[
Yi

]
= n

∑

i=1

(3/4)i−12 ≤ 8n.

14.3.0.7 QuickSelect analysis

Theorem 14.3.1. The expected running time of QuickSelect is O(n).

14.3.1 QuickSelect analysis

14.3.1.1 Analysis via Recurrence

(A) Given array A of size n let Q(A) be number of comparisons of randomized selection on A for
selecting rank j element.

(B) Note that Q(A) is a random variable
(C) Let Ailess and Aigreater be the left and right arrays obtained if pivot is rank i element of A.
(D) Algorithm recurses on Ailess if j < i and recurses on Aigreater if j > i and terminates if j = i.

Q(A) = n+

j−1∑

i=1

Pr[pivot has rank i]Q(Aigreater)

+
n∑

i=j+1

Pr[pivot has rank i]Q(Ailess)

14.3.1.2 Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where T (n) is the worst-case expected time.

T (n) ≤ n+
1

n
(

j−1∑

i=1

T (n− i) +

n∑

i=j

T (i− 1)).

Theorem 14.3.2. T (n) = O(n).

Proof : (Guess and) Verify by induction (see next slide).

14.3.1.3 Analyzing the recurrence

Theorem 14.3.3. T (n) = O(n).
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Prove by induction that T (n) ≤ αn for some constant α ≥ 1 to be fixed later.
Base case: n = 1, we have T (1) = 0 since no comparisons needed and hence T (1) ≤ α.
Induction step: Assume T (k) ≤ αk for 1 ≤ k < n and prove it for T (n). We have by the
recurrence:

T (n) ≤ n+
1

n
(

j−1∑

i=1

T (n− i) +
∑

i=jn

T (i− 1))

≤ n+
α

n
(

j−1∑

i=1

(n− i) +
n∑

i=j

(i− 1)) by applying induction

14.3.1.4 Analyzing the recurrence

T (n) ≤ n+
α

n
(

j−1∑

i=1

(n− i) +
n∑

i=j

(i− 1))

≤ n+
α

n
((j − 1)(2n− j)/2 + (n− j + 1)(n+ j − 2)/2)

≤ n+
α

2n
(n2 + 2nj − 2j2 − 3n+ 4j − 2)

above expression maximized when j = (n+ 1)/2: calculus

≤ n+
α

2n
(3n2/2− n) substituting (n+ 1)/2 for j

≤ n+ 3αn/4

≤ αn for any constant α ≥ 4

14.3.1.5 Comments on analyzing the recurrence

(A) Algebra looks messy but intuition suggest that the median is the hardest case and hence can
plug j = n/2 to simplify without calculus

(B) Analyzing recurrences comes with practice and after a while one can see things more intuitively
John Von Neumann:
Young man, in mathematics you don’t understand things. You just get used to them.
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Chapter 15

Hashing

CS 473: Fundamental Algorithms, Spring 2013
March 13, 2013

15.1 Hash Tables

15.2 Introduction
15.2.0.6 Dictionary Data Structure

(A) U : universe of keys with total order: numbers, strings, etc.
(B) Data structure to store a subset S ⊆ U
(C) Operations:

(A) Search/lookup: given x ∈ U is x ∈ S?
(B) Insert: given x 6∈ S add x to S.
(C) Delete: given x ∈ S delete x from S

(D) Static structure: S given in advance or changes very infrequently, main operations are lookups.
(E) Dynamic structure: S changes rapidly so inserts and deletes as important as lookups.

15.2.0.7 Dictionary Data Structures

Common solutions:

(A) Static:
(A) Store S as a sorted array
(B) Lookup: Binary search in O(log |S|) time (comparisons)

(B) Dynamic:
(A) Store S in a balanced binary search tree
(B) Lookup, Insert, Delete in O(log |S|) time (comparisons)

15.2.0.8 Dictionary Data Structures

Question: “Should Tables be Sorted?”
(also title of famous paper by Turing award winner Andy Yao)

Hashing is a widely used & powerful technique for dictionaries.
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Motivation:

(A) Universe U may not be (naturally) totally ordered.
(B) Keys correspond to large objects (images, graphs etc) for which comparisons are very expen-

sive.
(C) Want to improve “average” performance of lookups to O(1) even at cost of extra space or

errors with small probability: many applications for fast lookups in networking, security, etc.

15.2.0.9 Hashing and Hash Tables

Hash Table data structure:

(A) A (hash) table/array T of size m (the table size).
(B) A hash function h : U → {0, . . . ,m− 1}.
(C) Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:
(A) Each element x ∈ S hashes to a distinct slot in T . Store x in slot h(x)
(B) Lookup: Given y ∈ U check if T [h(y)] = y. O(1) time!

Collisions unavoidable. Several different techniques to handle them.

15.2.0.10 Handling Collisions: Chaining

Collision: h(x) = h(y) for some x 6= y.

Chaining to handle collisions:

(A) For each slot i store all items hashed to slot i in a linked list. T [i] points to the linked list
(B) Lookup: to find if y ∈ U is in T , check the linked list at T [h(y)]. Time proportion to size of

linked list.

This is also known as Open hashing .

15.2.0.11 Handling Collisions

Several other techniques:

(A) Open addressing.
Every element has a list of places it can be (in certain order). Check in this order.

(B) . . .
(C) Cuckoo hashing.

Every value has two possible locations. When inserting, insert in one of the locations, oth-
erwise, kick stored value to its other location. Repeat till stable. if no stability then rebuild
table.

(D) Others.
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15.2.0.12 Understanding Hashing

Does hashing give O(1) time per operation for dictionaries?

Questions:

(A) Complexity of evaluating h on a given element?
(B) Relative sizes of the universe U and the set to be stored S.
(C) Size of table relative to size of S.
(D) Worst-case vs average-case vs randomized (expected) time?
(E) How do we choose h?

15.2.0.13 Understanding Hashing

(A) Complexity of evaluating h on a given element? Should be small.
(B) Relative sizes of the universe U and the set to be stored S: typically |U| � |S|.
(C) Size of table relative to size of S. The load factor of T is the ratio n/t where n = |S| and

m = |T |. Typically n/t is a small constant smaller than 1.
Also known as the fill factor .

Main and interrelated questions:

(A) Worst-case vs average-case vs randomized (expected) time?
(B) How do we choose h?

15.2.0.14 Single hash function

(A) U : universe (very large).
(B) Assume N = |U| � m where m is size of table T . In particular assume N ≥ m2 (very

conservative).
(C) Fix hash function h : U → {0, . . . ,m− 1}.
(D) N items hashed to m slots. By pigeon hole principle there is some i ∈ {0, . . . ,m − 1} such

that N/m ≥ m elements of U get hashed to i (!).
(E) Implies that there is a set S ⊆ U where |S| = m such that all of S hashes to same slot. Ooops.

Lesson: For every hash function there is a very bad set. Bad set. Bad.

15.2.0.15 Picking a hash function

(A) Hash function are often chosen in an ad hoc fashion. Implicit assumption is that input behaves
well.

(B) Theory and sound practice suggests that a hash function should be chosen properly with
guarantees on its behavior.

Parameters: N = |U|, m = |T |, n = |S|
(A) H is a family of hash functions: each function h ∈ H should be efficient to evaluate (that is,

to compute h(x)).
(B) h is chosen randomly from H (typically uniformly at random). Implicitly assumes that H

allows an efficient sampling.
(C) Randomized guarantee: should have the property that for any fixed set S ⊆ U of size m

the expected number of collisions for a function chosen from H should be “small”. Here the
expectation is over the randomness in choice of h.

15.2.0.16 Picking a hash function

Question: Why not let H be the set of all functions from U to {0, 1, . . . ,m− 1}?
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(A) Too many functions! A random function has high complexity!
# of functions: M = m|U|.
Bits to encode such a function ≈ logM = |U| logm.

Question: Are there good and compact families H?

(A) Yes... But what it means for H to be good and compact.

15.3 Universal Hashing
15.3.0.17 Uniform hashing

Question: What are good properties of H in distributing data?

(A) Consider any element x ∈ U . Then if h ∈ H is picked randomly then x should go into a
random slot in T . In other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.

(B) Consider any two distinct elements x, y ∈ U . Then if h ∈ H is picked randomly then the
probability of a collision between x and y should be at most 1/m. In other words Pr[h(x) =
h(y)] = 1/m (cannot be smaller).

(C) Second property is stronger than the first and the crucial issue.

Definition 15.3.1. A family hash function H is 2-universal if for all distinct x, y ∈ U , Pr[h(x) =
h(y)] = 1/m where m is the table size.

Note: The set of all hash functions satisfies stronger properties!

15.3.0.18 Analyzing Uniform Hashing

(A) T is hash table of size m.
(B) S ⊆ U is a fixed set of size ≤ m.
(C) h is chosen randomly from a uniform hash family H.
(D) x is a fixed element of U . Assume for simplicity that x /∈ S.

Question: What is the expected time to look up x in T using h assuming chaining used to
resolve collisions?

15.3.0.19 Analyzing Uniform Hashing

Question: What is the expected time to look up x in T using h assuming chaining used to resolve
collisions?

(A) The time to look up x is the size of the list at T [h(x)]: same as the number of elements in S
that collide with x under h.

(B) Let `(x) be this number. We want E[`(x)]
(C) For y ∈ S let Ay be the even that x, y collide and Dy be the corresponding indicator variable.
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15.3.1 Analyzing Uniform Hashing

15.3.1.1 Continued...

Number of elements colliding with x: `(x) =
∑

y∈S Dy.

⇒ E[`(x)] =
∑

y∈S
E[Dy] linearity of expectation

=
∑

y∈S
Pr[h(x) = h(y)]

=
∑

y∈S

1

m
since H is a uniform hash family

= |S|/m
≤ 1 if |S| ≤ m

15.3.1.2 Analyzing Uniform Hashing

Question: What is the expected time to look up x in T using h assuming chaining used to resolve
collisions?

Answer: O(n/m).

Comments:

(A) O(1) expected time also holds for insertion.
(B) Analysis assumes static set S but holds as long as S is a set formed with at most O(m)

insertions and deletions.
(C) Worst-case: look up time can be large! How large? Ω(log n/ log log n)

[Lower bound holds even under stronger assumptions.]

15.3.2 Rehashing, amortization and...

15.3.2.1 ... making the hash table dynamic

Previous analysis assumed fixed S of size ' m.

Question: What happens as items are inserted and deleted?

(A) If |S| grows to more than cm for some constant c then hash table performance clearly degrades.
(B) If |S| stays around ' m but incurs many insertions and deletions then the initial random hash

function is no longer random enough!

Solution: Rebuild hash table periodically!

(A) Choose a new table size based on current number of elements in table.
(B) Choose a new random hash function and rehash the elements.
(C) Discard old table and hash function.

Question: When to rebuild? How expensive?

15.3.2.2 Rebuilding the hash table

(A) Start with table size m where m is some estimate of |S| (can be some large constant).
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(B) If |S| grows to more than twice current table size, build new hash table (choose a new random
hash function) with double the current number of elements. Can also use similar trick if table
size falls below quarter the size.

(C) If |S| stays roughly the same but more than c|S| operations on table for some chosen constant
c (say 10), rebuild.

The amortize cost of rebuilding to previously performed operations. Rebuilding ensures O(1)
expected analysis holds even when S changes. Hence O(1) expected look up/insert/delete time
dynamic data dictionary data structure!

15.3.2.3 Some math required...

Lemma 15.3.2. Let p be a prime number,

x: an integer number in {1, . . . , p− 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

In other words: For every element there is a unique inverse.

=⇒ Zp = {0, 1, . . . , p− 1} when working module p is a field.

15.3.2.4 Proof of lemma

Claim 15.3.3. Let p be a prime number. For any α, β, i ∈ {1, . . . , p− 1} s.t. α 6= β, we have that
αi 6= βi mod p.

Proof : Assume for the sake of contradiction αi = βi mod p. Then

i(α− β) = 0 mod p

=⇒ p divides i(α− β)

=⇒ p divides α− β
=⇒ α− β = 0

=⇒ α = β.

And that is a contradiction.

15.3.3 Proof of lemma...

15.3.3.1 Uniqueness.

Lemma 15.3.4. Let p be a prime number,

x: an integer number in {1, . . . , p− 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

Proof : Assume the lemma is false and there are two distinct numbers y, z ∈ {1, . . . , p− 1} such
that

xy = 1 mod p and xz = 1 mod p.

But this contradicts the above claim (set i = x, α = y and β = z).
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15.3.4 Proof of lemma...

15.3.4.1 Existence

Proof : By claim, for any α ∈ {1, . . . , p− 1} we have that {α ∗ 1 mod p, α ∗ 2 mod p, . . . , α ∗ (p− 1) mod p} =
{1, 2, . . . , p− 1}.

=⇒ There exists a number y ∈ {1, . . . , p− 1} such that αy = 1 mod p.

15.3.4.2 Constructing Universal Hash Families

Parameters: N = |U|, m = |T |, n = |S|
(A) Choose a prime number p ≥ N . Zp = {0, 1, . . . , p− 1} is a field.
(B) For a, b ∈ Zp, a 6= 0, define the hash function ha,b as ha,b(x) = ((ax+ b) mod p) mod m.
(C) Let H = {ha,b | a, b ∈ Zp, a 6= 0}. Note that |H| = p(p− 1).

Theorem 15.3.5. H is a 2-universal hash family.

Comments:

(A) Hash family is of small size, easy to sample from.
(B) Easy to store a hash function (a, b have to be stored) and evaluate it.

15.3.4.3 What the is going on?

ha,b(x) = ((ax+ b) mod p) mod m

First map x 6= y to r = h(x) and s = h(y).
0 1 2 3 x

(x, y)

y

→ (r, s)

0 1 2 3 r

s

This is a random uniform mapping (choosing a and b) – every cell has the same probability to

be the target, for fixed x and y.
(r, s)

0 1 2 3 r

s

=⇒
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=⇒

(A) First part of mapping maps (x, y) to a ran-
dom location (ha,b(x), ha,b(y)) in the “ma-
trix”.

(B) (ha,b(x), ha,b(y)) is not on main diagonal.
(C) All blue locations are “bad” – map by

mod m to a location of collusion.
(D) But... at most 1/m fraction of allowable lo-

cations in the matrix are bad.

15.3.4.4 Constructing Universal Hash Families

Theorem 15.3.6. H is a (2)-universal hash family.

Proof : Fix x, y ∈ U . What is the probability they will collide if h is picked randomly from H?
(A) Let a, b be bad for x, y if ha,b(x) = ha,b(y).
(B) Claim: Number of bad pairs is at most p(p− 1)/m.
(C) Total number of hash functions is p(p− 1) and hence probability of a collision is ≤ 1/m.

15.3.4.5 Some Lemmas

Lemma 15.3.7. If x 6= y then for any a, b ∈ Zp such that a 6= 0, we have
ax+ b mod p 6= ay + b mod p.

Proof : If ax + b mod p = ay + b mod p then a(x − y) mod p = 0 and a 6= 0 and (x − y) 6= 0.
However, a and (x− y) cannot divide p since p is prime and a < p and (x− y) < p.

15.3.4.6 Some Lemmas

Lemma 15.3.8. If x 6= y then for each (r, s) such that r 6= s and 0 ≤ r, s ≤ p− 1 there is exactly
one a, b such that ax+ b mod p = r and ay + b mod p = s .

Proof : Solve the two equations:

ax+ b = r mod p and ay + b = s mod p

We get a = r−s
x−y mod p and b = r − ax mod p.

15.3.4.7 Understanding the hashing

Once we fix a and b, and we are given a value x, we compute the hash value of x in two stages:
(A) Compute : r ← (ax+ b) mod p.
(B) Fold : r′ ← r mod m
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Collision...

Given two values x and y they might collide because of either steps.

Lemma 15.3.9. # not equal pairs of Zp × Zp that are folded to the same number is p(p− 1)/m.

15.3.4.8 Folding numbers

Lemma 15.3.10. # not equal pairs of Zp ×Zp that are folded to the same number is p(p− 1)/m.

Proof : Consider a pair (x, y) ∈ {0, 1, . . . , p− 1}2 s.t. x 6= y. Fix x:
(A) There are dp/me values of y that fold into x. That is

x mod m = y mod m.

(B) One of them is when x = y.
(C) =⇒ # of colliding pairs (dp/me − 1)p ≤ (p− 1)p/m

15.3.5 Proof of Claim

15.3.5.1 # of bad pairs is p(p− 1)/m

Proof : Let a, b ∈ Zp such that a 6= 0 and ha,b(x) = ha,b(y).
(A) Let ax+ b mod p = r and ay + b mod = s mod p.
(B) Collision if and only if r = s mod m.
(C) (Folding error): Number of pairs (r, s) such that r 6= s and 0 ≤ r, s ≤ p− 1 and r = s mod m

is p(p− 1)/m.
(D) From previous lemma for each bad pair (a, b) there is a unique pair (r, s) such that r = s

mod m. Hence total number of bad pairs is p(p− 1)/m.

Prob of x and y to collide: # bad pairs
#pairs = p(p−1)/m

p(p−1) = 1
m .

15.3.5.2 Perfect Hashing

Question: Can we make look up time O(1) in worst case?

Yes for static dictionaries but then space usage is O(m) only in expectation.

15.3.5.3 Practical Issues

Hashing used typically for integers, vectors, strings etc.

• Universal hashing is defined for integers. To implement for other objects need to map objects
in some fashion to integers (via representation)

• Practical methods for various important cases such as vectors, strings are studied extensively.
See http://en.wikipedia.org/wiki/Universal_hashing for some pointers.

• Recent important paper briding theory and practice of hashing. “The power of simple tab-
ulation hashing” by Mikkel Thorup and Mihai Patrascu, 2011. See http://en.wikipedia.

org/wiki/Tabulation_hashing
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15.3.5.4 Bloom Filters

Hashing:
(A) To insert x in dictionary store x in table in location h(x)
(B) To lookup y in dictionary check contents of location h(y)

Bloom Filter: tradeoff space for false positives
(A) Storing items in dictionary expensive in terms of memory, especially if items are unwieldy

objects such a long strings, images, etc with non-uniform sizes.
(B) To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
(C) To lookup y if bit in location h(y) is 1 say yes, else no.

15.3.5.5 Bloom Filters

Bloom Filter: tradeoff space for false positives
(A) To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
(B) To lookup y if bit in location h(y) is 1 say yes, else no
(C) No false negatives but false positives possible due to collisions

Reducing false positives:
(A) Pick k hash functions h1, h2, . . . , hk independently
(B) To insert x for 1 ≤ i ≤ k set bit in location hi(x) in table i to 1
(C) To lookup y compute hi(y) for 1 ≤ i ≤ k and say yes only if each bit in the corresponding

location is 1, otherwise say no. If probability of false positive for one hash function is α < 1
then with k independent hash function it is αk.

15.3.5.6 Take away points

(A) Hashing is a powerful and important technique for dictionaries. Many practical applications.
(B) Randomization fundamental to understanding hashing.
(C) Good and efficient hashing possible in theory and practice with proper definitions (universal,

perfect, etc).
(D) Related ideas of creating a compact fingerprint/sketch for objects is very powerful in theory

and practice.
(E) Many applications in practice.
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Chapter 16

Network Flows

CS 473: Fundamental Algorithms, Spring 2013
March 15, 2013

16.0.5.7 Everything flows

Panta rei – everything flows (literally).
Heraclitus (535–475 BC)

16.1 Network Flows: Introduction and Setup
16.1.0.8 Transportation/Road Network

16.1.0.9 Internet Backbone Network
16.1.0.10 Common Features of Flow Networks

(A) Network represented by a (directed) graph G = (V,E).
(B) Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
(C) Source(s) of traffic/data.
(D) Sink(s) of traffic/data.
(E) Traffic flows from sources to sinks.
(F) Traffic is switched/interchanged at nodes.
Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.
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16.1.0.11 Single Source/Single Sink Flows

Simple setting:

(A) Single source s and single sink t.
(B) Every other node v is an internal node.
(C) Flow originates at s and terminates at t.
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(A) Each edge e has a capacity c(e) ≥ 0.
(B) Sometimes assume:

Source s ∈ V has no incoming edges, and sink t ∈ V has no
outgoing edges.

Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

16.1.0.12 Definition of Flow

Two ways to define flows:

(A) edge based, or
(B) path based.

Essentially equivalent but have different uses.

Edge based definition is more compact.

16.1.0.13 Edge Based Definition of Flow

Definition 16.1.1. Flow in network G = (V,E), is function f : E → R≥0 s.t.
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Figure 16.1: Flow with value.

(A) Capacity Constraint: For each edge e, f(e) ≤
c(e).

(B) Conservation Constraint: For each vertex v 6=
s, t.

∑

e into v

f(e) =
∑

e out of v

f(e)

(C) Value of flow= (total flow out of source) − (total
flow in to source).

16.1.0.14 Flow...

Conservation of flow law is also known as Kirchhoff’s law .

16.1.0.15 More Definitions and Notation

Notation

(A) The inflow into a vertex v is f in(v) =
∑
e into v f(e) and the outflow is fout(v) =

∑
e out of v f(e)

(B) For a set of vertices A, f in(A) =
∑
e into A f(e). Outflow fout(A) is defined analogously

Definition 16.1.2. For a network G = (V,E) with source s, the value of flow f is defined as
v(f) = fout(s)− f in(s).

16.1.0.16 A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all paths from s to t. |P| can be exponential in n.

Definition 16.1.3 (Flow by paths.). A flow in network G = (V,E), is function f : P → R≥0

s.t.

(A) Capacity Constraint: For each edge e, total flow on e is ≤ c(e).
∑

p∈P:e∈p
f(p) ≤ c(e)

(B) Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f(p).
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16.1.0.17 Example

s t

v

u

/20

/30

/20

/11

/27 P = {p1, p2, p3}
p1 : s→ u→ t
p2 : s→ u→ v → t
p3 : s→ v → t
f(p1) = 10, f(p2) = 4, f(p3) = 6

s t

p
1 : 10

v

p2
: 4

u

p
3 : 6

16.1.0.18 Path based flow implies edge based flow

Lemma 16.1.4. Given a path based flow f : P → R≥0 there is an edge based flow f ′ : E → R≥0

of the same value.

Proof : For each edge e define f ′(e) =
∑

p:e∈p f(p).

Exercise: Verify capacity and conservation constraints for f ′.

Exercise: Verify that value of f and f ′ are equal

16.1.0.19 Example

s t

p
1 : 10

v

p2
: 4

u

p
3 : 6

s t

14 10

4

10

6

p
1 : 10

v

p2
: 4

u

p
3 : 6

/20

/30

/20

/11

/27

P = {p1, p2, p3}
p1 : s→ u→ t
p2 : s→ u→ v → t
p3 : s→ v → t
f(p1) = 10, f(p2) = 4, f(p3) = 6
f ′(s→ u) = 14
f ′(u→ v) = 4
f ′(s→ v) = 6
f ′(u→ t) = 10
f ′(v → t) = 10
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16.1.1 Flow Decomposition

16.1.1.1 Edge based flow to Path based Flow

Lemma 16.1.5. Given an edge based flow f ′ : E → R≥0, there is a path based flow f : P → R≥0 of
same value. Moreover, f assigns non-negative flow to at most m paths where |E| = m and |V | = n.
Given f ′, the path based flow can be computed in O(mn) time.

16.1.2 Flow Decomposition

16.1.2.1 Edge based flow to Path based Flow

Proof :[Proof Idea]

(A) Remove all edges with f ′(e) = 0.
(B) Find a path p from s to t.
(C) Assign f(p) to be mine∈p f

′(e).
(D) Reduce f ′(e) for all e ∈ p by f(p).
(E) Repeat until no path from s to t.
(F) In each iteration at least on edge has flow reduced to zero.
(G) Hence, at most m iterations. Can be implemented in O(m(m+n)) time. O(mn) time requires

care.

16.1.2.2 Example
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16.1.2.3 Edge vs Path based Definitions of Flow

Edge based flows:

(A) compact representation, only m values to be specified, and
(B) need to check flow conservation explicitly at each internal node.

Path flows:

(A) in some applications, paths more natural,
(B) not compact,
(C) no need to check flow conservation constraints.

Equivalence shows that we can go back and forth easily.
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16.1.2.4 The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the maximum flow between source
and sink?

16.1.2.5 Cuts

Definition 16.1.6 (s-t cut). Given a flow network an s-t cut is a set of edges E′ ⊂ E such that
removing E′ disconnects s from t: in other words there is no directed s→ t path in E − E′.

The capacity of a cut E′ is c(E′) =
∑

e∈E′ c(e).
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Caution:
(A) Cut may leave t→ s paths!
(B) There might be many s-t cuts.

16.1.3 s− t cuts

16.1.3.1 A death by a thousand cuts
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16.1.3.2 Minimal Cut

Definition 16.1.7 (Minimal s-t cut.). Given a s-t flow network G = (V,E), E′ ⊆ E is a mini-
mal cut if for all e ∈ E′, if E′ \ {e} is not a cut.

Observation: given a cut E′, can check efficiently whether E′ is a minimal cut or not. How?
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16.1.3.3 Cuts as Vertex Partitions

Let A ⊂ V such that
(A) s ∈ A, t 6∈ A, and
(B) B = V \A (hence t ∈ B).
The cut (A,B) is the set of edges

(A,B) = {(u, v) ∈ E | u ∈ A, v ∈ B} .

Cut (A,B) is set of edges leaving A.
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Claim 16.1.8. (A,B) is an s-t cut.

Proof : Let P be any s → t path in G. Since t is not in A, P has to leave A via some edge (u, v)
in (A,B).

16.1.3.4 Cuts as Vertex Partitions

Lemma 16.1.9. Suppose E′ is an s-t cut. Then there is a cut (A,B) such that (A,B) ⊆ E′.

Proof : E′ is an s-t cut implies no path from s to t in (V,E − E′).
(A) Let A be set of all nodes reachable by s in (V,E − E′).
(B) Since E′ is a cut, t 6∈ A.
(C) (A,B) ⊆ E′. Why?If some edge (u, v) ∈ (A,B) is not in E′ then v will be reachable by s and

should be in A, hence a contradiction.

Corollary 16.1.10. Every minimal s-t cut E′ is a cut of the form (A,B).

16.1.3.5 Minimum Cut

Definition 16.1.11. Given a flow network an s-t minimum cut is a cut E′ of smallest capacity
amongst all s-t cuts.

Observation: exponential number of s-t cuts and no “easy” algorithm to find a minimum cut.
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16.1.3.6 The Minimum-Cut Problem

Problem

Input A flow network G

Goal Find the capacity of a minimum s-t cut

16.1.3.7 Flows and Cuts

Lemma 16.1.12. For any s-t cut E′, maximum s-t flow ≤ capacity of E′.

Proof : Formal proof easier with path based definition of flow.

Suppose f : P → R≥0 is a max-flow. Every path p ∈ P contains an edge e ∈ E′. Why? Assign
each path p ∈ P to exactly one edge e ∈ E′.

Let Pe be paths assigned to e ∈ E′. Then

v(f) =
∑

p∈P
f(p) =

∑

e∈E′

∑

p∈Pe

f(p) ≤
∑

e∈E′
c(e).

16.1.3.8 Flows and Cuts

Lemma 16.1.13. For any s-t cut E′, maximum s-t flow ≤ capacity of E′.

Corollary 16.1.14. Maximum s-t flow ≤ minimum s-t cut.

16.1.3.9 Max-Flow Min-Cut Theorem

Theorem 16.1.15. In any flow network the maximum s-t flow is equal to the minimum s-t cut.

Can compute minimum-cut from maximum flow and vice-versa!

Proof coming shortly.

Many applications:

(A) optimization
(B) graph theory
(C) combinatorics
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16.1.3.10 The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value from s to t.

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out
of t without affecting the flow value between s and t.
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Chapter 17

Network Flow Algorithms

CS 473: Fundamental Algorithms, Spring 2013
March 27, 2013

17.1 Algorithm(s) for Maximum Flow

17.1.0.11 Greedy Approach
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0 /10 (A) Begin with f(e) = 0 for each edge.

(B) Find a s-t path P with f(e) < c(e) for every edge e ∈ P .
(C) Augment flow along this path.
(D) Repeat augmentation for as long as possible.
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17.1.1 Greedy Approach: Issues

17.1.1.1 Issues = What is this nonsense?
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(A) Begin with f(e) = 0 for each edge
(B) Find a s-t path P with f(e) < c(e) for every edge e ∈ P
(C) Augment flow along this path
(D) Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to “push-back” flow along edge (u, v).

17.2 Ford-Fulkerson Algorithm

17.2.1 Residual Graph

17.2.1.1 The “leftover” graph

Definition 17.2.1. For a network G = (V,E) and flow f , the residual graph Gf = (V ′, E′) of
G with respect to f is

(A) V ′ = V ,
(B) Forward Edges: For each edge e ∈ E with f(e) < c(e), we add e ∈ E′ with capacity

c(e)− f(e).
(C) Backward Edges: For each edge e = (u, v) ∈ E with f(e) > 0, we add (v, u) ∈ E′ with

capacity f(e).
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17.2.1.2 Residual Graph Example
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Figure 17.1: Flow on edges is indicated in red

s

v

u

t

/2
0

/
2
0

/
1
0

/10

/10

/2
0

Figure 17.2: Residual Graph

17.2.1.3 Residual Graph Property

Observation: Residual graph captures the “residual” problem exactly.

Lemma 17.2.2. Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in Gf then
f+f ′ is a flow in G of value v(f) + v(f ′).

Lemma 17.2.3. Let f and f ′ be two flows in G with v(f ′) ≥ v(f). Then there is a flow f ′′ of
value v(f ′)-v(f) in Gf .

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a
bit messy to formally prove.

17.2.1.4 Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

MaxFlow(G, s, t):
if the flow from s to t is 0 then

return 0
Find any flow f with v(f) > 0 in G
Recursively compute a maximum flow f ′ in Gf

Output the flow f+f ′

Iterative algorithm for finding a maximum flow:

MaxFlow(G, s, t):
Start with flow f that is 0 on all edges

while there is a flow f ′ in Gf with v(f ′) > 0 do
f = f+f ′

Update Gf

Output f
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17.2.1.5 Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f(e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

let P be simple s-t path in Gf

f = augment(f, P )
Construct new residual graph Gf.

augment(f,P)
let b be bottleneck capacity,

i.e., min capacity of edges in P (in Gf)

for each edge (u, v) in P do
if e = (u, v) is a forward edge then

f(e) = f(e) + b
else (* (u, v) is a backward edge *)

let e = (v, u) (* (v, u) is in G *)

f(e) = f(e)− b
return f

17.3 Correctness and Analysis

17.3.1 Termination

17.3.1.1 Properties about Augmentation: Flow

Lemma 17.3.1. If f is a flow and P is a simple s-t path in Gf , then f ′ = augment(f, P ) is also
a flow.

Proof : Verify that f ′ is a flow. Let b be augmentation amount.

(A) Capacity constraint: If (u, v) ∈ P is a forward edge then f ′(e) = f(e)+b and b ≤ c(e)−f(e).
If (u, v) ∈ P is a backward edge, then letting e = (v, u), f ′(e) = f(e)− b and b ≤ f(e). Both
cases 0 ≤ f ′(e) ≤ c(e).

(B) Conservation constraint: Let v be an internal node. Let e1, e2 be edges of P incident to v.
Four cases based on whether e1, e2 are forward or backward edges. Check cases (see fig next
slide).
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17.3.2 Properties of Augmentation

17.3.2.1 Conservation Constraint

s t

Gf

G

s t

−

+ + + + +

−

+

+ − + +

+

+

Figure 17.3: Augmenting path P in Gf and corresponding change of flow in G. Red edges
are backward edges.

17.3.3 Properties of Augmentation

17.3.3.1 Integer Flow

Lemma 17.3.2. At every stage of the Ford-Fulkerson algorithm, the flow values on the edges (i.e.,
f(e), for all edges e) and the residual capacities in Gf are integers.

Proof : Initial flow and residual capacities are integers. Suppose lemma holds for j iterations. Then
in (j + 1)st iteration, minimum capacity edge b is an integer, and so flow after augmentation is an
integer.

17.3.3.2 Progress in Ford-Fulkerson

Proposition 17.3.3. Let f be a flow and f ′ be flow after one augmentation. Then v(f) < v(f ′).

Proof : Let P be an augmenting path, i.e., P is a simple s-t path in residual graph. We have the
following.
(A) First edge e in P must leave s.
(B) Original network G has no incoming edges to s; hence e is a forward edge.
(C) P is simple and so never returns to s.
(D) Thus, value of flow increases by the flow on edge e.

17.3.3.3 Termination proof for integral flow

Theorem 17.3.4. Let C be the minimum cut value; in particular C ≤ ∑e out of s c(e). Ford-
Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof : The value of the flow increases by at least 1 after each augmentation. Maximum value of
flow is at most C.

Running time
(A) Number of iterations ≤ C.
(B) Number of edges in Gf ≤ 2m.
(C) Time to find augmenting path is O(n+m).
(D) Running time is O(C(n+m)) (or O(mC)).
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17.3.3.4 Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be as Ω(mC) or is our analysis
weak?
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Ford-Fulkerson can take Ω(C) iterations.

17.3.4 Correctness

17.3.5 Correctness of Ford-Fulkerson

17.3.5.1 Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the maximum s-t flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to
minimum cut!

17.3.5.2 Recalling Cuts

Definition 17.3.5. Given a flow network an s-t cut is a set of edges E′ ⊂ E such that removing
E′ disconnects s from t: in other words there is no directed s → t path in E − E′. Capacity of
cut E′ is

∑
e∈E′ c(e).

Let A ⊂ V such that

(A) s ∈ A, t 6∈ A, and
(B) B = V \ −A and hence t ∈ B.

Define (A,B) = {(u, v) ∈ E | u ∈ A, v ∈ B}

Claim 17.3.6. (A,B) is an s-t cut.

Recall: Every minimal s-t cut E′ is a cut of the form (A,B).

17.3.5.3 Ford-Fulkerson Correctness

Lemma 17.3.7. If there is no s-t path in Gf then there is some cut (A,B) such that v(f) = c(A,B)

Proof : LetA be all vertices reachable from s inGf ; B = V \A. s

u

v′

u′

v

t

(A) s ∈ A and t ∈ B. So (A,B) is an s-t cut in G.
(B) If e = (u, v) ∈ G with u ∈ A and v ∈ B, then f(e) = c(e)

(saturated edge) because otherwise v is reachable from s
in Gf .
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17.3.5.4 Lemma Proof Continued

Proof : s

u

v′

u′

v

t

(A) If e = (u′, v′) ∈ G with u′ ∈ B and v′ ∈ A, then f(e) = 0
because otherwise u′ is reachable from s in Gf

(B) Thus,

v(f) = fout(A)− f in(A)

= fout(A)− 0

= c(A,B)− 0

= c(A,B).

17.3.5.5 Example
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17.3.5.6 Ford-Fulkerson Correctness

Theorem 17.3.8. The flow returned by the algorithm is the maximum flow.

Proof :

(A) For any flow f and s-t cut (A,B), v(f) ≤ c(A,B).
(B) For flow f∗ returned by algorithm, v(f∗) = c(A∗, B∗) for some s-t cut (A∗, B∗).
(C) Hence, f∗ is maximum.

17.3.5.7 Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem 17.3.9. For any network G, the value of a maximum s-t flow is equal to the capacity of
the minimum s-t cut.

Proof : Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity
of a (minimum) cut.
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17.3.5.8 Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem 17.3.10. For any network G with integer capacities, there is a maximum s-t flow that
is integer valued.

Proof : Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.

17.4 Polynomial Time Algorithms
17.4.0.9 Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound be achieved?

s

v

u

t

C

C

C

C

1 s

v

u

t

C

C

1

C − 1

1

C − 1

1

17.4.0.10 Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can
we choose an augmenting path in some clever way? Yes! Two variants.

(A) Choose the augmenting path with largest bottleneck capacity.
(B) Choose the shortest augmenting path.

17.4.1 Capacity Scaling Algorithm
17.4.1.1 Augmenting Paths with Large Bottleneck Capacity

(A) Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
(B) How do we find path with largest bottleneck capacity?

(A) Assume we know ∆ the bottleneck capacity
(B) Remove all edges with residual capacity ≤ ∆
(C) Check if there is a path from s to t
(D) Do binary search to find largest ∆
(E) Running time: O(m logC)

(C) Can we bound the number of augmentations? Can show that in O(m logC) augmentations
the algorithm reaches a max flow. This leads to an O(m2 log2C) time algorithm.

17.4.1.2 Augmenting Paths with Large Bottleneck Capacity

How do we find path with largest bottleneck capacity?

(A) Max bottleneck capacity is one of the edge capacities. Why?
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(B) Can do binary search on the edge capacities. First, sort the edges by their capacities and then
do binary search on that array as before.

(C) Algorithm’s running time is O(m logm).
(D) Different algorithm that also leads to O(m logm) time algorithm by adapting Prim’s algorithm.

17.4.1.3 Removing Dependence on C

(A) [?], [?]
Picking augmenting paths with fewest number of edges yields a O(m2n) algorithm, i.e., inde-
pendent of C. Such an algorithm is called a strongly polynomial time algorithm since the
running time does not depend on the numbers (assuming RAM model). (Many implementa-
tion of Ford-Fulkerson would actually use shortest augmenting path if they use BFS to find
an s-t path).

(B) Further improvements can yield algorithms running in O(mn log n), or O(n3).

17.4.1.4 Ford-Fulkerson Algorithm

algEdmondsKarp
for every edge e, f(e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

Perform BFS in Gf

P: shortest s-t path in Gf

f = augment(f, P )
Construct new residual graph Gf.

Running time O(m2n).

17.4.1.5 Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?
Proof gives the algorithm!

(A) Compute an s-t maximum flow f in G
(B) Obtain the residual graph Gf
(C) Find the nodes A reachable from s in Gf
(D) Output the cut (A,B) = {(u, v) | u ∈ A, v ∈ B}. Note: The cut is found in G while A is

found in Gf
Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and
if it is, outputs a minimum cut. How?
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Chapter 18

Applications of Network Flows

CS 473: Fundamental Algorithms, Spring 2013
March 29, 2013

18.1 Important Properties of Flows
18.1.0.6 Network Flow: Facts to Remember

Flow network: directed graph G, capacities c, source s, sink t

(A) Maximum s-t flow can be computed:
(A) Using Ford-Fulkerson algorithm in O(mC) time when capacities are integral and C is an

upper bound on the flow
(B) Using variant of algorithm in O(m2 logC) time when capacities are integral
(C) Using Edmonds-Karp algorithm in O(m2n) time when capacities are rational (strongly

polynomial time algorithm).
(B) If capacities are integral then there is a maximum flow that is integral and above algorithms

give an integral max flow.
(C) Given a flow of value v, can decompose into O(m+n) flow paths of same total value v. integral

flow implies integral flow on paths.
(D) Maximum flow is equal to the minimum cut and minimum cut can be found in O(m+n) time

given any maximum flow.

18.1.0.7 Paths, Cycles and Acyclicity of Flows

Definition 18.1.1. Given a flow network G = (V,E) and a flow f : E → R≥0 on the edges, the
support of f is the set of edges E′ ⊆ E with non-zero flow on them. That is, E′ = {e ∈ E | f(e) >
0}.

Question:Given a flow f , can there by cycles in its support?
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18.1.0.8 Acyclicity of Flows

Proposition 18.1.2. In any flow network, if f is a flow then there is another flow f ′ such that
the support of f ′ is an acyclic graph and v(f ′) = v(f). Further if f is an integral flow then so is
f ′.

Proof :

(A) E′ = {e ∈ E | f(e) > 0}, support of f .
(B) Suppose there is a directed cycle C in E′

(C) Let e′ be the edge in C with least amount of flow
(D) For each e ∈ C, reduce flow by f(e′). Remains a flow. Why?
(E) flow on e′ is reduced to 0
(F) Claim: Flow value from s to t does not change. Why?
(G) Iterate until no cycles
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18.1.0.9 Example
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Throw away edge with no flow on itFind a cycle in the support/flowReduce flow on cycle as
much as possibleThrow away edge with no flow on itFind a cycle in the support/flowReduce flow
on cycle as much as possibleThrow away edge with no flow on itViola!!! An equivalent flow with
no cycles in it. Original flow:
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18.1.0.10 Flow Decomposition

Lemma 18.1.3. Given an edge based flow f : E → R≥0, there exists a collection of paths P and
cycles C and an assignment of flow to them f ′ : P ∪ C → R≥0 such that:

(A) |P ∪ C| ≤ m
(B) for each e ∈ E,

∑
P∈P:e∈P f

′(P ) +
∑

C∈C:e∈C f
′(C) = f(e)

(C) v(f) =
∑

P∈P f
′(P ).

(D) if f is integral then so are f ′(P ) and f ′(C) for all P and C

Proof :[Proof Idea]

(A) Remove all cycles as in previous proposition.
(B) Next, decompose into paths as in previous lecture.
(C) Exercise: verify claims.

18.1.0.11 Example
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Find cycles as shown beforeFind a source to sink path, and push max flow along it (5 unites)Compute
remaining flowFind a source to sink path, and push max flow along it (5 unites). Edges with 0
flow on them can not be used as they are no longer in the support of the flow.Compute remain-
ing flowFind a source to sink path, and push max flow along it (10 unites). Compute remaining
flowFind a source to sink path, and push max flow along it (5 unites). Compute remaining flowNo
flow remains in the graph. We fully decomposed the flow into flow on paths. Together with the
cycles, we get a decomposition of the original flow into m flows on paths and cycles.

18.1.0.12 Flow Decomposition

Lemma 18.1.4. Given an edge based flow f : E → R≥0, there exists a collection of paths P and
cycles C and an assignment of flow to them f ′ : P ∪ C → R≥0 such that:

(A) |P ∪ C| ≤ m
(B) for each e ∈ E,

∑
P∈P:e∈P f

′(P ) +
∑

C∈C:e∈C f
′(C) = f(e)

(C) v(f) =
∑

P∈P f
′(P ).

(D) if f is integral then so are f ′(P ) and f ′(C) for all P and C

Above flow decomposition can be computed in O(m2) time.
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18.2 Network Flow Applications I

18.3 Edge Disjoint Paths

18.3.1 Directed Graphs
18.3.1.1 Edge-Disjoint Paths in Directed Graphs

Definition 18.3.1.
A set of paths is edge disjoint if no two paths share an
edge.

Problem Given a directed graph with two special vertices s and t, find the maximum number of edge
disjoint paths from s to t Applications: Fault tolerance in routing — edges/nodes in networks
can fail. Disjoint paths allow for planning backup routes in case of failures.

18.3.2 Reduction to Max-Flow
18.3.2.1 Reduction to Max-Flow

Problem Given a directed graph G with two special vertices s and t, find the maximum number of
edge disjoint paths from s to t. Reduction Consider G as a flow network with edge capacities 1,
and find max-flow.

18.3.2.2 Correctness of Reduction

Lemma 18.3.2. If G has k edge disjoint paths P1, P2, . . . , Pk then there is an s-t flow of value k.

Proof : Set f(e) = 1 if e belongs to one of the paths P1, P2, . . . , Pk; other-wise set f(e) = 0. This
defines a flow of value k.

18.3.2.3 Correctness of Reduction

Lemma 18.3.3. If G has a flow of value k then there are k edge disjoint paths between s and t.

Proof :
(A) Capacities are all 1 and hence there is integer flow of value k, that is f(e) = 0 or f(e) = 1 for

each e.
(B) Decompose flow into paths of same value
(C) Flow on each path is either 1 or 0
(D) Hence there are k paths P1, P2, . . . , Pk with flow of 1 each
(E) Paths are edge-disjoint since capacities are 1.

18.3.2.4 Running Time

Theorem 18.3.4. The number of edge disjoint paths in G can be found in O(mn) time.

Run Ford-Fulkerson algorithm. Maximum possible flow is n and hence run-time is O(nm).
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18.3.3 Menger’s Theorem
18.3.3.1 Menger’s Theorem

Theorem 18.3.5 (Menger). Let G be a directed graph. The minimum number of edges whose
removal disconnects s from t (the minimum-cut between s and t) is equal to the maximum number
of edge-disjoint paths in G between s and t.

Proof : Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem! Maxflow-Mincut theorem is a gener-
alization of Menger’s theorem to capacitated graphs.

18.3.4 Undirected Graphs
18.3.4.1 Edge Disjoint Paths in Undirected Graphs

Problem Given an undirected graph G, find the maximum number of edge disjoint paths in G

Reduction:

(A) create directed graph H by adding directed edges (u, v) and (v, u) for each edge uv in G.
(B) compute maximum s-t flow in H

Problem: Both edges (u, v) and (v, u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence cannot have non-zero flow
on both (u, v) and (v, u). Reduction works. See book for more details.

18.4 Multiple Sources and Sinks
18.4.0.2 Multiple Sources and Sinks

(A) Directed graph G with edge capacities c(e)
(B) source nodes s1, s2, . . . , sk
(C) sink nodes t1, t2, . . . , t`
(D) sources and sinks are disjoint

18.4.0.3 Multiple Sources and Sinks

(A) Directed graph G with edge capacities c(e)
(B) source nodes s1, s2, . . . , sk
(C) sink nodes t1, t2, . . . , t`
(D) sources and sinks are disjoint
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Maximum Flow: send as much flow as possible from the sources to the sinks. Sinks don’t care
which source they get flow from.

Minimum Cut: find a minimum capacity set of edge E′ such that removing E′ disconnects every
source from every sink.

18.4.0.4 Multiple Sources and Sinks: Formal Definition

(A) Directed graph G with edge capacities c(e)
(B) source nodes s1, s2, . . . , sk
(C) sink nodes t1, t2, . . . , t`
(D) sources and sinks are disjoint

A function f : E → R≥0 is a flow if:

(A) for each e ∈ E, f(e) ≤ c(e) and
(B) for each v which is not a source or a sink f in(v) = fout(v).

Goal: max
∑k

i=1(fout(si)− f in(si)), that is, flow out of sources

18.4.0.5 Reduction to Single-Source Single-Sink

(A) Add a source node s and a sink node t.
(B) Add edges (s, s1), (s, s2), . . . , (s, sk).
(C) Add edges (t1, t), (t2, t), . . . , (t`, t).
(D) Set the capacity of the new edges to be ∞.

s1

s3

t1

t2
s2

s1

s3

t1

t2
s2

s

t

18.4.0.6 Supplies and Demands

A further generalization:

(A) source si has a supply of Si ≥ 0
(B) since tj has a demand of Dj ≥ 0 units

Question: is there a flow from source to sinks such that supplies are not exceeded and demands
are met? Formally we have the additional constraints that fout(si) − f in(si) ≤ Si for each source
si and f in(tj)− fout(tj) ≥ Dj for each sink tj .

s1

s3

t1

t2
s2

3

5

10

8

2 s1

s3

t1

t2
s2
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t

10

5
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18.5 Bipartite Matching

18.5.1 Definitions
18.5.1.1 Matching

Input Given a (undirected) graph G = (V,E)

Goal Find a matching of maximum cardinality

(A) A matching is M ⊆ E such that at most one edge in M is incident on any vertex

18.5.1.2 Bipartite Matching

Input Given a bipartite graph G = (L ∪R,E)

Goal Find a matching of maximum cardinality

Maximum matching has 4 edges

245



18.5.2 Reduction to Max-Flow
18.5.2.1 Reduction to Max-Flow

Max-Flow Construction Given graph G = (L ∪R,E) create flow-network G′ = (V ′, E′) as follows:

(A) V ′ = L ∪ R ∪ {s, t} where s and t are the new
source and sink.

(B) Direct all edges in E from L to R, and add edges
from s to all vertices in L and from each vertex
in R to t.

(C) Capacity of every edge is 1.

18.5.2.2 Correctness: Matching to Flow

Proposition 18.5.1. If G has a matching of size k then G′ has a flow of value k.

Proof : Let M be matching of size k. Let M = {(u1, v1), . . . , (uk, vk)}. Consider following flow f
in G′:

(A) f(s, ui) = 1 and f(vi, t) = 1 for 1 ≤ i ≤ k
(B) f(ui, vi) = 1 for 1 ≤ i ≤ k
(C) for all other edges flow is zero.

Verify that f is a flow of value k (because M is a matching).

18.5.2.3 Correctness: Flow to Matching

Proposition 18.5.2. If G′ has a flow of value k then G has a matching of size k.

Proof : Consider flow f of value k.

(A) Can assume f is integral. Thus each edge has flow 1 or 0
(B) Consider the set M of edges from L to R that have flow 1

(A) M has k edges because value of flow is equal to the number of non-zero flow edges crossing
cut (L ∪ {s}, R ∪ {t})

(B) Each vertex has at most one edge in M incident upon it. Why?
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Figure 18.1: This graph does not have a perfect matching

18.5.2.4 Correctness of Reduction

Theorem 18.5.3. The maximum flow value in G′ = maximum cardinality of matching in G

Consequence Thus, to find maximum cardinality matching in G, we construct G′ and find the
maximum flow in G′. Note that the matching itself (not just the value) can be found efficiently
from the flow.

18.5.2.5 Running Time

For graph G with n vertices and m edges G′ has O(n+m) edges, and O(n) vertices.

(A) Generic Ford-Fulkerson: Running time is O(mC) = O(nm) since C = n
(B) Capacity scaling: Running time is O(m2 logC) = O(m2 log n)

Better known running time: O(m
√
n)

18.5.3 Perfect Matchings
18.5.3.1 Perfect Matchings

Definition 18.5.4. A matching M is said to be perfect if every vertex has one edge in M incident
upon it.

18.5.3.2 Characterizing Perfect Matchings

Problem When does a bipartite graph have a perfect matching?

(A) Clearly |L| = |R|
(B) Are there any necessary and sufficient conditions?

18.5.3.3 A Necessary Condition

Lemma 18.5.5. If G = (L ∪ R,E) has a perfect matching then for any X ⊆ L, |N(X)| ≥ |X|,
where N(X) is the set of neighbors of vertices in X

Proof : Since G has a perfect matching, every vertex of X is matched to a different neighbor, and
so |N(X)| ≥ |X|
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18.5.3.4 Hall’s Theorem

Theorem 18.5.6 (Frobenius-Hall). Let G = (L ∪ R,E) be a bipartite graph with |L| = |R|. G
has a perfect matching if and only if for every X ⊆ L, |N(X)| ≥ |X|

One direction is the necessary condition.
For the other direction we will show the following:

(A) create flow network G′ from G
(B) if |N(X)| ≥ |X| for all X, show that minimum s-t cut in G′ is of capacity n = |L| = |R|
(C) implies that G has a perfect matching

18.5.3.5 Proof of Sufficiency

Assume |N(X)| ≥ |X| for each X ∈ L. Then show that min s-t cut in G′ is of capacity at least n.
Let (A,B) be an arbitrary s-t cut in G′

(A) let X = A ∩ L and Y = A ∩R
(B) cut capacity is at least (|L| − |X|) + |Y |+ |N(X) \ Y |

A

B

X

Y

|L| − |X|

|Y |

|N(X) \ Y |

s t

Because there are...
(A) |L| − |X| edges from s to L ∩B.
(B) |Y | edges from Y to t.
(C) there are at least |N(X) \ Y | edges from X to

vertices on the right side that are not in Y .

18.5.4 Proof of Sufficiency

18.5.4.1 Continued...

(A) By the above, cut capacity is at least
α = (|L| − |X|) + |Y |+ |N(X) \ Y |.

(B) |N(X) \ Y | ≥ |N(X)| − |Y |.
(This holds for any two sets.)

(C) By assumption |N(X)| ≥ |X| and hence

|N(X) \ Y | ≥ |N(X)| − |Y | ≥ |X| − |Y |.
(D) Cut capacity is therefore at least

α = (|L| − |X|) + |Y |+ |N(X) \ Y |
≥ |L| − |X|+ |Y |+ |X| − |Y | ≥ |L| = n.

(E) Any s-t cut capacity is at least n =⇒ max flow at least n units =⇒ perfect matching.QED

18.5.4.2 Hall’s Theorem: Generalization

Theorem 18.5.7 (Frobenius-Hall). Let G = (L ∪ R,E) be a bipartite graph with |L| = |R|. G
has a matching that matches all nodes in L if and only if for every X ⊆ L, |N(X)| ≥ |X|.

Proof is essentially the same as the previous one.
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18.5.4.3 Application: assigning jobs to people

(A) n jobs or tasks
(B) m people
(C) for each job a set of people who can do that job
(D) for each person j a limit on number of jobs kj
(E) Goal: find an assignment of jobs to people so that all jobs are assigned and no person is

overloaded
Reduce to max-flow similar to matching. Arises in many settings. Using minimum-cost flows can
also handle the case when assigning a job i to person j costs cij and goal is assign all jobs but
minimize cost of assignment.

18.5.4.4 Reduction to Maximum Flow

(A) Create directed graph G = (V,E) as follows
(A) V = {s, t} ∪ L ∪R: L set of n jobs, R set of m people
(B) add edges (s, i) for each job i ∈ L, capacity 1
(C) add edges (j, t) for each person j ∈ R, capacity kj
(D) if job i can be done by person j add an edge (i, j), capacity 1

(B) Compute max s-t flow. There is an assignment if and only if flow value is n.

18.5.4.5 Matchings in General Graphs

Matchings in general graphs more complicated.
There is a polynomial time algorithm to compute a maximum matching in a general graph.

Best known running time is O(m
√
n).
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Chapter 19

More Network Flow Applications

CS 473: Fundamental Algorithms, Spring 2013
April 3, 2013

19.1 Baseball Pennant Race
19.1.0.6 Pennant Race

19.1.0.7 Pennant Race: Example

Example 19.1.1.

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 89 2
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Can Boston win the pennant?
No, because Boston can win at most 91 games.

19.1.0.8 Another Example

Example 19.1.2.

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 90 2

Can Boston win the pennant?
Not clear unless we know what the remaining games are!

19.1.0.9 Refining the Example

Example 19.1.3.

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does
(A) Boston wins both its games to get 92 wins
(B) New York must lose both games; now both Baltimore and Toronto have at least 92
(C) Winner of Baltimore-Toronto game has 93 wins!

19.1.0.10 Abstracting the Problem

Given
(A) A set of teams S
(B) For each x ∈ S, the current number of wins wx
(C) For any x, y ∈ S, the number of remaining games gxy between x and y
(D) A team z
Can z win the pennant?

19.1.0.11 Towards a Reduction

z can win the pennant if
(A) z wins at least m games

(A) to maximize z’s chances we make z win all its remaining games and hence m = wz +∑
x∈S gxz

(B) no other team wins more than m games
(A) for each x, y ∈ S the gxy games between them have to be assigned to either x or y.
(B) each team x 6= z can win at most m− wx − gxz remaining games

Is there an assignment of remaining games to teams such that no team x 6= z wins more than
m− wx games?
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19.1.0.12 Flow Network: The basic gadget

(A) s: source
(B) t: sink
(C) x, y: two teams
(D) gxy: number of games remaining be-

tween x and y.
(E) wx: number of points x has.
(F) m: maximum number of points x can

win before team of interest is elimi-
nated.

vx

vy

uxy
gxys

m−
w
x

m
− w

y

∞

∞
t

19.1.1 Flow Network: An Example

19.1.1.1 Can Boston win?

Team Won Left NY Bal Tor Bos

New York 90 11 − 1 6 4
Baltimore 88 6 1 − 1 4
Toronto 87 11 6 1 − 4

Boston 79 12 4 4 4 −

(A) m = 79 + 12 = 91: Boston can get at
most 91 points.

s

BT

NB

NT

B

T

N

t

1

1

6

3

4

1

19.1.1.2 Constructing Flow Network

Notations
(A) S: set of teams,
(B) wx wins for each team, and
(C) gxy games left between x and y.
(D) m be the maximum number of wins

for z,
(E) and S′ = S \ {z}.

Reduction Construct the flow network G as follows
(A) One vertex vx for each team x ∈ S′, one vertex

uxy for each pair of teams x and y in S′

(B) A new source vertex s and sink t
(C) Edges (uxy, vx) and (uxy, vy) of capacity ∞
(D) Edges (s, uxy) of capacity gxy
(E) Edges (vx, t) of capacity equal m− wx

19.1.1.3 Correctness of reduction

Theorem 19.1.4. G′ has a maximum flow of value g∗ =
∑

x,y∈S′ gxy if and only if z can win the
most number of games (including possibly tie with other teams).

19.1.1.4 Proof of Correctness

Proof : Existence of g∗ flow ⇒ z wins pennant
(A) An integral flow saturating edges out of s, ensures that each remaining game between x and

y is added to win total of either x or y
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(B) Capacity on (vx, t) edges ensures that no team wins more than m games

Conversely, z wins pennant ⇒ flow of value g∗

(A) Scenario determines flow on edges; if x wins k of the games against y, then flow on (uxy, vx)
edge is k and on (uxy, vy) edge is gxy − k

19.1.1.5 Proof that z cannot with the pennant

(A) Suppose z cannot win the pennant since g∗ < g. How do we prove to some one compactly that
z cannot win the pennant?

(B) Show them the min-cut in the reduction flow network!
(C) See text book for a natural interpretation of the min-cut as a certificate.

19.2 An Application of Min-Cut to Project Scheduling
19.2.0.6 Project Scheduling

Problem:

(A) n projects/tasks 1, 2, . . . , n
(B) dependencies between projects: i depends on j implies i cannot be done unless j is done.

dependency graph is acyclic
(C) each project i has a cost/profit pi

(A) pi < 0 implies i requires a cost of −pi units
(B) pi > 0 implies that i generates pi profit

Goal: Find projects to do so as to maximize profit.

19.2.0.7 Example

Example

Chekuri CS473ug

19.2.0.8 Notation

For a set A of projects:

(A) A is a valid solution if A is dependency closed, that is for every i ∈ A, all projects that i
depends on are also in A

(B) profit(A) =
∑

i∈A pi. Can be negative or positive

Goal: find valid A to maximize profit(A)
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19.2.0.9 Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets: those that are done and those
that are not done.

Can we express this is a minimum cut problem?

Several issues:

(A) We are interested in maximizing profit but we can solve minimum cuts
(B) We need to convert negative profits into positive capacities
(C) Need to ensure that chosen projects is a valid set
(D) The cut value captures the profit of the chosen set of projects

19.2.0.10 Reduction to Minimum-Cut

Note: We are reducing a maximization problem to a minimization problem.

(A) projects represented as nodes in a graph
(B) if i depends on j then (i, j) is an edge
(C) add source s and sink t
(D) for each i with pi > 0 add edge (s, i) with capacity pi
(E) for each i with pi < 0 add edge (i, t) with capacity −pi
(F) for each dependency edge (i, j) put capacity ∞ (more on this later)

19.2.0.11 Reduction: Flow Network Example

4 6 2 3

−8−5−3−2 ∞

∞∞ ∞

∞ ∞

∞

2
3 5

8

t

s
4

6 2
3

19.2.0.12 Reduction contd

Algorithm:

(A) form graph as in previous slide
(B) compute s-t minimum cut (A,B)
(C) output the projects in A− {s}
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19.2.0.13 Understanding the Reduction

Let C =
∑

i:pi>0 pi: maximum possible profit.

Observation: The minimum s-t cut value is ≤ C. Why?

Lemma 19.2.1. Suppose (A,B) is an s-t cut of finite capacity (no ∞) edges. Then projects in
A− {s} are a valid solution.

Proof : If A−{s} is not a valid solution then there is a project i ∈ A and a project j 6∈ A such that
i depends on j
Since (i, j) capacity is ∞, implies (A,B) capacity is ∞, contradicting assumption.

19.2.0.14 Example

19.2.0.15 Example
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19.2.0.16 Correctness of Reduction

Recall that for a set of projects X, profit(X) =
∑

i∈X pi.

Lemma 19.2.2. Suppose (A,B) is an s-t cut of finite capacity (no ∞) edges. Then c(A,B) =
C − profit(A− {s}).

Proof : Edges in (A,B):
(A) (s, i) for i ∈ B and pi > 0: capacity is pi
(B) (i, t) for i ∈ A and pi < 0: capacity is −pi
(C) cannot have ∞ edges

19.2.0.17 Proof contd

For project set A let
(A) cost(A) =

∑
i∈A:pi<0−pi

(B) benefit(A) =
∑

i∈A:pi>0 pi
(C) profit(A) = benefit(A)− cost(A).

Proof : Let A′ = A ∪ {s}.
c(A′, B) = cost(A) + benefit(B)

= cost(A)− benefit(A) + benefit(A) + benefit(B)

= −profit(A) + C

= C − profit(A)

19.2.0.18 Correctness of Reduction contd

We have shown that if (A,B) is an s-t cut in G with finite capacity then
(A) A− {s} is a valid set of projects
(B) c(A,B) = C − profit(A− {s})
Therefore a minimum s-t cut (A∗, B∗) gives a maximum profit set of projects A∗ − {s} since C is
fixed.
Question: How can we use ∞ in a real algorithm?
Set capacity of ∞ arcs to C + 1 instead. Why does this work?

19.3 Extensions to Maximum-Flow Problem
19.3.0.19 Lower Bounds and Costs

Two generalizations:
(A) flow satisfies f(e) ≤ c(e) for all e. suppose we are given lower bounds `(e) for each e. can we

find a flow such that `(e) ≤ f(e) ≤ c(e) for all e?
(B) suppose we are given a cost w(e) for each edge. cost of routing flow f(e) on edge e is w(e)f(e).

can we (efficiently) find a flow (of at least some given quantity) at minimum cost?
Many applications.
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19.3.0.20 Flows with Lower Bounds

Definition 19.3.1. A flow in a network G = (V,E), is a function f : E → R≥0 such that
(A) Capacity Constraint: For each edge e, f(e) ≤ c(e)
(B) Lower Bound Constraint: For each edge e, f(e) ≥ `(e)
(C) Conservation Constraint: For each vertex v

∑

e into v

f(e) =
∑

e out of v

f(e)

Question: Given G and c(e) and `(e) for each e, is there a flow?
As difficult as finding an s-t maximum-flow without lower bounds!

19.3.0.21 Regular flow via lower bounds

Given usual flow network G with source s and sink t, create lower-bound flow network G′ as follows:
(A) set `(e) = 0 for each e in G
(B) add new edge (t, s) with lower bound v and upper bound ∞
Claim: there exists a flow of value v from s to t in G if and only if there exists a feasible flow with
lower bounds in G′

Above reduction show that lower bounds on flows are naturally related to circulations. With
lower bounds, cannot guarantee acyclic flows from s to t.

19.3.0.22 Flows with Lower Bounds

(A) Flows with lower bounds can be reduced to standard maximum flow problem. See text book.
Reduction goes via circulations.

(B) If all bounds are integers then there is a flow that is integral. Useful in applications.

19.3.0.23 Survey Design: Application of Flows with Lower Bounds

(A) Design survey to find information about n1 products from n2 customers
(B) Can ask customer questions only about products purchased in the past
(C) Customer can only be asked about at most c′i products and at least ci products
(D) For each product need to ask at east pi consumers and at most p′i consumers

19.3.0.24 Reduction to Circulation

s

i j

t

ConsumersProducts

[ci, c
′
i] [pj , p

′
j ]

[0, 1]

258



(A) include edge (i, j) is customer i has bought product j
(B) Add edge (t, s) with lower bound 0 and upper bound ∞.

(A) Consumer i is asked about product j if the integral flow on edge (i, j) is 1

19.3.0.25 Minimum Cost Flows

(A) Input: Given a flow network G and also edge costs, w(e) for edge e, and a flow requirement
F .

(B) Goal; Find a minimum cost flow of value F from s to t
Given flow f : E → R+, cost of flow =

∑
e∈E w(e)f(e).

19.3.0.26 Minimum Cost Flow: Facts

(A) problem can be solved efficiently in polynomial time
(A) O(nm logC log(nW )) time algorithm where C is maximum edge capacity and W is max-

imum edge cost
(B) O(m log n(m+ n log n)) time strongly polynomial time algorithm

(B) for integer capacities there is always an optimum solutions in which flow is integral

19.3.0.27 How much damage can a single path cause?

Consider the following network. All the edges have capacity 1. Clearly the maximum flow in this
network has value 4.

The network

s

t

Why removing the shortest path might ruin ev-
erything
(A) However... The shortest path between s and

t is the blue path.
(B) And if we remove the shortest path, s and t

become disconnected, and the maximum flow
drop to 0.
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Chapter 20

Polynomial Time Reductions

CS 473: Fundamental Algorithms, Spring 2013
April 10, 2013

20.1 Introduction to Reductions

20.2 Overview

20.2.0.28 Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an algorithm for
Problem Y , we can use it to find an algorithm for Problem X.

¡2-¿Using Reductions

(A) We use reductions to find algorithms to solve problems.
(B) We also use reductions to show that we can’t find algorithms for some problems. (We say

that these problems are hard.)

Also, the right reductions might win you a million dollars!
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20.2.0.29 Example 1: Bipartite Matching and Flows

How do we solve the Bipartite Matching
Problem? Given a bipartite graph G =
(U ∪ V,E) and number k, does G have a
matching of size ≥ k?

=⇒

=⇒ =⇒
¡4-¿Solution Reduce it to Max-Flow. G has a matching of size ≥ k iff there is a flow from s to

t of value ≥ k.

20.3 Definitions
20.3.0.30 Types of Problems

Decision, Search, and Optimization

(A) Decision problems (example: given n, is n prime?)
(B) Search problems (example: given n, find a factor of n if it exists)
(C) Optimization problems (example: find the smallest prime factor of n.)

For Max-Flow, the Optimization version is: Find the Maximum flow between s and t. The
Decision Version is: Given an integer k, is there a flow of value ≥ k between s and t?

While using reductions and comparing problems, we typically work with the decision versions.
Decision problems have Yes/No answers. This makes them easy to work with.

20.3.0.31 Problems vs Instances

(A) A problem Π consists of an infinite collection of inputs {I1, I2, . . . , }. Each input is referred
to as an instance.

(B) The size of an instance I is the number of bits in its representation.
(C) For an instance I, sol(I) is a set of feasible solutions to I.
(D) For optimization problems each solution s ∈ sol(I) has an associated value.
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20.3.0.32 Examples

An instance of Bipartite Matching is a bipartite graph, and an integer k. The solution to this
instance is “YES” if the graph has a matching of size ≥ k, and “NO” otherwise.

An instance of Max-Flow is a graph G with edge-capacities, two vertices s, t, and an integer k.
The solution to this instance is “YES” if there is a flow from s to t of value ≥ k, else ‘NO”.

What is an algorithm for a decision Problem X? It takes as input an instance of X,
and outputs either “YES” or “NO”.

20.3.0.33 Encoding an instance into a string

(A) I; Instance of some problem.
(B) I can be fully and precisely described (say in a text file).
(C) Resulting text file is a binary string.
(D) =⇒ Any input can be interpreted as a binary string S.
(E) ... Running time of algorithm: function of length of S (i.e., n).

20.3.0.34 Decision Problems and Languages

(A) A finite alphabet Σ. Σ∗ is set of all finite strings on Σ.
(B) A language L is simply a subset of Σ∗; a set of strings.

For every language L there is an associated decision problem ΠL and conversely, for every decision
problem Π there is an associated language LΠ.

(A) Given L, ΠL is the following problem: given x ∈ Σ∗, is x ∈ L? Each string in Σ∗ is an instance
of ΠL and L is the set of instances for which the answer is YES.

(B) Given Π the associated language LΠ = {I | I is an instance of Π for which answer is YES}.
Thus, decision problems and languages are used interchangeably.

20.3.0.35 Example
20.3.0.36 Reductions, revised.

For decision problems X,Y , a reduction from X to Y is:

(A) An algorithm . . .
(B) Input: IX , an instance of X.
(C) Output: IY an instance of Y .
(D) Such that:

IY is YES instance of Y ⇐⇒ IX is YES instance of X

(Actually, this is only one type of reduction, but this is the one we’ll use most often.)

20.3.0.37 Using reductions to solve problems

(A) R: Reduction X → Y
(B) AY : algorithm for Y :
(C) =⇒ New algorithm for X:
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AX(IX):
// IX: instance of X.

IY ⇐ R(IX)
return AY (IY )

AY

IY
YES

NO

IX
R

AX
In particular, if R and AY are polynomial-time algorithms, AX is also polynomial-time.

20.3.0.38 Comparing Problems

(A) Reductions allow us to formalize the notion of “Problem X is no harder to solve than Problem
Y ”.

(B) If Problem X reduces to Problem Y (we write X ≤ Y ), then X cannot be harder to solve
than Y .

(C) Bipartite Matching ≤ Max-Flow.
Therefore, Bipartite Matching cannot be harder than Max-Flow.

(D) Equivalently,
Max-Flow is at least as hard as Bipartite Matching.

(E) More generally, if X ≤ Y , we can say that X is no harder than Y , or Y is at least as hard as
X.

20.4 Examples of Reductions

20.5 Independent Set and Clique
20.5.0.39 Independent Sets and Cliques

Given a graph G, a set of vertices V ′ is:

(A) An independent set : if no two vertices of V ′ are connected by an edge of G.
(B) clique : every pair of vertices in V ′ is connected by an edge of G.
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20.5.0.40 The Independent Set and Clique Problems

Independent Set Problem

(A) Input: A graph G and an integer k.
(B) Goal; Decide whether G has an independent set of size ≥ k.

Clique Problem

(A) Input: A graph G and an integer k.
(B) Goal: Decide whether G has a clique of size ≥ k.

20.5.0.41 Recall

For decision problems X,Y , a reduction from X to Y is:

(A) An algorithm . . .
(B) that takes IX , an instance of X as input . . .
(C) and returns IY , an instance of Y as output . . .
(D) such that the solution (YES/NO) to IY is the same as the solution to IX .

20.5.0.42 Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Convert G to G, in which (u, v) is an edge iff (u, v) is not an edge of G. (G is the complement
of G.)

We use G and k as the instance of Clique.

20.5.0.43 Independent Set and Clique

(A) Independent Set ≤ Clique.
What does this mean?

(B) If have an algorithm for Clique, then we have an algorithm for Independent Set.
(C) Clique is at least as hard as Independent Set.
(D) Also... Independent Set is at least as hard as Clique.

265



20.6 NFAs/DFAs and Universality
20.6.0.44 DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular languages. NFAs are the same, except
that they are non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same language using the subset
construction.

(How long does this take?)

The smallest DFA equivalent to an NFA with n states may have ≈ 2n states.

20.6.0.45 DFA Universality

A DFA M is universal if it accepts every string.

That is, L(M) = Σ∗, the set of all strings.

The DFA Universality Problem:

(A) Input: A DFA M
(B) Goal: Decide whether M is universal.

How do we solve DFA Universality?

We check if M has any reachable non-final state.

Alternatively, minimize M to obtain M ′ and see if M ′ has a single state which is an accepting
state.

20.6.0.46 NFA Universality

An NFA N is said to be universal if it accepts every string. That is, L(N) = Σ∗, the set of all
strings.

The NFA Universality Problem:

Input An NFA N
Goal Decide whether N is universal.

How do we solve NFA Universality?

Reduce it to DFA Universality?

Given an NFA N , convert it to an equivalent DFA M , and use the DFA Universality Algorithm.

The reduction takes exponential time!

20.6.0.47 Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reduc-
tions. Reductions that take longer are not useful.
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If we have a polynomial-time reduction from problem X to problem Y (we write X ≤P Y ), and
a poly-time algorithm AY for Y , we have a polynomial-time/efficient algorithm for X.

Ax

R AYIX
IY

YES

NO

20.6.0.48 Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm
A that has the following properties:

(A) given an instance IX of X, A produces an instance IY of Y
(B) A runs in time polynomial in |IX |.
(C) Answer to IX YES iff answer to IY is YES.

Proposition 20.6.1. If X ≤P Y then a polynomial time algorithm for Y implies a polynomial
time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions.

20.6.0.49 Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X has an efficient
algorithm.

If you believe that Independent Set does not have an efficient algorithm, why should you
believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an efficient algorithm, so would
Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

20.6.0.50 Polynomial-time reductions and instance sizes

Proposition 20.6.2. Let R be a polynomial-time reduction from X to Y . Then for any instance
IX of X, the size of the instance IY of Y produced from IX by R is polynomial in the size of IX .

Proof : R is a polynomial-time algorithm and hence on input IX of size |IX | it runs in time p(|IX |)
for some polynomial p().

IY is the output of R on input IX
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction
is of size polynomial in its input.
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20.6.0.51 Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm
A that has the following properties:

(A) given an instance IX of X, A produces an instance IY of Y
(B) A runs in time polynomial in |IX |. This implies that |IY | (size of IY ) is polynomial in |IX |
(C) Answer to IX YES iff answer to IY is YES.

Proposition 20.6.3. If X ≤P Y then a polynomial time algorithm for Y implies a polynomial
time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions

20.6.0.52 Transitivity of Reductions

Proposition 20.6.4. X ≤P Y and Y ≤P Z implies that X ≤P Z.

Note: X ≤P Y does not imply that Y ≤P X and hence it is very important to know the FROM
and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y

In other words show that an algorithm for Y implies an algorithm for X.

20.7 Independent Set and Vertex Cover
20.7.0.53 Vertex Cover

Given a graph G = (V,E), a set of vertices S is:

(A) A vertex cover if every e ∈ E has at least one endpoint in S.

20.7.0.54 The Vertex Cover Problem

The Vertex Cover Problem:

Input A graph G and integer k
Goal Decide whether there is a vertex cover of size ≤ k

Can we relate Independent Set and Vertex Cover?
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20.7.1 Relationship between...

20.7.1.1 Vertex Cover and Independent Set

Proposition 20.7.1. Let G = (V,E) be a graph. S is an independent set if and only if V \ S is a
vertex cover

Proof :

(⇒) Let S be an independent set
(A) Consider any edge (u, v) ∈ E
(B) Since S is an independent set, either u 6∈ S or v 6∈ S
(C) Thus, either u ∈ V \ S or v ∈ V \ S
(D) V \ S is a vertex cover

(⇐) Let V \ S be some vertex cover
(A) Consider u, v ∈ S
(B) (u, v) is not edge, as otherwise V \ S does not cover (u, v)
(C) S is thus an independent set

20.7.1.2 Independent Set ≤P Vertex Cover

(A) G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
(B) G has an independent set of size ≥ k iff G has a vertex cover of size ≤ n− k
(C) (G, k) is an instance of Independent Set , and (G,n− k) is an instance of Vertex Cover with

the same answer.
(D) Therefore, Independent Set ≤P Vertex Cover. Also Vertex Cover ≤P Independent Set.

20.8 Vertex Cover and Set Cover
20.8.0.3 A problem of Languages

Suppose you work for the United Nations. Let U be the set of all languages spoken by people
across the world. The United Nations also has a set of translators, all of whom speak English,
and some other languages from U .

Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this,
while still ensuring that there is someone who speaks every language in U?

More General problem: Find/Hire a small group of people who can accomplish a large number
of tasks.

20.8.0.4 The Set Cover Problem

Input Given a set U of n elements, a collection S1, S2, . . . Sm of subsets of U , and an integer k

Goal Is there is a collection of at most k of these sets Si whose union is equal to U?
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Example 20.8.1. ¡2-¿Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} ¡3− > S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} ¡3− > S6 = {1, 2, 6, 7}

{S2, S6} is a set cover

20.8.0.5 Vertex Cover ≤P Set Cover

Given graph G = (V,E) and integer k as instance of Vertex Cover, construct an instance of Set
Cover as follows:
(A) Number k for the Set Cover instance is the same as the number k given for the Vertex Cover

instance.
(B) U = E.
(C) We will have one set corresponding to each vertex; Sv = {e | e is incident on v}.

Observe that G has vertex cover of size k if and only if U, {Sv}v∈V has a set cover of size k.
(Exercise: Prove this.)

20.8.0.6 Vertex Cover ≤P Set Cover: Example

1 2

3

4

56
a

g

c

f

e

b

d

3

6

{3, 6} is a vertex cover

Let U = {a, b, c, d, e, f, g}, k = 2 with

S1 = {c, g} S2 = {b, d}
¡3− > S3 = {c, d, e} S4 = {e, f}
S5 = {a} ¡3− > S6 = {a, b, f, g}

{S3, S6} is a set cover

20.8.0.7 Proving Reductions

To prove that X ≤P Y you need to give an algorithm A that
(A) transforms an instance IX of X into an instance IY of Y
(B) satisfies the property that answer to IX is YES iff IY is YES

(A) typical easy direction to prove: answer to IY is YES if answer to IX is YES
(B) typical difficult direction to prove: answer to IX is YES if answer to IY is YES

(equivalenly answer to IX is NO if answer to IY is NO)
(C) runs in polynomial time

20.8.0.8 Example of incorrect reduction proof

Try proving Matching ≤P Bipartite Matching via following reduction:
(A) Given graph G = (V,E) obtain a bipartite graph G′ = (V ′, E′) as follows.
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(A) Let V1 = {u1 | u ∈ V } and V2 = {u2 | u ∈ V }. We set V ′ = V1 ∪ V2 (that is, we make two
copies of V )

(B) E′ = {(u1, v2) | u 6= v and (u, v) ∈ E}
(B) Given G and integer k the reduction outputs G′ and k.

20.8.0.9 Example
20.8.0.10 “Proof”

Claim 20.8.2. Reduction is a poly-time algorithm. If G has a matching of size k then G′ has a
matching of size k.

Proof : Exercise.

Claim 20.8.3. If G′ has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex u ∈ V has two copies u1 and u2 in G′. A matching in G′ may use both
copies!

20.8.0.11 Summary

We looked at polynomial-time reductions.
¡2-¿Using polynomial-time reductions

(A) If X ≤P Y , and we have an efficient algorithm for Y , we have an efficient algorithm for X.
(B) If X ≤P Y , and there is no efficient algorithm for X, there is no efficient algorithm for Y .

We looked at some examples of reductions between Independent Set, Clique, Vertex Cover,
and Set Cover.
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Chapter 21

Reductions and NP

CS 473: Fundamental Algorithms, Spring 2013
April 12, 2013

21.1 Reductions Continued

21.1.1 Polynomial Time Reduction

21.1.1.1 Karp reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm
A that has the following properties:
(A) given an instance IX of X, A produces an instance IY of Y
(B) A runs in time polynomial in |IX |. This implies that |IY | (size of IY ) is polynomial in |IX |
(C) Answer to IX YES iff answer to IY is YES.

Notation: X ≤P Y if X reduces to Y

Proposition 21.1.1. If X ≤P Y then a polynomial time algorithm for Y implies a polynomial
time algorithm for X.

Such a reduction is called a Karp reduction . Most reductions we will need are Karp reduc-
tions.

21.1.2 A More General Reduction

21.1.2.1 Turing Reduction

Definition 21.1.2 (Turing reduction.). Problem X polynomial time reduces to Y if there is an
algorithm A for X that has the following properties:
(A) on any given instance IX of X, A uses polynomial in |IX | “steps”
(B) a step is either a standard computation step, or
(C) a sub-routine call to an algorithm that solves Y .

This is a Turing reduction.
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Note: In making sub-routine call to algorithm to solve Y , A can only ask questions of size poly-
nomial in |IX |. Why?

21.1.2.2 Comparing reductions

(A) Karp reduction:

Reduction
IX

Solver for Y

yes

no
Solver forX

IY

(B) Turing reduction:

Algorithm
IX

Solver for Y

yes

no

Turing reduction
(A) Algorithm to solve X can call solver

for Y many times.
(B) Conceptually, every call to the solver

of Y takes constant time.

21.1.2.3 Example of Turing Reduction

Input Collection of arcs on a circle.

Goal Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Input Collection of intervals on the line.

Goal Compute the maximum number of non-overlapping intervals.

How? Used algorithm for interval problem multiple times.

21.1.2.4 Turing vs Karp Reductions

(A) Turing reductions more general than Karp reductions.
(B) Turing reduction useful in obtaining algorithms via reductions.
(C) Karp reduction is simpler and easier to use to prove hardness of problems.
(D) Perhaps surprisingly, Karp reductions, although limited, suffice for most known NP-Completeness

proofs.
(E) Karp reductions allow us to distinguish between NP and co-NP (more on this later).

21.1.3 The Satisfiability Problem (SAT)
21.1.3.1 Propositional Formulas

Definition 21.1.3. Consider a set of boolean variables x1, x2, . . . xn.
(A) A literal is either a boolean variable xi or its negation ¬xi.
(B) A clause is a disjunction of literals.

For example, x1 ∨ x2 ∨ ¬x4 is a clause.
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(C) A formula in conjunctive normal form (CNF) is propositional formula which is a con-
junction of clauses
(A) (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

(D) A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.
(A) (x1∨x2∨¬x4)∧ (x2∨¬x3∨x1) is a 3CNF formula, but (x1∨x2∨¬x4)∧ (x2∨¬x3)∧x5

is not.

21.1.3.2 Satisfiability

Problem: SAT

Instance: A CNF formula ϕ.
Question: Is there a truth assignment to the variable of ϕ such that ϕ evaluates
to true?

Problem: 3SAT

Instance: A 3CNF formula ϕ.
Question: Is there a truth assignment to the variable of ϕ such that ϕ evaluates
to true?

21.1.3.3 Satisfiability

SAT Given a CNF formula ϕ, is there a truth assignment to variables such that ϕ evaluates to
true?

Example 21.1.4. (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take x1, x2, . . . x5 to be all true

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not satisfiable

3SAT Given a 3CNF formula ϕ, is there a truth assignment to variables such that ϕ evaluates to
true?

(More on 2SAT in a bit...)

21.1.3.4 Importance of SAT and 3SAT

(A) SAT and 3SAT are basic constraint satisfaction problems.
(B) Many different problems can reduced to them because of the simple yet powerful expressively

of logical constraints.
(C) Arise naturally in many applications involving hardware and software verification and correct-

ness.
(D) As we will see, it is a fundamental problem in theory of NP-Completeness.
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21.1.4 SAT and 3SAT
21.1.4.1 SAT≤P 3SAT

How SAT is different from 3SAT?In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:

(
x ∨ y ∨ z ∨ w ∨ u

)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x
)

In 3SAT every clause must have exactly 3 different literals.
To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses to have

exactly 3 variables...
Basic idea

(A) Pad short clauses so they have 3 literals.
(B) Break long clauses into shorter clauses.
(C) Repeat the above till we have a 3CNF.

21.1.4.2 3SAT≤P SAT

(A) 3SAT ≤P SAT.
(B) Because...

A 3SAT instance is also an instance of SAT.

21.1.4.3 SAT≤P 3SAT

Claim 21.1.5. SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that
(A) ϕ is satisfiable iff ϕ′ is satisfiable
(B) ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.
Idea: if a clause of ϕ is not of length 3, replace it with several clauses of length exactly 3

21.1.5 SAT≤P 3SAT

21.1.5.1 A clause with a single literal

Reduction Ideas Challenge: Some of the clauses in ϕ may have less or more than 3 literals. For
each clause with < 3 or > 3 literals, we will construct a set of logically equivalent clauses.
(A) Case clause with one literal: Let c be a clause with a single literal (i.e., c = `). Let u, v

be new variables. Consider

c′ =
(
` ∨ u ∨ v

)
∧
(
` ∨ u ∨ ¬v

)

∧
(
` ∨ ¬u ∨ v

)
∧
(
` ∨ ¬u ∨ ¬v

)
.

Observe that c′ is satisfiable iff c is satisfiable

21.1.6 SAT≤P 3SAT

21.1.6.1 A clause with two literals

Reduction Ideas: 2 and more literals
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(A) Case clause with 2 literals: Let c = `1 ∨ `2. Let u be a new variable. Consider

c′ =
(
`1 ∨ `2 ∨ u

)
∧
(
`1 ∨ `2 ∨ ¬u

)
.

Again c is satisfiable iff c′ is satisfiable

21.1.6.2 Breaking a clause

Lemma 21.1.6. For any boolean formulas X and Y and z a new boolean variable. Then

X ∨ Y is satisfiable

if and only if, z can be assigned a value such that
(
X ∨ z

)
∧
(
Y ∨ ¬z

)
is satisfiable

(with the same assignment to the variables appearing in X and Y ).

21.1.7 SAT≤P 3SAT (contd)

21.1.7.1 Clauses with more than 3 literals

Let c = `1 ∨ · · · ∨ `k. Let u1, . . . uk−3 be new variables. Consider

c′ =
(
`1 ∨ `2 ∨ u1

)
∧
(
`3 ∨ ¬u1 ∨ u2

)

∧
(
`4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
`k−2 ∨ ¬uk−4 ∨ uk−3

)
∧
(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Claim 21.1.7. c is satisfiable iff c′ is satisfiable.

Another way to see it — reduce size of clause by one:

c′ =
(
`1 ∨ `2 . . . ∨ `k−2 ∨ uk−3

)
∧
(
`k−1 ∨ `k ∨ ¬uk−3

)
.

21.1.7.2 An Example

Example 21.1.8.

ϕ =
(
¬x1 ∨ ¬x4

)
∧
(
x1 ∨ ¬x2 ∨ ¬x3

)

∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧
(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .
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21.1.8 Overall Reduction Algorithm

21.1.8.1 Reduction from SAT to 3SAT

ReduceSATTo3SAT(ϕ):
// ϕ: CNF formula.

for each clause c of ϕ do
if c does not have exactly 3 literals then

construct c′ as before

else
c′ = c

ψ is conjunction of all c′ constructed in loop

return Solver3SAT(ψ)

Correctness (informal) ϕ is satisfiable iff ψ is satisfiable because for each clause c, the new 3CNF
formula c′ is logically equivalent to c.

21.1.8.2 What about 2SAT?

2SAT can be solved in polynomial time! (In fact, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to 2SAT. If there was, then SAT
and 3SAT would be solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x ∨ y ∨ z). We need to reduce it to a collection of 2CNF clauses. Introduce
a face variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)

21.1.8.3 What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its satisfying assignment...

(Hint: Create a graph with two vertices for each variable (for a variable x there would be
two vertices with labels x = 0 and x = 1). For ever 2CNF clause add two directed edges in the
graph. The edges are implication edges: They state that if you decide to assign a certain value to
a variable, then you must assign a certain value to some other variable.

Now compute the strong connected components in this graph, and continue from there...)

21.1.9 3SAT and Independent Set
21.1.9.1 Independent Set

Problem: Independent Set

Instance: A graph G, integer k
Question: Is there an independent set in G of size k?

278



¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 21.1: Graph for ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

21.1.9.2 3SAT≤P Independent Set

The reduction 3SAT≤P Independent Set Input: Given a 3CNF formula ϕ

Goal: Construct a graph Gϕ and number k such that Gϕ has an independent set of size k if
and only if ϕ is satisfiable.

Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a
seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean
formulas.

21.1.9.3 Interpreting 3SAT

There are two ways to think about 3SAT

(A) Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true,
that is each clause evaluates to true.

(B) Pick a literal from each clause and find a truth assignment to make all of them true. You will
fail if two of the literals you pick are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

21.1.9.4 The Reduction

(A) Gϕ will have one vertex for each literal in a clause
(B) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one

vertex from each clause, which will correspond to the literal to be set to true
(C) Connect 2 vertices if they label complementary literals; this ensures that the literals corre-

sponding to the independent set do not have a conflict
(D) Take k to be the number of clauses
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21.1.9.5 Correctness

Proposition 21.1.9. ϕ is satisfiable iff Gϕ has an independent set of size k (= number of clauses
in ϕ).

Proof :
⇒ Let a be the truth assignment satisfying ϕ

(A) Pick one of the vertices, corresponding to true literals under a, from each triangle. This
is an independent set of the appropriate size

21.1.9.6 Correctness (contd)

Proposition 21.1.10. ϕ is satisfiable iff Gϕ has an independent set of size k (= number of clauses
in ϕ).

Proof :
⇐ Let S be an independent set of size k

(A) S must contain exactly one vertex from each clause
(B) S cannot contain vertices labeled by conflicting clauses
(C) Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such

an assignment satisfies one literal in every clause

21.1.9.7 Transitivity of Reductions

Lemma 21.1.11. X ≤P Y and Y ≤P Z implies that X ≤P Z.

Note: X ≤P Y does not imply that Y ≤P X and hence it is very important to know the FROM
and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y
In other words show that an algorithm for Y implies an algorithm for X.

21.2 Definition of NP
21.2.0.8 Recap . . .

Problems
(A) Independent Set
(B) Vertex Cover
(C) Set Cover
(D) SAT
(E) 3SAT

¡2-¿Relationship

3SAT ≤P Independent Set
≤P≥P Vertex Cover ≤P Set Cover

3SAT ≤P SAT ≤P 3SAT
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21.3 Preliminaries

21.3.1 Problems and Algorithms
21.3.1.1 Problems and Algorithms: Formal Approach

Decision Problems

(A) Problem Instance: Binary string s, with size |s|
(B) Problem: A set X of strings on which the answer should be “yes”; we call these YES instances

of X. Strings not in X are NO instances of X.

Definition 21.3.1. (A) A is an algorithm for problem X if A(s) = ”yes” iff s ∈ X
(B) A is said to have a polynomial running time if there is a polynomial p(·) such that for

every string s, A(s) terminates in at most O(p(|s|)) steps

21.3.1.2 Polynomial Time

Definition 21.3.2. Polynomial time (denoted P ) is the class of all (decision) problems that
have an algorithm that solves it in polynomial time

Example 21.3.3. ¡2-¿ Problems in P include

(A) Is there a shortest path from s to t of length ≤ k in G?
(B) Is there a flow of value ≥ k in network G?
(C) Is there an assignment to variables to satisfy given linear constraints?

21.3.1.3 Efficiency Hypothesis

A problem X has an efficient algorithm iff X ∈ P , that is X has a polynomial time algorithm.

Justifications:

(A) Robustness of definition to variations in machines.
(B) A sound theoretical definition.
(C) Most known polynomial time algorithms for “natural” problems have small polynomial running

times.

21.3.1.4 Problems with no known polynomial time algorithms

Problems

(A) Independent Set
(B) Vertex Cover
(C) Set Cover
(D) SAT
(E) 3SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we
want to solve are like above.

Question: What is common to above problems?
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21.3.1.5 Efficient Checkability

Above problems share the following feature:

For any YES instance IX of X there is a proof/certificate/solution that is of length poly(|IX |)
such that given a proof one can efficiently check that IX is indeed a YES instance

Examples:

(A) SAT formula ϕ: proof is a satisfying assignment
(B) Independent Set in graph G and k: a subset S of vertices

21.3.2 Certifiers/Verifiers
21.3.2.1 Certifiers

Definition 21.3.4. An algorithm C(·, ·) is a certifier for problem X if for every s ∈ X there is
some string t such that C(s, t) = ”yes”, and conversely, if for some s and t, C(s, t) = ”yes” then
s ∈ X.

The string t is called a certificate or proof for s

¡2-¿Efficient Certifier C is an efficient certifier for problem X if there is a polynomial p(·)
such that for every string s, s ∈ X iff there is a string t with |t| ≤ p(|s|), C(s, t) = ”yes” and C
runs in polynomial time

21.3.2.2 Example: Independent Set

(A) Problem: Does G = (V,E) have an independent set of size ≥ k?
(A) Certificate: Set S ⊆ V
(B) Certifier: Check |S| ≥ k and no pair of vertices in S is connected by an edge

21.3.3 Examples
21.3.3.1 Example: Vertex Cover

(A) Problem: Does G have a vertex cover of size ≤ k?
(A) Certificate: S ⊆ V
(B) Certifier: Check |S| ≤ k and that for every edge at least one endpoint is in S

21.3.3.2 Example: SAT

(A) Problem: Does formula ϕ have a satisfying truth assignment?
(A) Certificate: Assignment a of 0/1 values to each variable
(B) Certifier: Check each clause under a and say “yes” if all clauses are true

21.3.3.3 Example:Composites

(A) Problem: Is number s a composite?
(A) Certificate: A factor t ≤ s such that t 6= 1 and t 6= s
(B) Certifier: Check that t divides s (Euclid’s algorithm)
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21.4 NP

21.4.1 Definition
21.4.1.1 Nondeterministic Polynomial Time

Definition 21.4.1. Nondeterministic Polynomial Time (denoted by NP ) is the class of all
problems that have efficient certifiers

Example 21.4.2. ¡2-¿ Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, Composites are
all examples of problems in NP

21.4.1.2 Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short
certificate.

Example: SAT formula ϕ. No easy way to prove that ϕ is NOT satisfiable!

More on this and co-NP later on.

21.4.2 Intractability
21.4.2.1 P versus NP

Proposition 21.4.3. P ⊆ NP

For a problem in P no need for a certificate!

Proof : Consider problem X ∈ P with algorithm A. Need to demonstrate that X has an efficient
certifier
(A) Certifier C on input s, t, runs A(s) and returns the answer
(B) C runs in polynomial time
(C) If s ∈ X then for every t, C(s, t) = ”yes”
(D) If s 6∈ X then for every t, C(s, t) = ”no”

21.4.2.2 Exponential Time

Definition 21.4.4. Exponential Time (denoted EXP ) is the collection of all problems that have
an algorithm which on input s runs in exponential time, i.e., O(2poly(|s|))

Example: O(2n), O(2n logn), O(2n
3
), ...

21.4.2.3 NP versus EXP

Proposition 21.4.5. NP ⊆ EXP

Proof : Let X ∈ NP with certifier C. Need to design an exponential time algorithm for X
(A) For every t, with |t| ≤ p(|s|) run C(s, t); answer “yes” if any one of these calls returns “yes”
(B) The above algorithm correctly solves X (exercise)
(C) Algorithm runs in O(q(|s|+ |p(s)|)2p(|s|)), where q is the running time of C
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21.4.2.4 Examples

(A) SAT: try all possible truth assignment to variables.
(B) Independent Set: try all possible subsets of vertices.
(C) Vertex Cover: try all possible subsets of vertices.

21.4.2.5 Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP ¡2-¿Big Question Is there are problem in NP that does not belong to
P? Is P = NP?

21.4.3 If P = NP . . .

21.4.3.1 Or: If pigs could fly then life would be sweet.

(A) Many important optimization problems can be solved efficiently.
(B) The RSA cryptosystem can be broken.
(C) No security on the web.
(D) No e-commerce . . .
(E) Creativity can be automated! Proofs for mathematical statement can be found by computers

automatically (if short ones exist).

21.4.3.2 P versus NP

Status Relationship between P and NP remains one of the most important open problems in
mathematics/computer science.
Consensus: Most people feel/believe P 6= NP .

Resolving P versus NP is a Clay Millennium Prize Problem. You can win a million dollars in
addition to a Turing award and major fame!
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Chapter 22

NP Completeness and Cook-Levin
Theorem

CS 473: Fundamental Algorithms, Spring 2013
April 17, 2013

22.1 NP
22.1.0.3 P and NP and Turing Machines

(A) P: set of decision problems that have polynomial time algorithms.
(B) NP: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

22.1.0.4 Turing Machines: RecapTuring Machines

X1 X2 · · · Xn ! !

finite-state
control

tape

head

Unrestricted memory: an infinite tape
A finite state machine that reads/writes symbols on the tape
Can read/write anywhere on the tape
Tape is infinite in one direction only (other variants possible)

Initially, tape has input and the machine is reading (i.e., tape
head is on) the leftmost input symbol.
Transition (based on current state and symbol under head):

Change control state
Overwrite a new symbol on the tape cell under the head
Move the head left, or right.

Prabhakaran-Viswanathan CS373

(A) Infinite tape.
(B) Finite state control.
(C) Input at beginning of tape.
(D) Special tape letter “blank” t.
(E) Head can move only one cell to left or right.

22.1.0.5 Turing Machines: Formally

A TM M = (Q,Σ,Γ, δ, q0, qaccept, qreject):
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(A) Q is set of states in finite control
(B) q0 start state, qaccept is accept state, qreject is reject state
(C) Σ is input alphabet, Γ is tape alphabet (includes t)
(D) δ : Q× Γ→ {L,R} × Γ×Q is transition function

(A) δ(q, a) = (q′, b, L) means that M in state q and head seeing a on tape will move to state
q′ while replacing a on tape with b and head moves left.

L(M): language accepted by M is set of all input strings s on which M accepts; that is:

(A) TM is started in state q0.
(B) Initially, the tape head is located at the first cell.
(C) The tape contain s on the tape followed by blanks.
(D) The TM halts in the state qaccept.

22.1.0.6 P via TMs

Definition 22.1.1. M is a polynomial time TM if there is some polynomial p(·) such that on all
inputs w, M halts in p(|w|) steps.

Definition 22.1.2. L is a language in P iff there is a polynomial time TMM such that L = L(M).

22.1.0.7 NP via TMs

Definition 22.1.3. L is an NP language iff there is a non-deterministic polynomial time TM M
such that L = L(M).

Non-deterministic TM: each step has a choice of moves

(A) δ : Q× Γ→ P(Q× Γ× {L,R}).
(A) Example: δ(q, a) = {(q1, b, L), (q2, c, R), (q3, a, R)}means thatM can non-deterministically

choose one of the three possible moves from (q, a).
(B) L(M): set of all strings s on which there exists some sequence of valid choices at each step

that lead from q0 to qaccept

22.1.0.8 Non-deterministic TMs vs certifiers

NP

Two definition of NP:

(A) L is in NP iff L has a polynomial time certifier C(·, ·).
(B) L is in NP iff L is decided by a non-deterministic polynomial time TM M .

Claim 22.1.4. Two definitions are equivalent.

Why?

Informal proof idea: the certificate t for C corresponds to non-deterministic choices of M and
vice-versa.

In other words L is in NP iff L is accepted by a NTM which first guesses a proof t of length
poly in input |s| and then acts as a deterministic TM.
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22.1.0.9 Non-determinism, guessing and verification

(A) A non-deterministic machine has choices at each step and accepts a string if there exists a set
of choices which lead to a final state.

(B) Equivalently the choices can be thought of as guessing a solution and then verifying that
solution. In this view all the choices are made a priori and hence the verification can be
deterministic. The “guess” is the “proof” and the “verifier” is the “certifier”.

(C) We reemphasize the asymmetry inherent in the definition of non-determinism. Strings in the
language can be easily verified. No easy way to verify that a string is not in the language.

22.1.0.10 Algorithms: TMs vs RAM Model

Why do we use TMs some times and RAM Model other times?
(A) TMs are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.

(A) Simplicity is useful in proofs.
(B) The “right” formal bare-bones model when dealing with subtleties.

(B) RAM model is a closer approximation to the running time/space usage of realistic computers
for reasonable problem sizes
(A) Not appropriate for certain kinds of formal proofs when algorithms can take super-

polynomial time and space

22.2 Cook-Levin Theorem

22.2.1 Completeness
22.2.1.1 “Hardest” Problems

Question What is the hardest problem in NP? How do we define it? Towards a definition
(A) Hardest problem must be in NP.
(B) Hardest problem must be at least as “difficult” as every other problem in NP.

22.2.1.2 NP-Complete Problems

Definition 22.2.1. A problem X is said to be NP-Complete if
(A) X ∈ NP, and
(B) (Hardness) For any Y ∈ NP, Y ≤P X.

22.2.1.3 Solving NP-Complete Problems

Proposition 22.2.2. Suppose X is NP-Complete. Then X can be solved in polynomial time if
and only if P = NP.

Proof :
⇒ Suppose X can be solved in polynomial time

(A) Let Y ∈ NP. We know Y ≤P X.
(B) We showed that if Y ≤P X and X can be solved in polynomial time, then Y can be solved

in polynomial time.
(C) Thus, every problem Y ∈ NP is such that Y ∈ P ; NP ⊆ P .
(D) Since P ⊆ NP, we have P = NP.
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⇐ Since P = NP, and X ∈ NP, we have a polynomial time algorithm for X.

22.2.1.4 NP-Hard Problems

Definition 22.2.3. A problem X is said to be NP-Hard if
(A) (Hardness) For any Y ∈ NP, Y ≤P X

An NP-Hard problem need not be in NP!
Example: Halting problem is NP-Hard (why?) but not NP-Complete.

22.2.1.5 Consequences of proving NP-Completeness

If X is NP-Complete
(A) Since we believe P 6= NP,
(B) and solving X implies P = NP.
X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for
X.

(This is proof by mob opinion — take with a grain of salt.)

22.2.2 Preliminaries
22.2.2.1 NP-Complete Problems

Question Are there any problems that are NP-Complete? Answer Yes! Many, many problems
are NP-Complete.

22.2.2.2 Circuits

Definition 22.2.4. A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

∧

Inputs:

Output:

(A) Input vertices (without incoming edges) la-
belled with 0, 1 or a distinct variable

(B) Every other vertex is labelled ∨, ∧ or ¬
(C) Single node output vertex with no outgoing

edges

22.2.3 Cook-Levin Theorem
22.2.3.1 Cook-Levin Theorem

Definition 22.2.5 (Circuit Satisfaction (CSAT).). Given a circuit as input, is there an as-
signment to the input variables that causes the output to get value 1?

Theorem 22.2.6 (Cook-Levin). CSAT is NP-Complete.

Need to show
(A) CSAT is in NP
(B) every NP problem X reduces to CSAT.
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22.2.3.2 CSAT: Circuit Satisfaction

Claim 22.2.7. CSAT is in NP.

(A) Certificate: Assignment to input variables.
(B) Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output

gate value.

22.2.3.3 CSAT is NP-hard: Idea

Need to show that every NP problem X reduces to CSAT.

What does it mean that X ∈ NP?

X ∈ NP implies that there are polynomials p() and q() and certifier/verifier program C such
that for every string s the following is true:

(A) If s is a YES instance (s ∈ X) then there is a proof t of length p(|s|) such that C(s, t) says
YES.

(B) If s is a NO instance (s 6∈ X) then for every string t of length at p(|s|), C(s, t) says NO.
(C) C(s, t) runs in time q(|s|+ |t|) time (hence polynomial time).

22.2.3.4 Reducing X to CSAT

X is in NP means we have access to p(), q(), C(·, ·).
What is C(·, ·)? It is a program or equivalently a Turing Machine!

How are p() and q() given? As numbers.

Example: if 3 is given then p(n) = n3.

Thus an NP problem is essentially a three tuple < p, q, C > where C is either a program or a
TM.

22.2.3.5 Reducing X to CSAT

Thus an NP problem is essentially a three tuple < p, q, C > where C is either a program or TM.

Problem X: Given string s, is s ∈ X?

Same as the following: is there a proof t of length p(|s|) such that C(s, t) says YES.

How do we reduce X to CSAT? Need an algorithm A that

(A) takes s (and < p, q, C >) and creates a circuit G in polynomial time in |s| (note that < p, q, C >
are fixed).

(B) G is satisfiable if and only if there is a proof t such that C(s, t) says YES.

22.2.3.6 Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that

(A) takes s (and < p, q, C >) and creates a circuit G in polynomial time in |s| (note that < p, q, C >
are fixed).

(B) G is satisfiable if and only if there is a proof t such that C(s, t) says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

(A) Convert C(s, t) into a circuit G with t as unknown inputs (rest is known including s)
(B) We know that |t| = p(|s|) so express boolean string t as p(|s|) variables t1, t2, . . . , tk where

k = p(|s|).
(C) Asking if there is a proof t that makes C(s, t) say YES is same as whether there is an assignment

of values to “unknown” variables t1, t2, . . . , tk that will make G evaluate to true/YES.
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22.2.3.7 Example: Independent Set

(A) Problem: Does G = (V,E) have an Independent Set of size ≥ k?
(A) Certificate: Set S ⊆ V
(B) Certifier: Check |S| ≥ k and no pair of vertices in S is connected by an edge

Formally, why is Independent Set in NP?

22.2.3.8 Example: Independent Set

Formally why is Independent Set in NP?
(A) Input: < n, y1,1, y1,2, . . . , y1,n, y2,1, . . . , y2,n, . . . , yn,1, . . . , yn,n, k > encodes < G, k >.

(A) n is number of vertices in G
(B) yi,j is a bit which is 1 if edge (i, j) is in G and 0 otherwise (adjacency matrix representa-

tion)
(C) k is size of independent set.

(B) Certificate: t = t1t2 . . . tn. Interpretation is that ti is 1 if vertex i is in the independent set, 0
otherwise.

22.2.3.9 Certifier for Independent Set

Certifier C(s, t) for Independent Set:

if (t1 + t2 + . . .+ tn < k) then
return NO

else
for each (i, j) do

if (ti ∧ tj ∧ yi,j) then
return NO

return YES

22.2.3.10 Example: Independent Set

v w

u

Figure 22.1:
Graph G with
k = 2

1 0 1

u, v u, w v, w u v w

∧ ∧ ∧

∧ ∧ ∧

∨

∨ ∨

∨

¬

∧

Both ends of an edge?

Two nodes?

22.2.3.11 Circuit from Certifier
22.2.3.12 Programs, Turing Machines and Circuits

Consider “program” A that takes f(|s|) steps on input string s.
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Question: What computer is the program running on and what does step mean?

Real computers difficult to reason with mathematically because

(A) instruction set is too rich
(B) pointers and control flow jumps in one step
(C) assumption that pointer to code fits in one word

Turing Machines

(A) simpler model of computation to reason with
(B) can simulate real computers with polynomial slow down
(C) all moves are local (head moves only one cell)

22.2.3.13 Certifiers that at TMs

Assume C(·, ·) is a (deterministic) Turing Machine M

Problem: Given M , input s, p, q decide if there is a proof t of length p(|s|) such that M on s, t
will halt in q(|s|) time and say YES.

There is an algorithm A that can reduce above problem to CSAT mechanically as follows.

(A) A first computes p(|s|) and q(|s|).
(B) Knows that M can use at most q(|s|) memory/tape cells
(C) Knows that M can run for at most q(|s|) time
(D) Simulates the evolution of the state of M and memory over time using a big circuit.

22.2.3.14 Simulation of Computation via Circuit

(A) Think of M ’s state at time ` as a string x` = x1x2 . . . xk where each xi ∈ {0, 1, B}×Q∪{q−1}.
(B) At time 0 the state of M consists of input string s a guess t (unknown variables) of length

p(|s|) and rest q(|s|) blank symbols.
(C) At time q(|s|) we wish to know if M stops in qaccept with say all blanks on the tape.
(D) We write a circuit C` which captures the transition of M from time ` to time `+ 1.
(E) Composition of the circuits for all times 0 to q(|s|) gives a big (still poly) sized circuit C
(F) The final output of C should be true if and only if the entire state of M at the end leads to an

accept state.

22.2.3.15 NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

(A) Use TMs as the code for certifier for simplicity
(B) Since p() and q() are known to A, it can set up all required memory and time steps in advance
(C) Simulate computation of the TM from one time to the next as a circuit that only looks at

three adjacent cells at a time

Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of
Steve Cook.

22.2.4 Other NP Complete Problems
22.2.4.1 SAT is NP-Complete

(A) We have seen that SAT ∈ NP
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(B) To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT
Instance of CSAT (we label each node):

1,a ?,b ?,c 0,d ?,e

Inputs:

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

22.2.5 Converting a circuit into a CNF formula

22.2.5.1 Label the nodes

1 ? ? 0 ?

Inputs

Output:

∧

∧

∧

∨ ∨

¬

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

(A) Input circuit (B) Label the nodes.

22.2.6 Converting a circuit into a CNF formula

22.2.6.1 Introduce a variable for each node

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

(B) Label the nodes. (C) Introduce var for each node.
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22.2.7 Converting a circuit into a CNF formula

22.2.7.1 Write a sub-formula for each variable that is true if the var is computed
correctly.

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk (Demand a sat’ assignment!)
xk = xi ∧ xk
xj = xg ∧ xh
xi = ¬xf
xh = xd ∨ xe
xg = xb ∨ xc
xf = xa ∧ xb
xd = 0
xa = 1

(C) Introduce var for each node.
(D) Write a sub-formula for each variable
that is true if the var is computed correctly.

22.2.8 Converting a circuit into a CNF formula

22.2.8.1 Convert each sub-formula to an equivalent CNF formula

xk xk
xk = xi ∧ xj (¬xk ∨ xi) ∧ (¬xk ∨ xj) ∧ (xk ∨ ¬xi ∨ ¬xj)
xj = xg ∧ xh (¬xj ∨ xg) ∧ (¬xj ∨ xh) ∧ (xj ∨ ¬xg ∨ ¬xh)

xi = ¬xf (xi ∨ xf ) ∧ (¬xi ∨ xf )

xh = xd ∨ xe (xh ∨ ¬xd) ∧ (xh ∨ ¬xe) ∧ (¬xh ∨ xd ∨ xe)
xg = xb ∨ xc (xg ∨ ¬xb) ∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
xf = xa ∧ xb (¬xf ∨ xa) ∧ (¬xf ∨ xb) ∧ (xf ∨ ¬xa ∨ ¬xb)

xd = 0 ¬xd
xa = 1 xa

22.2.9 Converting a circuit into a CNF formula

22.2.9.1 Take the conjunction of all the CNF sub-formulas

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk ∧ (¬xk ∨ xi) ∧ (¬xk ∨ xj)
∧ (xk ∨ ¬xi ∨ ¬xj) ∧ (¬xj ∨ xg)
∧ (¬xj ∨ xh) ∧ (xj ∨ ¬xg ∨ ¬xh)
∧ (xi ∨ xf ) ∧ (¬xi ∨ xf )
∧ (xh ∨ ¬xd) ∧ (xh ∨ ¬xe)
∧ (¬xh ∨ xd ∨ xe) ∧ (xg ∨ ¬xb)
∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
∧ (¬xf ∨ xa) ∧ (¬xf ∨ xb)
∧ (xf ∨ ¬xa ∨ ¬xb) ∧ (¬xd) ∧ xa

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.
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22.2.9.2 Reduction: CSAT ≤P SAT

(A) For each gate (vertex) v in the circuit, create a variable xv
(B) Case ¬: v is labeled ¬ and has one incoming edge from u (so xv = ¬xu). In SAT formula

generate, add clauses (xu ∨ xv), (¬xu ∨ ¬xv). Observe that

xv = ¬xu is true ⇐⇒ (xu ∨ xv)
(¬xu ∨ ¬xv) both true.

22.2.10 Reduction: CSAT ≤P SAT

22.2.10.1 Continued...

(A) Case ∨: So xv = xu ∨ xw. In SAT formula generated, add clauses (xv ∨ ¬xu), (xv ∨ ¬xw),
and (¬xv ∨ xu ∨ xw). Again, observe that

xv = xu ∨ xw is true ⇐⇒
(xv ∨ ¬xu),
(xv ∨ ¬xw),
(¬xv ∨ xu ∨ xw)

all true.

22.2.11 Reduction: CSAT ≤P SAT

22.2.11.1 Continued...

(A) Case ∧: So xv = xu ∧ xw. In SAT formula generated, add clauses (¬xv ∨ xu), (¬xv ∨ xw),
and (xv ∨ ¬xu ∨ ¬xw). Again observe that

xv = xu ∧ xw is true ⇐⇒
(¬xv ∨ xu),
(¬xv ∨ xw),
(xv ∨ ¬xu ∨ ¬xw)

all true.

22.2.12 Reduction: CSAT ≤P SAT

22.2.12.1 Continued...

(A) If v is an input gate with a fixed value then we do the following. If xv = 1 add clause xv. If
xv = 0 add clause ¬xv

(B) Add the clause xv where v is the variable for the output gate

22.2.12.2 Correctness of Reduction

Need to show circuit C is satisfiable iff ϕC is satisfiable
⇒ Consider a satisfying assignment a for C

(A) Find values of all gates in C under a
(B) Give value of gate v to variable xv; call this assignment a′

(C) a′ satisfies ϕC (exercise)
⇐ Consider a satisfying assignment a for ϕC

(A) Let a′ be the restriction of a to only the input variables
(B) Value of gate v under a′ is the same as value of xv in a
(C) Thus, a′ satisfies C

Theorem 22.2.8. SAT is NP-Complete.
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22.2.12.3 Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
(A) Show X is in NP.

(A) certificate/proof of polynomial size in input
(B) polynomial time certifier C(s, t)

(B) Reduction from a known NP-Complete problem such as CSAT or SAT to X
SAT ≤P X implies that every NP problem Y ≤P X. Why?

Transitivity of reductions:
Y ≤P SAT and SAT ≤P X and hence Y ≤P X.

22.2.12.4 NP-Completeness via Reductions

(A) CSAT is NP-Complete.
(B) CSAT ≤P SAT and SAT is in NP and hence SAT is NP-Complete.
(C) SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.
(D) 3-SAT ≤P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
(E) Vertex Cover is NP-Complete.
(F) Clique is NP-Complete.

Hundreds and thousands of different problems from many areas of science and engineering have
been shown to be NP-Complete.

A surprisingly frequent phenomenon!
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Chapter 23

More NP-Complete Problems

CS 473: Fundamental Algorithms, Spring 2013
April 19, 2013

23.0.12.5 Recap

NP: languages that have polynomial time certifiers/verifiers
A language L is NP-Complete iff

• L is in NP

• for every L′ in NP, L′ ≤P L
L is NP-Hard if for every L′ in NP, L′ ≤P L.

Theorem 23.0.9 (Cook-Levin). Circuit-SAT and SAT are NP-Complete.

23.0.12.6 Recap contd

Theorem 23.0.10 (Cook-Levin). Circuit-SAT and SAT are NP-Complete.

Establish NP-Completeness via reductions:

• SAT ≤P 3-SAT and hence 3-SAT is NP-complete

• 3-SAT ≤P Independent Set (which is in NP) and hence Independent Set is NP-Complete

• Vertex Cover is NP-Complete

• Clique is NP-Complete

• Set Cover is NP-Complete

23.0.12.7 Today

Prove

• Hamiltonian Cycle Problem is NP-Complete

• 3-Coloring is NP-Complete
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23.0.12.8 Directed Hamiltonian Cycle

Input Given a directed graph G = (V,E) with n vertices

Goal Does G have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once

23.0.12.9 Directed Hamiltonian Cycle is NP-Complete

• Directed Hamiltonian Cycle is in NP

– Certificate: Sequence of vertices

– Certifier: Check if every vertex (except the first) appears exactly once, and that
consecutive vertices are connected by a directed edge

• Hardness: We will show 3-SAT ≤P Directed Hamiltonian Cycle

23.0.12.10 Reduction

Given 3-SAT formula ϕ create a graph Gϕ such that

• Gϕ has a Hamiltonian cycle if and only if ϕ is satisfiable

• Gϕ should be constructible from ϕ by a polynomial time algorithm A

Notation: ϕ has n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm.

23.0.12.11 Reduction: First Ideas

• Viewing SAT: Assign values to n variables, and each clauses has 3 ways in which it can be
satisfied

• Construct graph with 2n Hamiltonian cycles, where each cycle corresponds to some boolean
assignment

• Then add more graph structure to encode constraints on assignments imposed by the clauses
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23.0.12.12 The Reduction: Phase I

• Traverse path i from left to right iff xi is set to true

• Each path has 3(m+ 1) nodes where m is number of clauses in ϕ; nodes numbered from left
to right (1 to 3m+ 3)

x2

x3

x1

x4

23.0.12.13 The Reduction: Phase II

• Add vertex cj for clause Cj . cj has edge from vertex 3j and to vertex 3j + 1 on path i if xi
appears in clause Cj , and has edge from vertex 3j + 1 and to vertex 3j if ¬xi appears in Cj .
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x2

x3

¬x1 ∨ ¬x2 ∨ ¬x3

x1

x1 ∨ ¬x2 ∨ x4

x4

x2

x3

¬x1 ∨ ¬x2 ∨ ¬x3

x1

x1 ∨ ¬x2 ∨ x4

x4

x2

x3

¬x1 ∨ ¬x2 ∨ ¬x3

x1

x1 ∨ ¬x2 ∨ x4

x4
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x2

x3

¬x1 ∨ ¬x2 ∨ ¬x3

x1

x1 ∨ ¬x2 ∨ x4

x4

x2

x3

¬x1 ∨ ¬x2 ∨ ¬x3

x1

x1 ∨ ¬x2 ∨ x4

x4

x2

x3

¬x1 ∨ ¬x2 ∨ ¬x3

x1

x1 ∨ ¬x2 ∨ x4

x4
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x2

x3

¬x1 ∨ ¬x2 ∨ ¬x3

x1

x1 ∨ ¬x2 ∨ x4

x4

23.0.12.14 Correctness Proof

Proposition 23.0.11. ϕ has a satisfying assignment iff Gϕ has a Hamiltonian cycle.

Proof :

⇒ Let a be the satisfying assignment for ϕ. Define Hamiltonian cycle as follows

– If a(xi) = 1 then traverse path i from left to right

– If a(xi) = 0 then traverse path i from right to left

– For each clause, path of at least one variable is in the “right” direction to splice in the
node corresponding to clause

23.0.12.15 Hamiltonian Cycle ⇒ Satisfying assignment

Suppose Π is a Hamiltonian cycle in Gϕ

• If Π enters cj (vertex for clause Cj) from vertex 3j on path i then it must leave the clause
vertex on edge to 3j + 1 on the same path i

– If not, then only unvisited neighbor of 3j + 1 on path i is 3j + 2

– Thus, we don’t have two unvisited neighbors (one to enter from, and the other to leave)
to have a Hamiltonian Cycle

• Similarly, if Π enters cj from vertex 3j + 1 on path i then it must leave the clause vertex cj
on edge to 3j on path i

23.0.12.16 Example
23.0.12.17 Hamiltonian Cycle =⇒ Satisfying assignment (contd)

• Thus, vertices visited immediately before and after Ci are connected by an edge

• We can remove cj from cycle, and get Hamiltonian cycle in G− cj
• Consider Hamiltonian cycle in G− {c1, . . . cm}; it traverses each path in only one direction,

which determines the truth assignment
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x2

x3

x1

x4

23.0.12.18 Hamiltonian Cycle

Problem 23.0.12. Input Given undirected graph G = (V,E)

Goal Does G have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly
one (except start and end vertex)?

23.0.12.19 NP-Completeness

Theorem 23.0.13. Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof :

• The problem is in NP ; proof left as exercise

• Hardness proved by reducing Directed Hamiltonian Cycle to this problem

23.0.12.20 Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G′ such that G has Hamiltonian
Path iff G′ has Hamiltonian path Reduction

• Replace each vertex v by 3 vertices: vin, v, and vout

• A directed edge (a, b) is replaced by edge (aout, bin)

b

v

a

d

c

bo

vi

ao
v vo

di

ci

23.0.12.21 Reduction: Wrapup

• The reduction is polynomial time (exercise)

• The reduction is correct (exercise)
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23.0.12.22 Graph Coloring

Input Given an undirected graph G = (V,E) and integer k

Goal Can the vertices of the graph be colored using k colors so that vertices connected by an edge
do not get the same color?

23.0.12.23 Graph 3-Coloring

Input Given an undirected graph G = (V,E)

Goal Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge
do not get the same color?

23.0.12.24 Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same color) form an
independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite
using BFS (we saw this earlier).

23.0.12.25 Graph Coloring and Register Allocation

Register Allocation Assign variables to (at most) k registers such that variables needed at the same
time are not assigned to the same register Interference Graph Vertices are variables, and there is
an edge between two vertices, if the two variables are “live” at the same time. Observations

• [Chaitin] Register allocation problem is equivalent to coloring the interference graph with
k colors

• Moreover, 3-COLOR ≤P k-Register Allocation, for any k ≥ 3
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23.0.12.26 Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

• a node vi for each class i

• an edge between vi and vj if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient

23.0.12.27 Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM
in Europe and Asia and AT&T in USA)

• Breakup a frequency range [a, b] into disjoint bands of frequencies [a0, b0], [a1, b1], . . . , [ak, bk]

• Each cell phone tower (simplifying) gets one band

• Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given k bands and some region with n towers, is there a way to assign the bands to
avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers

23.0.12.28 3-Coloring is NP-Complete

• 3-Coloring is in NP

– Certificate: for each node a color from {1, 2, 3}
– Certifier: Check if for each edge (u, v), the color of u is different from that of v

• Hardness: We will show 3-SAT ≤P 3-Coloring

23.0.12.29 Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) ϕ with n variables x1, . . . , xn and m clauses
C1, . . . , Cm. Create graph Gϕ such that Gϕ is 3-colorable iff ϕ is satisfiable

¡+-¿ need to establish truth assignment for x1, . . . , xn via colors for some nodes in Gϕ.

¡+-¿ create triangle with node True, False, Base

¡+-¿ for each variable xi two nodes vi and v̄i connected in a triangle with common Base

¡+-¿ If graph is 3-colored, either vi or v̄i gets the same color as True. Interpret this as a truth
assignment to vi

¡+-¿ Need to add constraints to ensure clauses are satisfied (next phase)
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23.0.12.30 Figure

v1

v1

v2

v2

vn

vn

T F

Base

23.0.12.31 Clause Satisfiability Gadget

For each clause Cj = (a ∨ b ∨ c), create a small gadget graph

• gadget graph connects to nodes corresponding to a, b, c

• needs to implement OR

OR-gadget-graph:

a

b

c

a ∨ b

a ∨ b ∨ c

23.0.12.32 OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output node of OR-gadget has to be
colored False.
Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node
of OR-gadget is colored True.

23.0.12.33 Reduction

• create triangle with nodes True, False, Base

• for each variable xi two nodes vi and v̄i connected in a triangle with common Base

• for each clause Cj = (a ∨ b ∨ c), add OR-gadget graph with input nodes a, b, c and connect
output node of gadget to both False and Base
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v

u

~w

y

x

w

~y

~x

~v

~u

FT

N

Literals get colour T or F
colours

have complementary
Variable and negation

OR−gates

Palette

a

b

c

a ∨ b

a ∨ b ∨ c

T

F

Base

23.0.12.34 Reduction

a

b

c

a ∨ b

a ∨ b ∨ c

T

F

Base

Claim 23.0.14. No legal 3-coloring of above graph (with coloring of nodes T, F,B fixed) in which
a, b, c are colored False. If any of a, b, c are colored True then there is a legal 3-coloring of above
graph.

23.0.12.35 Reduction Outline

Example 23.0.15. ϕ = (u ∨ ¬v ∨ w) ∧ (v ∨ x ∨ ¬y)

23.0.12.36 Correctness of Reduction

ϕ is satisfiable implies Gϕ is 3-colorable

¡+-¿ if xi is assigned True, color vi True and v̄i False

¡+-¿ for each clause Cj = (a ∨ b ∨ c) at least one of a, b, c is colored True. OR-gadget for Cj can
be 3-colored such that output is True.

Gϕ is 3-colorable implies ϕ is satisfiable
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¡+-¿ if vi is colored True then set xi to be True, this is a legal truth assignment

¡+-¿ consider any clause Cj = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If so, output of
OR-gadget for Cj has to be colored False but output is connected to Base and False!

23.0.13 Graph generated in reduction...

23.0.13.1 ... from 3SAT to 3COLOR

d

X

ca b

T

a b c d

F

23.0.13.2 Subset Sum

Problem: Subset Sum

Instance: S - set of positive integers,t: - an integer number (Target)
Question: Is there a subset X ⊆ S such that

∑
x∈X x = t?

Claim 23.0.16. Subset Sum is NP-Complete.

23.0.13.3 Vec Subset Sum

We will prove following problem is NP-Complete...

Problem: Vec Subset Sum

Instance: S - set of n vectors of dimension k, each vector has non-negative
numbers for its coordinates, and a target vector

−→
t .

Question: Is there a subset X ⊆ S such that
∑
−→x ∈X

−→x =
−→
t ?

Reduction from 3SAT.
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23.0.14 Vec Subset Sum

23.0.14.1 Handling a single clause

Think about vectors as being lines in a table.

First gadget

Selecting between two lines.

Target ?? ?? 01 ???

a1 ?? ?? 01 ??

a2 ?? ?? 01 ??

Two rows for every variable x: selecting either x = 0 or x = 1.

23.0.14.2 Handling a clause...

We will have a column for every clause...

numbers ... C ≡ a ∨ b ∨ c ...

a ... 01 ...

a ... 00 ...

b ... 01 ...

b ... 00 ...

c ... 00 ...

c ... 01 ...

C fix-up 1 000 07 000

C fix-up 2 000 08 000

C fix-up 3 000 09 000

TARGET 10

23.0.14.3 3SAT to Vec Subset Sum

numbers a ∨ a b ∨ b c ∨ c d ∨ d D ≡ b ∨ c ∨ d C ≡ a ∨ b ∨ c
a 1 0 0 0 00 01
a 1 0 0 0 00 00
b 0 1 0 0 00 01

b 0 1 0 0 01 00
c 0 0 1 0 01 00
c 0 0 1 0 00 01
d 0 0 0 1 00 00

d 0 0 0 1 01 01
C fix-up 1 0 0 0 0 00 07
C fix-up 2 0 0 0 0 00 08
C fix-up 3 0 0 0 0 00 09
D fix-up 1 0 0 0 0 07 00
D fix-up 2 0 0 0 0 08 00
D fix-up 3 0 0 0 0 09 00

TARGET 1 1 1 1 10 10
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23.0.14.4 Vec Subset Sum to Subset Sum

numbers

010000000001

010000000000

000100000001

000100000100

000001000100

000001000001

000000010000

000000010101

000000000007

000000000008

000000000009

000000000700

000000000800

000000000900

010101011010

23.0.14.5 Other NP-Complete Problems

• 3-Dimensional Matching

• Subset Sum

Read book.

23.0.14.6 Need to Know NP-Complete Problems

• 3-SAT

• Circuit-SAT

• Independent Set

• Vertex Cover

• Clique

• Set Cover

• Hamiltonian Cycle in Directed/Undirected Graphs

• 3-Coloring

• 3-D Matching

• Subset Sum
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23.0.14.7 Subset Sum and Knapsack

Subset Sum Problem: Given n integers a1, a2, . . . , an and a target B, is there a subset of S of
{a1, . . . , an} such that the numbers in S add up precisely to B?

Subset Sum is NP-Complete— see book.
Knapsack: Given n items with item i having size si and profit pi, a knapsack of capacity B, and
a target profit P , is there a subset S of items that can be packed in the knapsack and the profit of
S is at least P?

Show Knapsack problem is NP-Complete via reduction from Subset Sum (exercise).

23.0.14.8 Subset Sum and Knapsack

Subset Sum can be solved in O(nB) time using dynamic programming (exercise). Implies that
problem is hard only when numbers a1, a2, . . . , an are exponentially large compared to n. That is,
each ai requires polynomial in n bits.

Number problems of the above type are said to be weakly NPComplete.
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Chapter 24

coNP, Self-Reductions

CS 473: Fundamental Algorithms, Spring 2013
April 24, 2013

24.1 Complementation and Self-Reduction

24.2 Complementation

24.2.1 Recap
24.2.1.1 The class P

(A) A language L (equivalently decision problem) is in the class P if there is a polynomial time
algorithm A for deciding L; that is given a string x, A correctly decides if x ∈ L and running
time of A on x is polynomial in |x|, the length of x.

24.2.1.2 The class NP

Two equivalent definitions:
(A) Language L is in NP if there is a non-deterministic polynomial time algorithm A (Turing

Machine) that decides L.
(A) For x ∈ L, A has some non-deterministic choice of moves that will make A accept x
(B) For x 6∈ L, no choice of moves will make A accept x

(B) L has an efficient certifier C(·, ·).
(A) C is a polynomial time deterministic algorithm
(B) For x ∈ L there is a string y (proof) of length polynomial in |x| such that C(x, y) accepts
(C) For x 6∈ L, no string y will make C(x, y) accept

24.2.1.3 Complementation

Definition 24.2.1. Given a decision problem X, its complement X̄ is the collection of all in-
stances s such that s 6∈ L(X)

Equivalently, in terms of languages:

Definition 24.2.2. Given a language L over alphabet Σ, its complement L is the language Σ∗−L.
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24.2.1.4 Examples

(A) PRIME = {n | n is an integer and n is prime}
PRIME =

{
n
∣∣∣n is an integer and n is not a prime

}

PRIME = COMPOSITE.
(B) SAT =

{
ϕ
∣∣∣ϕ is a CNF formula and ϕ is satisfiable

}

SAT =
{
ϕ
∣∣∣ϕ is a CNF formula and ϕ is not satisfiable

}
.

SAT = UnSAT.
Technicality: SAT also includes strings that do not encode any valid CNF formula. Typically we
ignore those strings because they are not interesting. In all problems of interest, we assume that it
is “easy” to check whether a given string is a valid instance or not.

24.2.1.5 P is closed under complementation

Proposition 24.2.3. Decision problem X is in P if and only if X is in P.

Proof :
(A) If X is in P let A be a polynomial time algorithm for X.
(B) Construct polynomial time algorithm A′ for X as follows: given input x, A′ runs A on x and

if A accepts x, A′ rejects x and if A rejects x then A′ accepts x.
(C) Only if direction is essentially the same argument.

24.2.2 Motivation
24.2.2.1 Asymmetry of NP

Definition 24.2.4. Nondeterministic Polynomial Time (denoted by NP) is the class of all
problems that have efficient certifiers.

Observation To show that a problem is in NP we only need short, efficiently checkable certificates
for “yes”-instances. What about “no”-instances?

Given a CNF formula ϕ, is ϕ unsatisfiable?
Easy to give a proof that ϕ is satisfiable (an assignment) but no easy (known) proof to show

that ϕ is unsatisfiable!

24.2.2.2 Examples

Some languages
(A) UnSAT: CNF formulas ϕ that are not satisfiable
(B) No-Hamilton-Cycle: graphs G that do not have a Hamilton cycle
(C) No-3-Color: graphs G that are not 3-colorable

Above problems are complements of known NP problems (viewed as languages).

24.2.3 co-NP Definition
24.2.3.1 NP and co-NP

NP Decision problems with a polynomial certifier.
Examples: SAT, Hamiltonian Cycle, 3-Colorability.
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Definition 24.2.5. co-NP is the class of all decision problems X such that X ∈ NP.
Examples: UnSAT, No-Hamiltonian-Cycle, No-3-Colorable.

24.2.4 Relationship between P , NP and co-NP
24.2.4.1 co-NP

If L is a language in co-NP then that there is a polynomial time certifier/verifier C(·, ·), such that:
(A) for s 6∈ L there is a proof t of size polynomial in |s| such that C(s, t) correctly says NO
(B) for s ∈ L there is no proof t for which C(s, t) will say NO

co-NP has checkable proofs for strings NOT in the language.

24.2.4.2 Natural Problems in co-NP

(A) Tautology: given a Boolean formula (not necessarily in CNF form), is it true for all possible
assignments to the variables?

(B) Graph expansion: given a graph G, is it an expander? A graph G = (V,E) is an expander
iff for each S ⊂ V with |S| ≤ |V |/2, |N(S)| ≥ |S|. Expanders are very important graphs in
theoretical computer science and mathematics.

24.2.4.3 P, NP, co-NP

co-P: complement of P. Language X is in co-P iff X ∈ P
Proposition 24.2.6. P = co-P.

Proposition 24.2.7. P ⊆ NP ∩ co-NP.

Saw that P ⊆ NP. Same proof shows P ⊆ co-NP.

24.2.4.4 P, NP, and co-NP

P

NP co-NP

NP ∩ co-NP

Open Problems:
(A) Does NP = co-NP? Consensus opinion: No
(B) Is P = NP ∩ co-NP? No real consensus

24.2.4.5 P, NP, and co-NP

Proposition 24.2.8. If P = NP then NP = co-NP.

Proof : P = co-P
If P = NP then co-NP = co-P = P.

Corollary 24.2.9. If NP 6= co-NP then P 6= NP.

Importance of corollary: try to prove P 6= NP by proving that NP 6= co-NP.
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24.2.4.6 NP ∩ co-NP

Complexity Class NP ∩ co-NP Problems in this class have

(A) Efficient certifiers for yes-instances
(B) Efficient disqualifiers for no-instances

Problems have a good characterization property, since for both yes and no instances we have
short efficiently checkable proofs

24.2.4.7 NP ∩ co-NP: Example

Example 24.2.10. Bipartite Matching: Given bipartite graph G = (U ∪ V,E), does G have a
perfect matching?

Bipartite Matching ∈ NP ∩ co-NP

(A) If G is a yes-instance, then proof is just the perfect matching.
(B) If G is a no-instance, then by Hall’s Theorem, there is a subset of vertices A ⊆ U such that

|N(A)| < |A|.

24.2.4.8 Good Characterization
?
= Efficient Solution

(A) Bipartite Matching has a polynomial time algorithm
(B) Do all problems in NP ∩ co-NP have polynomial time algorithms? That is, is P = NP ∩

co-NP?
Problems in NP ∩ co-NP have been proved to be in P many years later
(A) Linear programming (Khachiyan 1979)

(A) Duality easily shows that it is in NP ∩ co-NP
(B) Primality Testing (Agarwal-Kayal-Saxena 2002)

(A) Easy to see that PRIME is in co-NP (why?)
(B) PRIME is in NP - not easy to show! (Vaughan Pratt 1975)

24.2.4.9 P
?
= NP ∩ co-NP (contd)

(A) Some problems in NP ∩ co-NP still cannot be proved to have polynomial time algorithms
(A) Parity Games
(B) Other more specialized problems

24.2.4.10 co-NP Completeness

Definition 24.2.11. A problem X is said to be co-NP-Complete (co-NPC) if

(A) X ∈ co-NP
(B) (Hardness) For any Y ∈ co-NP, Y ≤P X

co-NP-Complete problems are the hardest problems in co-NP.

Lemma 24.2.12. X is co-NPC if and only if X is NP-Complete.

Proof left as an exercise.
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24.2.4.11 P, NP and co-NP

Possible scenarios:
(A) P = NP. Then P = NP = co-NP.
(B) NP = co-NP and P 6= NP (and hence also P 6= co-NP).
(C) NP 6= co-NP. Then P 6= NP and also P 6= co-NP.

Most people believe that the last scenario is the likely one.
Question: Suppose P 6= NP. Is every problem that is in NP \P is also NP-Complete?

Theorem 24.2.13 (Ladner). If P 6= NP then there is a problem/language X ∈ NP\P such that
X is not NP-Complete.

24.2.4.12 Karp vs Turing Reduction and NP vs co-NP

Question: Why restrict to Karp reductions for NP-Completeness?

Lemma 24.2.14. If X ∈ co-NP and Y is NP-Complete then X ≤P Y under Turing reduction.

Thus, Turing reductions cannot distinguish NP and co-NP.

24.3 Self Reduction

24.3.1 Introduction
24.3.1.1 Back to Decision versus Search

(A) Recall, decision problems are those with yes/no answers, while search problems require an
explicit solution for a yes instance

Example 24.3.1. (A) Satisfiability
(A) Decision: Is the formula ϕ satisfiable?
(B) Search: Find assignment that satisfies ϕ

(B) Graph coloring
(A) Decision: Is graph G 3-colorable?
(B) Search: Find a 3-coloring of the vertices of G

24.3.1.2 Decision “reduces to” Search

(A) Efficient algorithm for search implies efficient algorithm for decision
(B) If decision problem is difficult then search problem is also difficult
(C) Can an efficient algorithm for decision imply an efficient algorithm for search?

Yes, for all the problems we have seen. In fact for all NP-Complete Problems.

24.3.2 Self Reduction
24.3.2.1 Self Reduction

Definition 24.3.2. A problem is said to be self reducible if the search problem reduces (by Cook
reduction) in polynomial time to decision problem. In other words, there is an algorithm to solve
the search problem that has polynomially many steps, where each step is either
(A) A conventional computational step, or
(B) A call to subroutine solving the decision problem.

317



24.3.3 SAT is Self Reducible
24.3.3.1 Back to SAT

Proposition 24.3.3. SAT is self reducible.

In other words, there is a polynomial time algorithm to find the satisfying assignment if one
can periodically check if some formula is satisfiable.

24.3.3.2 Search Algorithm for SAT from a Decision Algorithm for SAT

Input: SAT formula ϕ with n variables x1, x2, . . . , xn.
(A) set x1 = 0 in ϕ and get new formula ϕ1. check if ϕ1 is satisfiable using decision algorithm. if

ϕ1 is satisfiable, recursively find assignment to x2, x3, . . . , xn that satisfy ϕ1 and output x1 = 0
along with the assignment to x2, . . . , xn.

(B) if ϕ1 is not satisfiable then set x1 = 1 in ϕ to get formula ϕ2. if ϕ2 is satisfiable , recursively
find assignment to x2, x3, . . . , xn that satisfy ϕ2 and output x1 = 1 along with the assignment
to x2, . . . , xn.

(C) if ϕ1 and ϕ2 are both not satisfiable then ϕ is not satisfiable.
Algorithm runs in polynomial time if the decision algorithm for SAT runs in polynomial time.

At most 2n calls to decision algorithm.

24.3.3.3 Self-Reduction for NP-Complete Problems

Theorem 24.3.4. Every NP-Complete problem/language L is self-reducible.

Proof is not hard but requires understanding of proof of Cook-Levin theorem.
Note that proof is only for complete languages, not for all languages in NP. Otherwise Factoring

would be in polynomial time and we would not rely on it for our current security protocols.
Easy and instructive to prove self-reducibility for specific NP-Complete problems such as

Independent Set, Vertex Cover, Hamiltonian Cycle, etc.
See discussion section problems.
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Chapter 25

Introduction to Linear Programming

CS 473: Fundamental Algorithms, Spring 2013
April 27, 2013

25.1 Introduction to Linear Programming

25.2 Introduction

25.2.1 Examples
25.2.1.1 Maximum Flow in Network

s

1

2

3

4

5

6

t

15

5

10

30

8

4

9

4
15

6
10

10

15

15
10

Need to compute values fs1, fs2, . . . f25, . . . f5t, f6t such that

fs1 ≤ 15 fs2 ≤ 5 fs3 ≤ 10
f14 ≤ 30 f21 ≤ 4 f25 ≤ 8
f32 ≤ 4 f35 ≤ 15 f36 ≤ 9
f42 ≤ 6 f4t ≤ 10 f54 ≤ 15
f5t ≤ 10 f65 ≤ 15 f6t ≤ 10

and

fs1 + f21 = f14 fs2 + f32 = f21 + f25 fs3 = f32 + f35 + f36

f14 + f54 = f42 + f4t f25 + f35 + f65 = f54 + f5t f36 = f65 + f6t

fs1 ≥ 0 fs2 ≥ 0 fs3 ≥ 0 · · · f4t ≥ 0 f5t ≥ 0 f6t ≥ 0

and fs1 + fs2 + fs3 is maximized.

25.2.1.2 Maximum Flow as a Linear Program

For a general flow network G = (V,E) with capacities ce on edge e ∈ E, we have variables fe
indicating flow on edge e

Maximize
∑

e out of s fe subject to
fe ≤ ce for each e ∈ E∑

e out of v fe −
∑

e into v fe = 0 for each v ∈ V − {s, t}
fe ≥ 0 for each e ∈ E
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Number of variables: m, one for each edge
Number of constraints: m+ n− 2 +m

25.2.1.3 Minimum Cost Flow with Lower Bounds as a Linear Program

For a general flow network G = (V,E) with capacities ce, lower bounds `e, and costs we, we have
variables fe indicating flow on edge e. Suppose we want a min-cost flow of value at least v.

Minimize
∑

e ∈ E wefe subject to∑
e out of s fe ≥ v

fe ≤ ce for each e ∈ E
fe ≥ `e for each e ∈ E∑

e out of v fe −
∑

e into v fe = 0 for each v ∈ V − {s, t}
fe ≥ 0 for each e ∈ E

Number of variables: m, one for each edge
Number of constraints: 1 +m+m+ n− 2 +m = 3m+ n− 1

25.2.2 General Form
25.2.2.1 Linear Programs

Problem Find a vector x ∈ Rd that

maximize/minimize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . p∑d
j=1 aijxj = bi for i = p+ 1 . . . q∑d
j=1 aijxj ≥ bi for i = q + 1 . . . n

Input is matrix A = (aij) ∈ Rn×d, column vector b = (bi) ∈ Rn, and row vector c = (cj) ∈ Rd

25.2.3 Cannonical Forms
25.2.3.1 Canonical Form of Linear Programs

Canonical Form A linear program is in canonical form if it has the following structure

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . n

xj ≥ 0 for j = 1 . . . d

¡2-¿Conversion to Canonical Form

• Replace each variable xj by x+
j − x−j and inequalities x+

j ≥ 0 and x−j ≥ 0

• Replace
∑

j aijxj = bi by
∑

j aijxj ≤ bi and −∑j aijxj ≤ −bi

• Replace
∑

j aijxj ≥ bi by −∑j aijxj ≤ −bi
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25.2.3.2 Matrix Representation of Linear Programs

A linear program in canonical form can be written as

maximize c · x
subject to Ax ≤ b

x ≥ 0

where A = (aij) ∈ Rn×d, column vector b = (bi) ∈ Rn, row vector c = (cj) ∈ Rd, and column vector
x = (xj) ∈ Rd

• Number of variable is d

• Number of constraints is n+ d

25.2.3.3 Other Standard Forms for Linear Programs

maximize c · x
subject to Ax = b

x ≥ 0

minimize c · x
subject to Ax ≥ b

x ≥ 0

25.2.4 History
25.2.4.1 Linear Programming: A History

• First formalized applied to problems in economics by Leonid Kantorovich in the 1930s

– However, work was ignored behind the Iron Curtain and unknown in the West

• Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics

• First algorithm (Simplex) to solve linear programs by George Dantzig in 1947

• Kantorovich and Koopmans receive Nobel Prize for economics in 1975; Dantzig, however,
was ignored

– Koopmans contemplated refusing the Nobel Prize to protest Dantzig’s exclusion, but
Kantorovich saw it as a vindication for using mathematics in economics, which had
been written off as “a means for apologists of capitalism”

25.3 Solving Linear Programs

25.3.1 Algorithm for 2 Dimensions
25.3.1.1 A Factory Example

Problem Suppose a factory produces two products I and II. Each requires three resources A,B,C.
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• Producing one unit of Product I requires 1 unit each of resources A and C.

• One unit of Product II requires 1 unit of resource B and 1 units of resource C.

• We have 200 units of A, 300 units of B, and 400 units of C.

• Product I can be sold for $1 and product II for $6.

How many units of product I and product II should the factory manufacture to maximize profit?
Solution: Formulate as a linear program

25.3.1.2 Linear Programming Formulation

Let us produce x1 units of product I and x2 units of product II. Our profit can be computed by
solving

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

What is the solution?

25.3.1.3 Solving the Factory Example

x2

x1

300

200

• Feasible values of x1 and x2 are shaded region.

• Objective function is a direction — the line represents all points
with same value of the function; moving the line until it just
leaves the feasible region, gives optimal values.

25.3.1.4 Linear Programming in 2-d

• Each constraint a half plane

• Feasible region is intersection of finitely many half planes — it forms a polygon

• For a fixed value of objective function, we get a line. Parallel lines correspond to different
values for objective function.

• Optimum achieved when objective function line just leaves the feasible region

25.3.1.5 An Example in 3-d

Figure from Dasgupta etal book.
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S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 227

Figure 7.12 A polyhedron defined by seven inequalities.

x1

x3

x2

1©

4©

2©

3©

5©

6©

7©

A

B C

max x1 + 6x2 + 13x3

x1 ≤ 200 1©
x2 ≤ 300 2©

x1 + x2 + x3 ≤ 400 3©
x2 + 3x3 ≤ 600 4©

x1 ≥ 0 5©
x2 ≥ 0 6©
x3 ≥ 0 7©

7.6 The simplex algorithm
The extraordinary power and expressiveness of linear programs would be little consolation if
we did not have a way to solve them efficiently. This is the role of the simplex algorithm.
At a high level, the simplex algorithm takes a set of linear inequalities and a linear objec-

tive function and finds the optimal feasible point by the following strategy:

let v be any vertex of the feasible region

while there is a neighbor v′ of v with better objective value:

set v = v′

In our 2D and 3D examples (Figure 7.1 and Figure 7.2), this was simple to visualize and made
intuitive sense. But what if there are n variables, x1, . . . , xn?
Any setting of the xi’s can be represented by an n-tuple of real numbers and plotted in

n-dimensional space. A linear equation involving the xi’s defines a hyperplane in this same
space Rn, and the corresponding linear inequality defines a half-space, all points that are
either precisely on the hyperplane or lie on one particular side of it. Finally, the feasible region
of the linear program is specified by a set of inequalities and is therefore the intersection of
the corresponding half-spaces, a convex polyhedron.
But what do the concepts of vertex and neighbor mean in this general context?

7.6.1 Vertices and neighbors in n-dimensional space
Figure 7.12 recalls an earlier example. Looking at it closely, we see that each vertex is the
unique point at which some subset of hyperplanes meet. Vertex A, for instance, is the sole
point at which constraints 2©, 3©, and 7© are satisfied with equality. On the other hand, the

x′2

x′1

25.3.2 Simplex in 2 Dimensions
25.3.2.1 Factory Example: Alternate View

Original Problem Recall we have,

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

¡2-¿Transformation Consider new variable x′1 and x′2, such that x1 = −6x′1 +x′2 and x2 = x′1 +6x′2.
Then in terms of the new variables we have

maximize 37x′2
subject to −6x′1 + x′2 ≤ 200 x′1 + 6x′2 ≤ 300 −5x′1 + 7x2 ≤ 400

−6x′1 + x′2 ≥ 0 x′1 + 6x′2 ≥ 0

25.3.2.2 Transformed Picture

Feasible region rotated, and optimal value at the highest point on polygon

25.3.2.3 Observations about the Transformation

Observations

• Linear program can always be transformed to get a linear program where the optimal value
is achieved at the point in the feasible region with highest y-coordinate
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• Optimum value attained at a vertex of the polygon

• Since feasible region is convex, every local optimum is a global optimum

25.3.2.4 A Simple Algorithm in 2-d

• optimum solution is at a vertex of the feasible region

• a vertex is defined by the intersection of two lines (constraints)

Algorithm:

• find all intersections between the n lines — n2 points

• for each intersection point p = (p1, p2)

– check if p is in feasible region (how?)

– if p is feasible evaluate objective function at p: val(p) = c1p1 + c2p2

• Output the feasible point with the largest value

Running time: O(n3)

25.3.2.5 Simple Algorithm in General Case

Real problem: d-dimensions

• optimum solution is at a vertex of the feasible region

• a vertex is defined by the intersection of d hyperplanes

• number of vertices can be Ω(nd)

Running time: O(nd+1) which is not polynomial since problem size is at least nd. Also not practical.

How do we find the intersection point of d hyperplanes in Rd? Using Gaussian elimination to
solve Ax = b where A is a d× d matrix and b is a d× 1 matrix.

25.3.2.6 Simplex in 2-d

Simplex Algorithm

1. Start from some vertex of the feasible polygon

2. Compare value of objective function at current vertex with the value at “neighboring” vertices
of polygon

3. If neighboring vertex improves objective function, move to this vertex, and repeat step 2

4. If current vertex is local optimum, then stop.
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25.3.3 Simplex in Higher Dimensions
25.3.3.1 Linear Programming in d-dimensions

• Each linear constraint defines a half space

• Feasible region, which is an intersection of half spaces, is a convex polhedron

• Optimal value attained at a vertex of the polyhedron

• Every local optimum is a global optimum

25.3.3.2 Simplex in Higher Dimensions

1. Start at a vertex of the polytope

2. Compare value of objective function at each of the d “neighbors”

3. Move to neighbor that improves objective function, and repeat step 2

4. If local optimum, then stop

Simplex is a greedy local-improvement algorithm! Works because a local optimum is also a
global optimum — convexity of polyhedra.

25.3.3.3 Solving Linear Programming in Practice

• Näıve implementation of Simplex algorithm can be very inefficient

– Choosing which neighbor to move to can significantly affect running time

– Very efficient Simplex-based algorithms exist

– Simplex algorithm takes exponential time in the worst case but works extremely well
in practice with many improvements over the years

• Non Simplex based methods like interior point methods work well for large problems

25.3.3.4 Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time algorithm for linear programming?
Leonid Khachiyan in 1979 gave the first polynomial time algorithm using the Ellipsoid method.

• major theoretical advance

• highly impractical algorithm, not used at all in practice

• routinely used in theoretical proofs

Narendra Karmarkar in 1984 developed another polynomial time algorithm, the interior point
method.

• very practical for some large problems and beats simplex

• also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved enormously and is the method
of choice.
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25.3.3.5 Degeneracy

• The linear program could be infeasible: No points satisfy the constraints

• The linear program could be unbounded: Polygon unbounded in the direction of the ob-
jective function

25.3.3.6 Infeasibility: Example

maximize x1 + 6x2

subject to x1 ≤ 2 x2 ≤ 1 x1 + x2 ≥ 4
x1, x2 ≥ 0

Infeasibility has to do only with constraints.

25.3.3.7 Unboundedness: Example

maximize x2

x1 + x2 ≥ 2

x1, x2 ≥ 0

Unboundedness depends on both constraints and the objective function.
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25.4 Duality

25.4.1 Lower Bounds and Upper Bounds
25.4.1.1 Feasible Solutions and Lower Bounds

Consider the program
maximize 4x1+ x2+ 3x3

subject to x1+ 4x2 ≤ 1
3x1− x2+ x3 ≤ 3

x1, x2, x3 ≥ 0

• (1, 0, 0) satisfies all the constraints and gives value 4 for the objective function.

• Thus, optimal value σ∗ is at least 4.

• (0, 0, 3) also feasible, and gives a better bound of 9.

• How good is 9 when compared with σ∗?

25.4.1.2 Obtaining Upper Bounds

¡+-¿ Let us multiply the first constraint by 2 and the second by 3 and add the result

2( x1+ 4x2 ) ≤ 2(1)
+3( 3x1− x2+ x3 ) ≤ 3(3)

11x1+ 5x2+ 3x3 ≤ 11

¡+-¿ Since xis are positive, compared to objective function 4x1 + x2 + 3x3, we have

4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11

¡+-¿ Thus, 11 is an upper bound on the optimum value!

25.4.1.3 Generalizing . . .

¡+-¿ Multiply first equation by y1 and second by y2 (both y1, y2 being positive) and add

y1( x1+ 4x2 ) ≤ y1(1)
+y2( 3x1− x2+ x3 ) ≤ y2(3)

(y1 + 3y2)x1+ (4y1 − y2)x2+ (y2)x3 ≤ y1 + 3y2

¡+-¿ y1 +3y2 is an upper bound, provided coefficients of xi are as large as in the objective function,
i.e.,

y1 + 3y2 ≥ 4 4y1 − y2 ≥ 1 y2 ≥ 3

¡+-¿ The best upper bound is when y1 + 3y2 is minimized!
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25.4.2 Dual Linear Programs
25.4.2.1 Dual LP: Example

Thus, the optimum value of program

maximize 4x1 + x2 + 3x3

subject to x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

is upper bounded by the optimal value of the program

minimize y1 + 3y2

subject to y1 + 3y2 ≥ 4
4y1 − y2 ≥ 1

y2 ≥ 3
y1, y2 ≥ 0

25.4.2.2 Dual Linear Program

Given a linear program Π in canonical form

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi i = 1, 2, . . . n

xj ≥ 0 j = 1, 2, . . . d

the dual Dual(Π) is given by

minimize
∑n

i=1 biyi
subject to

∑n
i=1 yiaij ≥ cj j = 1, 2, . . . d

yi ≥ 0 i = 1, 2, . . . n

Proposition 25.4.1. ¡2-¿ Dual(Dual(Π)) is equivalent to Π

25.4.3 Duality Theorems
25.4.3.1 Duality Theorem

Theorem 25.4.2 (Weak Duality). If x is a feasible solution to Π and y is a feasible solution to
Dual(Π) then c · x ≤ y · b.

Theorem 25.4.3 (Strong Duality). If x∗ is an optimal solution to Π and y∗ is an optimal so-
lution to Dual(Π) then c · x∗ = y∗ · b.

Many applications! Maxflow-Mincut theorem can be deduced from duality.
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25.4.3.2 Maximum Flow Revisited

For a general flow network G = (V,E) with capacities ce on edge e ∈ E, we have variables fe
indicating flow on edge e

Maximize
∑
e out of s fe subject to

fe ≤ ce for each e ∈ E∑
e out of v fe −

∑
e into v fe = 0 for each v ∈ V − {s, t}

fe ≥ 0 for each e ∈ E

Number of variables: m, one for each edge
Number of constraints: m+ n− 2 +m

Maximum flow can be reduced to Linear Programming.

25.5 Integer Linear Programming
25.5.0.3 Integer Linear Programming

Problem Find a vector x ∈ Zd (integer values) that

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . n

Input is matrix A = (aij) ∈ Rn×d, column vector b = (bi) ∈ Rn, and row vector c = (cj) ∈ Rd

25.5.0.4 Factory Example

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

Suppose we want x1, x2 to be integer valued.

25.5.0.5 Factory Example Figure

x2

x1

300

200

• Feasible values of x1 and x2 are integer points in shaded region

• Optimization function is a line; moving the line until it just
leaves the final integer point in feasible region, gives optimal
values
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25.5.0.6 Integer Programming

Can model many difficult discrete optimization problems as integer programs!

Therefore integer programming is a hard problem. NP-hard.

Can relax integer program to linear program and approximate.

Practice: integer programs are solved by a variety of methods

• branch and bound

• branch and cut

• adding cutting planes

• linear programming plays a fundamental role

25.5.0.7 Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer coordinates.
Then solving linear program is same as solving integer program. We know how to solve linear
programs efficiently (polynomial time) and hence we get an integer solution for free!

Luck or Structure:

• Linear program for flows with integer capacities have integer vertices

• Linear program for matchings in bipartite graphs have integer vertices

• A complicated linear program for matchings in general graphs have integer vertices.

All of above problems can hence be solved efficiently.

25.5.0.8 Linear Programs with Integer Vertices

Meta Theorem: A combinatorial optimization problem can be solved efficiently if and only if
there is a linear program for problem with integer vertices.

Consequence of the Ellipsoid method for solving linear programming.

In a sense linear programming and other geometric generalizations such as convex programming
are the most general problems that we can solve efficiently.
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25.5.0.9 Summary

• Linear Programming is a useful and powerful (modeling) problem.

• Can be solved in polynomial time. Practical solvers available commercially as well as in open
source. Whether there is a strongly polynomial time algorithm is a major open problem.

• Geometry and linear algebra are important to understand the structure of LP and in al-
gorithm design. Vertex solutions imply that LPs have poly-sized optimum solutions. This
implies that LP is in NP.

• Duality is a critical tool in the theory of linear programming. Duality implies the Linear
Programming is in co-NP. Do you see why?

• Integer Programming in NP-Complete. LP-based techniques critical in heuristically solving
integer programs.
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Chapter 26

Heuristics, Closing Thoughts

CS 473: Fundamental Algorithms, Spring 2013
May 1, 2013

26.1 Heuristics
26.1.0.10 Coping with Intractability

Question: Many useful/important problems are NP-Hard or worse. How does one cope with
them?

Some general things that people do.

(A) Consider special cases of the problem which may be tractable.
(B) Run inefficient algorithms (for example exponential time algorithms for NP-Hard

problems) augmented with (very) clever heuristics
(A) stop algorithm when time/resources run out
(B) use massive computational power

(C) Exploit properties of instances that arise in practice which may be much easier. Give up on
hard instances, which is OK.

(D) Settle for sub-optimal (aka approximate) solutions, especially for optimization problems

26.1.0.11 NP and EXP

EXP: all problems that have an exponential time algorithm.

Proposition 26.1.1. NP ⊆ EXP.

Proof : Let X ∈ NP with certifier C. To prove X ∈ EXP , here is an algorithm for X. Given input
s,

(A) For every t, with |t| ≤ p(|s|) run C(s, t); answer “yes” if any one of these calls returns “yes”,
otherwise say “no”.

Every problem in NP has a brute-force “try all possibilities” algorithm that runs in exponential
time.
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286 Algorithms

Figure 9.1 Backtracking reveals that φ is not satisfiable.

(), (y ∨ z)(y ∨ z), (y), (y ∨ z)

(z), (z)

(x ∨ y), (y ∨ z), (z), (z)

(x ∨ y), (y), ()(x ∨ y), ()

(w ∨ x ∨ y ∨ z), (w ∨ x), (x ∨ y), (y ∨ z), (z ∨ w), (w ∨ z)

(x ∨ y ∨ z), (x), (x ∨ y), (y ∨ z)

x = 1

()

z = 0 z = 1

()

()

y = 1

z = 1z = 0

y = 0

w = 1w = 0

x = 0

happens to be a singleton, then at least one of the resulting branches will be terminated. (If
there is a tie in choosing subproblems, one reasonable policy is to pick the one lowest in the
tree, in the hope that it is close to a satisfying assignment.) See Figure 9.1 for the conclusion
of our earlier example.
More abstractly, a backtracking algorithm requires a test that looks at a subproblem and

quickly declares one of three outcomes:

1. Failure: the subproblem has no solution.

2. Success: a solution to the subproblem is found.

3. Uncertainty.

In the case of SAT, this test declares failure if there is an empty clause, success if there are
no clauses, and uncertainty otherwise. The backtracking procedure then has the following
format.

Start with some problem P0

Let S = {P0}, the set of active subproblems

Repeat while S is nonempty:

choose a subproblem P ∈ S and remove it from S
expand it into smaller subproblems P1, P2, . . . , Pk

For each Pi:

If test(Pi) succeeds: halt and announce this solution

If test(Pi) fails: discard Pi

Figure 26.1: Backtrack search. Formula is not satisfiable.

26.1.0.12 Examples

(A) SAT: try all possible truth assignment to variables.
(B) Independent set: try all possible subsets of vertices.
(C) Vertex cover: try all possible subsets of vertices.

26.1.0.13 Improving brute-force via intelligent backtracking

(A) Backtrack search: enumeration with bells and whistles to “heuristically” cut down search
space.

(B) Works quite well in practice for several problems, especially for small enough problem sizes.

26.1.0.14 Backtrack Search Algorithm for SAT

Input: CNF Formula ϕ on n variables x1, . . . , xn and m clauses
Output: Is ϕ satisfiable or not.

1. Pick a variable xi

2. ϕ′ is CNF formula obtained by setting xi = 0 and simplifying

3. Run a simple (heuristic) check on ϕ′: returns “yes”, “no” or “not sure”

(A) If “not sure” recursively solve ϕ′

(B) If ϕ′ is satisfiable, return “yes”

4. ϕ′′ is CNF formula obtained by setting xi = 1

5. Run simple check on ϕ′′: returns “yes”, “no” or “not sure”

(A) If “not sure” recursively solve ϕ′′

(B) If ϕ′′ is satisfiable, return “yes”

6. Return “no”

Certain part of the search space is pruned.

26.1.0.15 Example

Figure taken from Dasgupta etal book.

334



26.1.0.16 Backtrack Search Algorithm for SAT

How do we pick the order of variables? Heuristically! Examples:

(A) pick variable that occurs in most clauses first
(B) pick variable that appears in most size 2 clauses first
(C) . . .

What are quick tests for Satisfiability?

Depends on known special cases and heuristics. Examples.

(A) Obvious test: return “no” if empty clause, “yes” if no clauses left and otherwise “not sure”
(B) Run obvious test and in addition if all clauses are of size 2 then run 2-SAT polynomial time

algorithm
(C) . . .

26.1.1 Branch-and-Bound

26.1.1.1 Backtracking for optimization problems

Intelligent backtracking can be used also for optimization problems. Consider a minimization
problem.

Notation: for instance I, opt(I) is optimum value on I.

P0 initial instance of given problem.

(A) Keep track of the best solution value B found so far. Initialize B to be crude upper bound on
opt(I).

(B) Let P be a subproblem at some stage of exploration.
(C) If P is a complete solution, update B.
(D) Else use a lower bounding heuristic to quickly/efficiently find a lower bound b on opt(P ).

(A) If b ≥ B then prune P
(B) Else explore P further by breaking it into subproblems and recurse on them.

(E) Output best solution found.

26.1.1.2 Example: Vertex Cover

Given G = (V,E), find a minimum sized vertex cover in G.

(A) Initialize B = n− 1.
(B) Pick a vertex u. Branch on u: either choose u or discard it.
(C) Let b1 be a lower bound on G1 = G− u.
(D) If 1 + b1 < B, recursively explore G1

(E) Let b2 be a lower bound on G2 = G− u−N(u) where N(u) is the set of neighbors of u.
(F) If |N(u)|+ b2 < B, recursively explore G2

(G) Output B.

How do we compute a lower bound?
One possibility: solve an LP relaxation.

26.1.1.3 Local Search

Local Search: a simple and broadly applicable heuristic method

(A) Start with some arbitrary solution s
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(B) Let N(s) be solutions in the “neighborhood” of s obtained from s via “local” moves/changes
(C) If there is a solution s′ ∈ N(s) that is better than s, move to s′ and continue search with s′

(D) Else, stop search and output s.

26.1.1.4 Local Search

Main ingredients in local search:
(A) Initial solution.
(B) Definition of neighborhood of a solution.
(C) Efficient algorithm to find a good solution in the neighborhood.

26.1.1.5 Example: TSP

TSP: Given a complete graph G = (V,E) with cij denoting cost of edge (i, j), compute a Hamil-
tonian cycle/tour of minimum edge cost.

2-change local search:
(A) Start with an arbitrary tour s0

(B) For a solution s define s′ to be a neighbor if s′ can be obtained from s by replacing two edges
in s with two other edges.

(C) For a solution s at most O(n2) neighbors and one can try all of them to find an improvement.

26.1.1.6 TSP: 2-change example

=⇒ =⇒

Figure below shows a bad local optimum for 2-change heuristic...

=⇒

26.1.1.7 TSP: 3-change example

3-change local search: swap 3 edges out.

=⇒

Neighborhood of s has now increased to a size of Ω(n3)
Can define k-change heuristic where k edges are swapped out. Increases neighborhood size and

makes each local improvement step less efficient.
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26.1.1.8 Local Search Variants

Local search terminates with a local optimum which may be far from a global optimum. Many
variants to improve plain local search.

(A) Randomization and restarts. Initial solution may strongly influence the quality of the final
solution. Try many random initial solutions.

(B) Simulated annealing is a general method where one allows the algorithm to move to worse
solutions with some probability. At the beginning this is done more aggressively and then
slowly the algorithm converges to plain local search. Controlled by a parameter called “tem-
perature”.

(C) Tabu search. Store already visited solutions and do not visit them again (they are “taboo”).

26.1.1.9 Heuristics

Several other heuristics used in practice.

(A) Heuristics for solving integer linear programs such as cutting planes, branch-and-cut etc are
quite effective.

(B) Heuristics to solve SAT (SAT-solvers) have gained prominence in recent years
(C) Genetic algorithms
(D) . . .

Heuristics design is somewhat ad hoc and depends heavily on the problem and the instances
that are of interest. Rigorous analysis is sometimes possible.

26.1.1.10 Approximation algorithms

Consider the following optimization problems:

(A) Max Knapsack: Given knapsack of capacity W , n items each with a value and weight, pack the
knapsack with the most profitable subset of items whose weight does not exceed the knapsack
capacity.

(B) Min Vertex Cover: given a graph G = (V,E) find the minimum cardinality vertex cover.
(C) Min Set Cover: given Set Cover instance, find the smallest number of sets that cover all

elements in the universe.
(D) Max Independent Set: given graph G = (V,E) find maximum independent set.
(E) Min Traveling Salesman Tour: given a directed graph G with edge costs, find minimum

length/cost Hamiltonian cycle in G.

Solving one in polynomial time implies solving all the others.

26.1.1.11 Approximation algorithms

However, the problems behave very differently if one wants to solve them approximately.

Informal definition: An approximation algorithm for an optimization problem is an efficient
(polynomial-time) algorithm that guarantees for every instance a solution of some given quality
when compared to an optimal solution.

26.1.1.12 Some known approximation results

(A) Knapsack: For every fixed ε > 0 there is a polynomial time algorithm that guarantees a
solution of quality (1 − ε) times the best solution for the given instance. Hence can get a
0.99-approximation efficiently.

337



(B) Min Vertex Cover: There is a polynomial time algorithm that guarantees a solution of cost
at most 2 times the cost of an optimum solution.

(C) Min Set Cover: There is a polynomial time algorithm that guarantees a solution of cost at
most (lnn+ 1) times the cost of an optimal solution.

(D) Max Independent Set: Unless P = NP, for any fixed ε > 0, no polynomial time algorithm
can give a n1−ε relative approximation . Here n is number of vertices in the graph.

(E) Min TSP: No polynomial factor relative approximation possible.

26.1.1.13 Approximation algorithms

(A) Although NP-Complete problems are all equivalent with respect to polynomial-time solv-
ability they behave quite differently under approximation (in both theory and practice).

(B) Approximation is a useful lens to examine NP-Complete problems more closely.
(C) Approximation also useful for problems that we can solve efficiently:

(A) We may have other constraints such a space (streaming problems) or time (need linear
time or less for very large problems)

(B) Data may be uncertain (online and stochastic problems).

26.1.1.14 Example: Vertex Cover

Greedy(G):
Initialize S to be ∅
While there are edges in G do

Let v be a vertex with maximum degree

S ← S ∪ {v}
G← G− v

endWhile

Output S

Theorem 26.1.2. |S| ≤ (lnn + 1)OPT where OPT is the value of an optimum set. Here n is
number of nodes in G.

Theorem 26.1.3. There is an infinite family of graphs where the solution S output by Greedy is
Ω(lnn)OPT .

26.1.1.15 Example: Vertex Cover

MatchingHeuristic(G):
Find a maximal matching M in G
S is the set of end points of edges in M
Output S

Lemma 26.1.4. OPT ≥ |M |.

Lemma 26.1.5. S is a feasible vertex cover.

Analysis: |S| = 2|M | ≤ 2OPT . Algorithm is a 2-approximation.
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26.1.1.16 Vertex Cover: LP Relaxation based approach

Write (weighted) vertex cover problem as an integer linear program

Minimize
∑

v∈V wvxv
subject to xu + xv ≥ 1 for each uv ∈ E

xv ∈ {0, 1} for each v ∈ V

Relax integer program to a linear program

Minimize
∑

v∈V wvxv
subject to xu + xv ≥ 1 for each uv ∈ E

xv ≥ 0 for each v ∈ V

Can solve linear program in polynomial time.
Let x∗ be an optimum solution to the linear program.

Lemma 26.1.6. OPT ≥∑v wvx
∗
v.

26.1.1.17 Vertex Cover: Rounding fractional solution

LP Relaxation
Minimize

∑
v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ≥ 0 for each v ∈ V

Let x∗ be an optimum solution to the linear program.
Rounding: S = {v | x∗v ≥ 1/2}. Output S.

Lemma 26.1.7. S is a feasible vertex cover for the given graph.

Lemma 26.1.8. w(S) ≤ 2
∑

v wvx
∗
v ≤ 2OPT .

26.1.1.18 Set Cover and Vertex Cover

Theorem 26.1.9. Greedy gives (lnn+ 1)-approximation for Set Cover where n is number of ele-
ments.

Theorem 26.1.10. Unless P = NP no (lnn+ ε)-approximation for Set Cover.

2-approximation is best known for Vertex Cover.

Theorem 26.1.11. Unless P = NP no 1.36-approximation for Vertex Cover.

Conjecture: Unless P = NP no (2− ε)-approximation for Vertex Cover for any fixed ε > 0.
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26.2 Closing Thoughts
26.2.0.19 Topics I wish I had time for

(A) Data structures, especially use of amortized analysis
(B) Lower bounds on sorting and related problems
(C) More on the use of randomization in algorithms
(D) Algorithms for string processing, compression, coding
(E) More on heuristics and applications
(F) Experimental evaluation and engineering of algorithms

26.2.0.20 Theoretical Computer Science

(A) Algorithms: find efficient ways to solve particular problems or broad category of problems
(B) Computational Complexity: understand nature of computation — classification of problems

into classes (P, NP, co-NP) and their relationships, limits of computation.
(C) Logic, Languages and Formal Methods

Form the foundations for computer “science”

26.2.0.21 The Computational Lens

The Algorithm: Idiom of Modern Science by Bernard Chazelle
http://www.cs.princeton.edu/chazelle/pubs/algorithm.html

Computation has gained ground as fundamental artifact in mathematics and science.

(A) nature of proofs, P vs NP, complexity, . . .
(B) quantum computation and information
(C) computational biology and the biological processes, . . .

Standard question in math and sciences: Is there a solution/algorithm? New: Is there an efficient
solution/algorithm?

26.2.0.22 Related theory courses

(A) Graduate algorithms (next semester, every year)
(B) Computational complexity (next semester, every year)
(C) Randomized algorithms (every other year)
(D) Approximation algorithms (every other year)
(E) Advanced data structures (every once in a while)
(F) Cryptography and related topics (almost every year)
(G) Algorithmic game theory, combinatorial optimization, computational geometry, logic and for-

mal methods, coding theory, information theory, graph theory, combinatorics, . . .

26.2.0.23 Technological and sociological changes

• Scale of data due to the web, digitization of knowledge, people

• Mobility, cloud, and distributed data

• Social and economic networks/activity in online/virtual fora

• Privacy and security
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• Possibility of quantum computation: new model and algorithms

• Biology/DNA as digital information/computation

• End of Moore’s law?

• Increasing integration of sensing and computational devices

26.2.0.24 Impact on Algorithms

• Scale of data implies efficiency of algorithms very important

– Sub-linear time and data streaming (approximation) algorithms via sampling, estima-
tion, . . .

– Various forms of parallel algorithms (Map-Reduce etc)

• Large data availability implies statistical machine learning can be very effective so many new
applications

• Algorithmic aspects of strategic behavior of people: algorithmic game theory, sponsored
search auctions, influence propagation in social networks, . . .,

• Distributed computing, cyber-physical computing in vogue

• Interdisciplinary work: quatum information and computation, computational biology and
chemistry
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