
CS 473: Fundamental Algorithms, Spring 2013

Heuristics, Closing Thoughts
Lecture 26
May 1, 2013

Sariel, Alexandra (UIUC) CS473 1 Spring 2013 1 / 35

Part I
.

......
Heuristics

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2 / 35

Coping with Intractability

Question: Many useful/important problems are NP-Hard or worse.
How does one cope with them?

Some general things that people do.
...1 Consider special cases of the problem which may be tractable.
...2 Run inefficient algorithms (for example exponential time
algorithms for NP-Hard problems) augmented with (very)
clever heuristics

...1 stop algorithm when time/resources run out

...2 use massive computational power

...3 Exploit properties of instances that arise in practice which may
be much easier. Give up on hard instances, which is OK.

...4 Settle for sub-optimal (aka approximate) solutions, especially for
optimization problems

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3 / 35

Coping with Intractability

Question: Many useful/important problems are NP-Hard or worse.
How does one cope with them?

Some general things that people do.
...1 Consider special cases of the problem which may be tractable.
...2 Run inefficient algorithms (for example exponential time
algorithms for NP-Hard problems) augmented with (very)
clever heuristics

...1 stop algorithm when time/resources run out

...2 use massive computational power

...3 Exploit properties of instances that arise in practice which may
be much easier. Give up on hard instances, which is OK.

...4 Settle for sub-optimal (aka approximate) solutions, especially for
optimization problems

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3 / 35

NP and EXP

EXP: all problems that have an exponential time algorithm.

.
Proposition
..
......NP ⊆ EXP.

.
Proof.
..

......

Let X ∈ NP with certifier C. To prove X ∈ EXP, here is an
algorithm for X. Given input s,

...1 For every t, with |t| ≤ p(|s|) run C(s, t); answer “yes” if any
one of these calls returns “yes”, otherwise say “no”.

Every problem in NP has a brute-force “try all possibilities”
algorithm that runs in exponential time.

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 / 35

NP and EXP

EXP: all problems that have an exponential time algorithm.

.
Proposition
..
......NP ⊆ EXP.

.
Proof.
..

......

Let X ∈ NP with certifier C. To prove X ∈ EXP, here is an
algorithm for X. Given input s,

...1 For every t, with |t| ≤ p(|s|) run C(s, t); answer “yes” if any
one of these calls returns “yes”, otherwise say “no”.

Every problem in NP has a brute-force “try all possibilities”
algorithm that runs in exponential time.

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 / 35

Examples

...1 SAT: try all possible truth assignment to variables.

...2 Independent set: try all possible subsets of vertices.

...3 Vertex cover: try all possible subsets of vertices.

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 35

Improving brute-force via intelligent backtracking

...1 Backtrack search: enumeration with bells and whistles to
“heuristically” cut down search space.

...2 Works quite well in practice for several problems, especially for
small enough problem sizes.

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 / 35

Backtrack Search Algorithm for SAT

Input: CNF Formula φ on n variables x1, . . . , xn and m clauses
Output: Is φ satisfiable or not.

...1 Pick a variable xi

...2 φ′ is CNF formula obtained by setting xi = 0 and simplifying

...3 Run a simple (heuristic) check on φ′: returns “yes”, “no” or
“not sure”

...1 If “not sure” recursively solve φ′

...2 If φ′ is satisfiable, return “yes”

...4 φ′′ is CNF formula obtained by setting xi = 1

...5 Run simple check on φ′′: returns “yes”, “no” or “not sure”
...1 If “not sure” recursively solve φ′′

...2 If φ′′ is satisfiable, return “yes”

...6 Return “no”

Certain part of the search space is pruned.
Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 35

Example
286 Algorithms

Figure 9.1 Backtracking reveals that φ is not satisfiable.

(), (y ∨ z)(y ∨ z), (y), (y ∨ z)

(z), (z)

(x ∨ y), (y ∨ z), (z), (z)

(x ∨ y), (y), ()(x ∨ y), ()

(w ∨ x ∨ y ∨ z), (w ∨ x), (x ∨ y), (y ∨ z), (z ∨ w), (w ∨ z)

(x ∨ y ∨ z), (x), (x ∨ y), (y ∨ z)

x = 1

()

z = 0 z = 1

()

()

y = 1

z = 1z = 0

y = 0

w = 1w = 0

x = 0

happens to be a singleton, then at least one of the resulting branches will be terminated. (If
there is a tie in choosing subproblems, one reasonable policy is to pick the one lowest in the
tree, in the hope that it is close to a satisfying assignment.) See Figure 9.1 for the conclusion
of our earlier example.
More abstractly, a backtracking algorithm requires a test that looks at a subproblem and

quickly declares one of three outcomes:

1. Failure: the subproblem has no solution.

2. Success: a solution to the subproblem is found.

3. Uncertainty.

In the case of SAT, this test declares failure if there is an empty clause, success if there are
no clauses, and uncertainty otherwise. The backtracking procedure then has the following
format.

Start with some problem P0

Let S = {P0}, the set of active subproblems

Repeat while S is nonempty:

choose a subproblem P ∈ S and remove it from S
expand it into smaller subproblems P1, P2, . . . , Pk

For each Pi:

If test(Pi) succeeds: halt and announce this solution

If test(Pi) fails: discard Pi

Figure: Backtrack search. Formula is not satisfiable.

Figure taken from Dasgupta etal book.

Sariel, Alexandra (UIUC) CS473 8 Spring 2013 8 / 35

Backtrack Search Algorithm for SAT

How do we pick the order of variables? Heuristically! Examples:
...1 pick variable that occurs in most clauses first
...2 pick variable that appears in most size 2 clauses first
...3 . . .

What are quick tests for Satisfiability?
Depends on known special cases and heuristics. Examples.

...1 Obvious test: return “no” if empty clause, “yes” if no clauses
left and otherwise “not sure”

...2 Run obvious test and in addition if all clauses are of size 2 then
run 2-SAT polynomial time algorithm

...3 . . .

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 35

Backtrack Search Algorithm for SAT

How do we pick the order of variables? Heuristically! Examples:
...1 pick variable that occurs in most clauses first
...2 pick variable that appears in most size 2 clauses first
...3 . . .

What are quick tests for Satisfiability?
Depends on known special cases and heuristics. Examples.

...1 Obvious test: return “no” if empty clause, “yes” if no clauses
left and otherwise “not sure”

...2 Run obvious test and in addition if all clauses are of size 2 then
run 2-SAT polynomial time algorithm

...3 . . .

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 35

Backtrack Search Algorithm for SAT

How do we pick the order of variables? Heuristically! Examples:
...1 pick variable that occurs in most clauses first
...2 pick variable that appears in most size 2 clauses first
...3 . . .

What are quick tests for Satisfiability?
Depends on known special cases and heuristics. Examples.

...1 Obvious test: return “no” if empty clause, “yes” if no clauses
left and otherwise “not sure”

...2 Run obvious test and in addition if all clauses are of size 2 then
run 2-SAT polynomial time algorithm

...3 . . .

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 35

Backtrack Search Algorithm for SAT

How do we pick the order of variables? Heuristically! Examples:
...1 pick variable that occurs in most clauses first
...2 pick variable that appears in most size 2 clauses first
...3 . . .

What are quick tests for Satisfiability?
Depends on known special cases and heuristics. Examples.

...1 Obvious test: return “no” if empty clause, “yes” if no clauses
left and otherwise “not sure”

...2 Run obvious test and in addition if all clauses are of size 2 then
run 2-SAT polynomial time algorithm

...3 . . .

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 35

Branch-and-Bound
Backtracking for optimization problems

Intelligent backtracking can be used also for optimization problems.
Consider a minimization problem.
Notation: for instance I, opt(I) is optimum value on I.

P0 initial instance of given problem.
...1 Keep track of the best solution value B found so far. Initialize B
to be crude upper bound on opt(I).

...2 Let P be a subproblem at some stage of exploration.

...3 If P is a complete solution, update B.

...4 Else use a lower bounding heuristic to quickly/efficiently find a
lower bound b on opt(P).

...1 If b ≥ B then prune P

...2 Else explore P further by breaking it into subproblems and
recurse on them.

...5 Output best solution found.
Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 35

Example: Vertex Cover

Given G = (V,E), find a minimum sized vertex cover in G.

...1 Initialize B = n− 1.

...2 Pick a vertex u. Branch on u: either choose u or discard it.

...3 Let b1 be a lower bound on G1 = G− u.

...4 If 1 + b1 < B, recursively explore G1

...5 Let b2 be a lower bound on G2 = G− u−N(u) where N(u) is
the set of neighbors of u.

...6 If |N(u)|+ b2 < B, recursively explore G2

...7 Output B.

How do we compute a lower bound?
One possibility: solve an LP relaxation.

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 35

Example: Vertex Cover

Given G = (V,E), find a minimum sized vertex cover in G.

...1 Initialize B = n− 1.

...2 Pick a vertex u. Branch on u: either choose u or discard it.

...3 Let b1 be a lower bound on G1 = G− u.

...4 If 1 + b1 < B, recursively explore G1

...5 Let b2 be a lower bound on G2 = G− u−N(u) where N(u) is
the set of neighbors of u.

...6 If |N(u)|+ b2 < B, recursively explore G2

...7 Output B.

How do we compute a lower bound?
One possibility: solve an LP relaxation.

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 35

Local Search

Local Search: a simple and broadly applicable heuristic method

...1 Start with some arbitrary solution s

...2 Let N(s) be solutions in the “neighborhood” of s obtained from
s via “local” moves/changes

...3 If there is a solution s′ ∈ N(s) that is better than s, move to s′

and continue search with s′

...4 Else, stop search and output s.

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 / 35

Local Search

Main ingredients in local search:
...1 Initial solution.
...2 Definition of neighborhood of a solution.
...3 Efficient algorithm to find a good solution in the neighborhood.

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 / 35

Example: TSP

TSP: Given a complete graph G = (V,E) with cij denoting cost of
edge (i, j), compute a Hamiltonian cycle/tour of minimum edge cost.

2-change local search:
...1 Start with an arbitrary tour s0
...2 For a solution s define s′ to be a neighbor if s′ can be obtained
from s by replacing two edges in s with two other edges.

...3 For a solution s at most O(n2) neighbors and one can try all of
them to find an improvement.

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 35

Example: TSP

TSP: Given a complete graph G = (V,E) with cij denoting cost of
edge (i, j), compute a Hamiltonian cycle/tour of minimum edge cost.

2-change local search:
...1 Start with an arbitrary tour s0
...2 For a solution s define s′ to be a neighbor if s′ can be obtained
from s by replacing two edges in s with two other edges.

...3 For a solution s at most O(n2) neighbors and one can try all of
them to find an improvement.

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 35

TSP: 2-change example

=⇒

Figure below shows a bad local optimum for 2-change heuristic...

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 35

TSP: 2-change example

=⇒ =⇒

Figure below shows a bad local optimum for 2-change heuristic...

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 35

TSP: 2-change example

=⇒ =⇒

Figure below shows a bad local optimum for 2-change heuristic...

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 35

TSP: 2-change example

=⇒ =⇒

Figure below shows a bad local optimum for 2-change heuristic...

=⇒

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 35

TSP: 2-change example

=⇒ =⇒

Figure below shows a bad local optimum for 2-change heuristic...

=⇒

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 35

TSP: 3-change example

3-change local search: swap 3 edges out.

=⇒

Neighborhood of s has now increased to a size of Ω(n3)
Can define k-change heuristic where k edges are swapped out.
Increases neighborhood size and makes each local improvement step
less efficient.

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 35

TSP: 3-change example

3-change local search: swap 3 edges out.

=⇒

Neighborhood of s has now increased to a size of Ω(n3)
Can define k-change heuristic where k edges are swapped out.
Increases neighborhood size and makes each local improvement step
less efficient.

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 35

Local Search Variants

Local search terminates with a local optimum which may be far from
a global optimum. Many variants to improve plain local search.

...1 Randomization and restarts. Initial solution may strongly
influence the quality of the final solution. Try many random
initial solutions.

...2 Simulated annealing is a general method where one allows the
algorithm to move to worse solutions with some probability. At
the beginning this is done more aggressively and then slowly the
algorithm converges to plain local search. Controlled by a
parameter called “temperature”.

...3 Tabu search. Store already visited solutions and do not visit
them again (they are “taboo”).

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 35

Heuristics

Several other heuristics used in practice.
...1 Heuristics for solving integer linear programs such as cutting
planes, branch-and-cut etc are quite effective.

...2 Heuristics to solve SAT (SAT-solvers) have gained prominence in
recent years

...3 Genetic algorithms

...4 . . .

Heuristics design is somewhat ad hoc and depends heavily on the
problem and the instances that are of interest. Rigorous analysis is
sometimes possible.

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 35

Approximation algorithms

Consider the following optimization problems:
...1 Max Knapsack: Given knapsack of capacity W, n items each
with a value and weight, pack the knapsack with the most
profitable subset of items whose weight does not exceed the
knapsack capacity.

...2 Min Vertex Cover: given a graph G = (V,E) find the
minimum cardinality vertex cover.

...3 Min Set Cover: given Set Cover instance, find the smallest
number of sets that cover all elements in the universe.

...4 Max Independent Set: given graph G = (V,E) find
maximum independent set.

...5 Min Traveling Salesman Tour: given a directed graph G with
edge costs, find minimum length/cost Hamiltonian cycle in G.

Solving one in polynomial time implies solving all the others.
Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 35

Approximation algorithms

However, the problems behave very differently if one wants to solve
them approximately.

Informal definition: An approximation algorithm for an
optimization problem is an efficient (polynomial-time) algorithm that
guarantees for every instance a solution of some given quality when
compared to an optimal solution.

Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20 / 35

Some known approximation results

...1 Knapsack: For every fixed ϵ > 0 there is a polynomial time
algorithm that guarantees a solution of quality (1− ϵ) times
the best solution for the given instance. Hence can get a
0.99-approximation efficiently.

...2 Min Vertex Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most 2 times the cost of an
optimum solution.

...3 Min Set Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most (ln n + 1) times the cost
of an optimal solution.

...4 Max Independent Set: Unless P = NP, for any fixed ϵ > 0,
no polynomial time algorithm can give a n1−ϵ relative
approximation . Here n is number of vertices in the graph.

...5 Min TSP: No polynomial factor relative approximation possible.

Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 / 35

Approximation algorithms

...1 Although NP-Complete problems are all equivalent with
respect to polynomial-time solvability they behave quite
differently under approximation (in both theory and practice).

...2 Approximation is a useful lens to examine NP-Complete
problems more closely.

...3 Approximation also useful for problems that we can solve
efficiently:

...1 We may have other constraints such a space (streaming
problems) or time (need linear time or less for very large
problems)

...2 Data may be uncertain (online and stochastic problems).

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 / 35

Example: Vertex Cover

Greedy(G):
Initialize S to be ∅
While there are edges in G do

Let v be a vertex with maximum degree

S← S ∪ {v}
G← G− v

endWhile

Output S

.
Theorem
..

......
|S| ≤ (ln n + 1)OPT where OPT is the value of an optimum set.
Here n is number of nodes in G.

.
Theorem
..

......

There is an infinite family of graphs where the solution S output by
Greedy is Ω(ln n)OPT.

Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 / 35

Example: Vertex Cover

Greedy(G):
Initialize S to be ∅
While there are edges in G do

Let v be a vertex with maximum degree

S← S ∪ {v}
G← G− v

endWhile

Output S

.
Theorem
..

......
|S| ≤ (ln n + 1)OPT where OPT is the value of an optimum set.
Here n is number of nodes in G.

.
Theorem
..

......

There is an infinite family of graphs where the solution S output by
Greedy is Ω(ln n)OPT.

Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 / 35

Example: Vertex Cover

MatchingHeuristic(G):
Find a maximal matching M in G
S is the set of end points of edges in M
Output S

.
Lemma
..
......OPT ≥ |M|.

.
Lemma
..
......S is a feasible vertex cover.

Analysis: |S| = 2|M| ≤ 2OPT. Algorithm is a 2-approximation.

Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 35

Example: Vertex Cover

MatchingHeuristic(G):
Find a maximal matching M in G
S is the set of end points of edges in M
Output S

.
Lemma
..
......OPT ≥ |M|.

.
Lemma
..
......S is a feasible vertex cover.

Analysis: |S| = 2|M| ≤ 2OPT. Algorithm is a 2-approximation.

Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 35

Vertex Cover: LP Relaxation based approach

Write (weighted) vertex cover problem as an integer linear program

Minimize
∑

v∈V wvxv
subject to xu + xv ≥ 1 for each uv ∈ E

xv ∈ {0, 1} for each v ∈ V

Relax integer program to a linear program

Minimize
∑

v∈V wvxv
subject to xu + xv ≥ 1 for each uv ∈ E

xv ≥ 0 for each v ∈ V

Can solve linear program in polynomial time.
Let x∗ be an optimum solution to the linear program.
.
Lemma
..
......OPT ≥

∑
v wvx∗v .

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 35

Vertex Cover: LP Relaxation based approach

Write (weighted) vertex cover problem as an integer linear program

Minimize
∑

v∈V wvxv
subject to xu + xv ≥ 1 for each uv ∈ E

xv ∈ {0, 1} for each v ∈ V

Relax integer program to a linear program

Minimize
∑

v∈V wvxv
subject to xu + xv ≥ 1 for each uv ∈ E

xv ≥ 0 for each v ∈ V

Can solve linear program in polynomial time.
Let x∗ be an optimum solution to the linear program.
.
Lemma
..
......OPT ≥

∑
v wvx∗v .

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 35

Vertex Cover: LP Relaxation based approach

Write (weighted) vertex cover problem as an integer linear program

Minimize
∑

v∈V wvxv
subject to xu + xv ≥ 1 for each uv ∈ E

xv ∈ {0, 1} for each v ∈ V

Relax integer program to a linear program

Minimize
∑

v∈V wvxv
subject to xu + xv ≥ 1 for each uv ∈ E

xv ≥ 0 for each v ∈ V

Can solve linear program in polynomial time.
Let x∗ be an optimum solution to the linear program.
.
Lemma
..
......OPT ≥

∑
v wvx∗v .

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 35

Vertex Cover: Rounding fractional solution

LP Relaxation

Minimize
∑

v∈V wvxv
subject to xu + xv ≥ 1 for each uv ∈ E

xv ≥ 0 for each v ∈ V

Let x∗ be an optimum solution to the linear program.
Rounding: S = {v | x∗v ≥ 1/2}. Output S.
.
Lemma
..
......S is a feasible vertex cover for the given graph.

.
Lemma
..
......w(S) ≤ 2

∑
v wvx∗v ≤ 2OPT.

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 35

Vertex Cover: Rounding fractional solution

LP Relaxation

Minimize
∑

v∈V wvxv
subject to xu + xv ≥ 1 for each uv ∈ E

xv ≥ 0 for each v ∈ V

Let x∗ be an optimum solution to the linear program.
Rounding: S = {v | x∗v ≥ 1/2}. Output S.
.
Lemma
..
......S is a feasible vertex cover for the given graph.

.
Lemma
..
......w(S) ≤ 2

∑
v wvx∗v ≤ 2OPT.

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 35

Vertex Cover: Rounding fractional solution

LP Relaxation

Minimize
∑

v∈V wvxv
subject to xu + xv ≥ 1 for each uv ∈ E

xv ≥ 0 for each v ∈ V

Let x∗ be an optimum solution to the linear program.
Rounding: S = {v | x∗v ≥ 1/2}. Output S.
.
Lemma
..
......S is a feasible vertex cover for the given graph.

.
Lemma
..
......w(S) ≤ 2

∑
v wvx∗v ≤ 2OPT.

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 35

Set Cover and Vertex Cover

.
Theorem
..

......
Greedy gives (ln n + 1)-approximation for Set Cover where n is
number of elements.

.
Theorem
..
......Unless P = NP no (ln n + ϵ)-approximation for Set Cover.

2-approximation is best known for Vertex Cover.
.
Theorem
..
......Unless P = NP no 1.36-approximation for Vertex Cover.

Conjecture: Unless P = NP no (2− ϵ)-approximation for Vertex
Cover for any fixed ϵ > 0.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 35

Part II
.

......

Closing Thoughts

Sariel, Alexandra (UIUC) CS473 28 Spring 2013 28 / 35

Topics I wish I had time for

...1 Data structures, especially use of amortized analysis

...2 Lower bounds on sorting and related problems

...3 More on the use of randomization in algorithms

...4 Algorithms for string processing, compression, coding

...5 More on heuristics and applications

...6 Experimental evaluation and engineering of algorithms

Sariel, Alexandra (UIUC) CS473 29 Spring 2013 29 / 35

Theoretical Computer Science

...1 Algorithms: find efficient ways to solve particular problems or
broad category of problems

...2 Computational Complexity: understand nature of computation
— classification of problems into classes (P, NP, co-NP) and
their relationships, limits of computation.

...3 Logic, Languages and Formal Methods

Form the foundations for computer “science”

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 / 35

The Computational Lens

The Algorithm: Idiom of Modern Science by Bernard Chazelle
http://www.cs.princeton.edu/chazelle/pubs/algorithm.html

Computation has gained ground as fundamental artifact in
mathematics and science.

...1 nature of proofs, P vs NP, complexity, . . .

...2 quantum computation and information

...3 computational biology and the biological processes, . . .

Standard question in math and sciences: Is there a
solution/algorithm?
New: Is there an efficient solution/algorithm?

Sariel, Alexandra (UIUC) CS473 31 Spring 2013 31 / 35

The Computational Lens

The Algorithm: Idiom of Modern Science by Bernard Chazelle
http://www.cs.princeton.edu/chazelle/pubs/algorithm.html

Computation has gained ground as fundamental artifact in
mathematics and science.

...1 nature of proofs, P vs NP, complexity, . . .

...2 quantum computation and information

...3 computational biology and the biological processes, . . .

Standard question in math and sciences: Is there a
solution/algorithm?
New: Is there an efficient solution/algorithm?

Sariel, Alexandra (UIUC) CS473 31 Spring 2013 31 / 35

Related theory courses

...1 Graduate algorithms (next semester, every year)

...2 Computational complexity (next semester, every year)

...3 Randomized algorithms (every other year)

...4 Approximation algorithms (every other year)

...5 Advanced data structures (every once in a while)

...6 Cryptography and related topics (almost every year)

...7 Algorithmic game theory, combinatorial optimization,
computational geometry, logic and formal methods, coding
theory, information theory, graph theory, combinatorics, . . .

Sariel, Alexandra (UIUC) CS473 32 Spring 2013 32 / 35

Technological and sociological changes

Scale of data due to the web, digitization of knowledge, people

Mobility, cloud, and distributed data

Social and economic networks/activity in online/virtual fora

Privacy and security

Possibility of quantum computation: new model and algorithms

Biology/DNA as digital information/computation

End of Moore’s law?

Increasing integration of sensing and computational devices

Sariel, Alexandra (UIUC) CS473 33 Spring 2013 33 / 35

Impact on Algorithms

Scale of data implies efficiency of algorithms very important

Sub-linear time and data streaming (approximation) algorithms
via sampling, estimation, . . .
Various forms of parallel algorithms (Map-Reduce etc)

Large data availability implies statistical machine learning can be
very effective so many new applications

Algorithmic aspects of strategic behavior of people: algorithmic
game theory, sponsored search auctions, influence propagation in
social networks, . . .,

Distributed computing, cyber-physical computing in vogue

Interdisciplinary work: quatum information and computation,
computational biology and chemistry

Sariel, Alexandra (UIUC) CS473 34 Spring 2013 34 / 35

And...

Questions?

Final Exam: Monday May 7th, 1.30 — 4.30pm in Gregory Hall 112.

Thanks!

Sariel, Alexandra (UIUC) CS473 35 Spring 2013 35 / 35

And...

Questions?

Final Exam: Monday May 7th, 1.30 — 4.30pm in Gregory Hall 112.

Thanks!

Sariel, Alexandra (UIUC) CS473 35 Spring 2013 35 / 35

Notes

Sariel, Alexandra (UIUC) CS473 36 Spring 2013 36 / 35

Notes

Sariel, Alexandra (UIUC) CS473 37 Spring 2013 37 / 35

Notes

Sariel, Alexandra (UIUC) CS473 38 Spring 2013 38 / 35

Notes

Sariel, Alexandra (UIUC) CS473 39 Spring 2013 39 / 35

	Heuristics
	Closing Thoughts

