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Part I

Introduction to Linear Programming

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2 / 51

Maximum Flow in Network
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Need to compute values
fs1, fs2, . . . f25, . . . f5t, f6t such that

fs1 ≤ 15 fs2 ≤ 5 fs3 ≤ 10
f14 ≤ 30 f21 ≤ 4 f25 ≤ 8
f32 ≤ 4 f35 ≤ 15 f36 ≤ 9
f42 ≤ 6 f4t ≤ 10 f54 ≤ 15
f5t ≤ 10 f65 ≤ 15 f6t ≤ 10

and

fs1 + f21 = f14 fs2 + f32 = f21 + f25 fs3 = f32 + f35 + f36

f14 + f54 = f42 + f4t f25 + f35 + f65 = f54 + f5t f36 = f65 + f6t

fs1 ≥ 0 fs2 ≥ 0 fs3 ≥ 0 · · · f4t ≥ 0 f5t ≥ 0 f6t ≥ 0

and fs1 + fs2 + fs3 is maximized.
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Maximum Flow as a Linear Program

For a general flow network G = (V,E) with capacities ce on edge
e ∈ E, we have variables fe indicating flow on edge e

Maximize
∑

e out of s

fe

subject to fe ≤ ce for each e ∈ E∑
e out of v

fe −
∑

e into v

fe = 0 ∀v ∈ V \ {s, t}

fe ≥ 0 for each e ∈ E.

Number of variables: m, one for each edge.
Number of constraints: m + n− 2 + m.
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Minimum Cost Flow with Lower Bounds
... as a Linear Program

For a general flow network G = (V,E) with capacities ce, lower
bounds `e, and costs we, we have variables fe indicating flow on edge
e. Suppose we want a min-cost flow of value at least v.

Minimize
∑
e ∈ E

wefe

subject to
∑

e out of s

fe ≥ v

fe ≤ ce fe ≥ `e for each e ∈ E∑
e out of v

fe −
∑

e into v

fe = 0 for each v ∈ V − {s, t}

fe ≥ 0 for each e ∈ E.

Number of variables: m, one for each edge
Number of constraints: 1 + m + m + n− 2 + m = 3m + n− 1.
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Linear Programs

Problem
Find a vector x ∈ Rd that

maximize/minimize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . p∑d
j=1 aijxj = bi for i = p + 1 . . . q∑d
j=1 aijxj ≥ bi for i = q + 1 . . . n

Input is matrix A = (aij) ∈ Rn×d, column vector b = (bi) ∈ Rn,
and row vector c = (cj) ∈ Rd
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Canonical Form of Linear Programs

Canonical Form
A linear program is in canonical form if it has the following structure

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . n
xj ≥ 0 for j = 1 . . . d

Conversion to Canonical Form
1 Replace each variable xj by x+

j − x−j and inequalities x+
j ≥ 0

and x−j ≥ 0

2 Replace
∑

j aijxj = bi by
∑

j aijxj ≤ bi and −
∑

j aijxj ≤ −bi

3 Replace
∑

j aijxj ≥ bi by −
∑

j aijxj ≤ −bi
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Matrix Representation of Linear Programs

A linear program in canonical form can be written as

maximize c · x
subject to Ax ≤ b

x ≥ 0

where A = (aij) ∈ Rn×d, column vector b = (bi) ∈ Rn, row vector
c = (cj) ∈ Rd, and column vector x = (xj) ∈ Rd

1 Number of variable is d

2 Number of constraints is n + d
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Other Standard Forms for Linear Programs

maximize c · x
subject to Ax = b

x ≥ 0

minimize c · x
subject to Ax ≥ b

x ≥ 0
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Linear Programming: A History
1 First formalized applied to problems in economics by Leonid

Kantorovich in the 1930s
1 However, work was ignored behind the Iron Curtain and

unknown in the West

2 Rediscovered by Tjalling Koopmans in the 1940s, along with
applications to economics

3 First algorithm (Simplex) to solve linear programs by George
Dantzig in 1947

4 Kantorovich and Koopmans receive Nobel Prize for economics in
1975 ; Dantzig, however, was ignored

1 Koopmans contemplated refusing the Nobel Prize to protest
Dantzig’s exclusion, but Kantorovich saw it as a vindication for
using mathematics in economics, which had been written off as
“a means for apologists of capitalism”
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A Factory Example

Problem
Suppose a factory produces two products I and II. Each requires
three resources A,B,C.

1 Producing one unit of Product I requires 1 unit each of resources
A and C.

2 One unit of Product II requires 1 unit of resource B and 1 units
of resource C.

3 We have 200 units of A, 300 units of B, and 400 units of C.

4 Product I can be sold for $1 and product II for $6.

How many units of product I and product II should the factory
manufacture to maximize profit?

Solution: Formulate as a linear program.
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A Factory Example

Problem
Suppose a factory produces two
products I and II. Each requires
three resources A,B,C.

1 Producing unit I: Req. 1 unit
of A, C.

2 Producing unit II: Requ. 1
unit of B,C.

3 Have A: 200, B: 300 , and
C: 400.

4 Price I: $1, and II: $6.

How many units of I and II to
manufacture to max profit?
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A Factory Example

Problem
Suppose a factory produces two
products I and II. Each requires
three resources A,B,C.

1 Producing unit I: Req. 1 unit
of A, C.

2 Producing unit II: Requ. 1
unit of B,C.

3 Have A: 200, B: 300 , and
C: 400.

4 Price I: $1, and II: $6.

How many units of I and II to
manufacture to max profit?

max xI + 6xII

s.t. xI ≤ 200 (A)

xII ≤ 300 (B)

xI + xII ≤ 400 (C)

xI ≥ 0

xII ≥ 0
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Linear Programming Formulation

Let us produce x1 units of product I and x2 units of product II. Our
profit can be computed by solving

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

What is the solution?
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Solving the Factory Example
x2

x1

300

200

1 Feasible values of x1 and x2 are shaded
region.

2 Objective function is a direction — the line
represents all points with same value of the
function; moving the line until it just leaves
the feasible region, gives optimal values.
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Linear Programming in 2-d
1 Each constraint a half plane

2 Feasible region is intersection of finitely many half planes — it
forms a polygon

3 For a fixed value of objective function, we get a line. Parallel
lines correspond to different values for objective function.

4 Optimum achieved when objective function line just leaves the
feasible region
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An Example in 3-dS. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 227

Figure 7.12 A polyhedron defined by seven inequalities.

x1

x3

x2

1©

4©

2©

3©

5©

6©

7©

A

B C

max x1 + 6x2 + 13x3

x1 ≤ 200 1©
x2 ≤ 300 2©

x1 + x2 + x3 ≤ 400 3©
x2 + 3x3 ≤ 600 4©

x1 ≥ 0 5©
x2 ≥ 0 6©
x3 ≥ 0 7©

7.6 The simplex algorithm
The extraordinary power and expressiveness of linear programs would be little consolation if
we did not have a way to solve them efficiently. This is the role of the simplex algorithm.
At a high level, the simplex algorithm takes a set of linear inequalities and a linear objec-

tive function and finds the optimal feasible point by the following strategy:

let v be any vertex of the feasible region

while there is a neighbor v′ of v with better objective value:

set v = v′

In our 2D and 3D examples (Figure 7.1 and Figure 7.2), this was simple to visualize and made
intuitive sense. But what if there are n variables, x1, . . . , xn?
Any setting of the xi’s can be represented by an n-tuple of real numbers and plotted in

n-dimensional space. A linear equation involving the xi’s defines a hyperplane in this same
space Rn, and the corresponding linear inequality defines a half-space, all points that are
either precisely on the hyperplane or lie on one particular side of it. Finally, the feasible region
of the linear program is specified by a set of inequalities and is therefore the intersection of
the corresponding half-spaces, a convex polyhedron.
But what do the concepts of vertex and neighbor mean in this general context?

7.6.1 Vertices and neighbors in n-dimensional space
Figure 7.12 recalls an earlier example. Looking at it closely, we see that each vertex is the
unique point at which some subset of hyperplanes meet. Vertex A, for instance, is the sole
point at which constraints 2©, 3©, and 7© are satisfied with equality. On the other hand, the

Figure from Dasgupta etal book.
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Factory Example: Alternate View

Original Problem
Recall we have,

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

Transformation
Consider new variable x′1 and x′2, such that x1 = −6x′1 + x′2 and
x2 = x′1 + 6x′2. Then in terms of the new variables we have

maximize 37x′2
subject to −6x′1 + x′2 ≤ 200 x′1 + 6x′2 ≤ 300 −5x′1 + 7x2 ≤ 400

−6x′1 + x′2 ≥ 0 x′1 + 6x′2 ≥ 0
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Transformed Picture

x′2

x′1

Feasible region rotated, and optimal value at the highest point on
polygon
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Observations about the Transformation

Observations
1 Linear program can always be transformed to get a linear

program where the optimal value is achieved at the point in the
feasible region with highest y-coordinate

2 Optimum value attained at a vertex of the polygon

3 Since feasible region is convex, every local optimum is a global
optimum
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A Simple Algorithm in 2-d
1 optimum solution is at a vertex of the feasible region

2 a vertex is defined by the intersection of two lines (constraints)

Algorithm:

1 find all intersections between the n lines — n2 points
2 for each intersection point p = (p1, p2)

1 check if p is in feasible region (how?)
2 if p is feasible evaluate objective function at p:

val(p) = c1p1 + c2p2

3 Output the feasible point with the largest value

Running time: O(n3).
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Simple Algorithm in General Case

Real problem: d-dimensions

1 optimum solution is at a vertex of the feasible region

2 a vertex is defined by the intersection of d hyperplanes

3 number of vertices can be Ω(nd)

Running time: O(nd+1) which is not polynomial since problem size is
at least nd. Also not practical.

How do we find the intersection point of d hyperplanes in Rd? Using
Gaussian elimination to solve Ax = b where A is a d× d matrix and
b is a d× 1 matrix.
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Simplex in 2-d

Simplex Algorithm
1 Start from some vertex of the feasible polygon

2 Compare value of objective function at current vertex with the
value at “neighboring” vertices of polygon

3 If neighboring vertex improves objective function, move to this
vertex, and repeat step 2

4 If current vertex is local optimum, then stop.
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Linear Programming in d-dimensions
1 Each linear constraint defines a halfspace.

2 Feasible region, which is an intersection of halfspaces, is a
convex polyhedron.

3 Optimal value attained at a vertex of the polyhedron.

4 Every local optimum is a global optimum.
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Simplex in Higher Dimensions
1 Start at a vertex of the polytope.

2 Compare value of objective function at each of the d
“neighbors”.

3 Move to neighbor that improves objective function, and repeat
step 2.

4 If local optimum, then stop

Simplex is a greedy local-improvement algorithm! Works because a
local optimum is also a global optimum — convexity of polyhedra.
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Solving Linear Programming in Practice
1 Näıve implementation of Simplex algorithm can be very

inefficient
1 Choosing which neighbor to move to can significantly affect

running time
2 Very efficient Simplex-based algorithms exist
3 Simplex algorithm takes exponential time in the worst case but

works extremely well in practice with many improvements over
the years

2 Non Simplex based methods like interior point methods work
well for large problems.
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Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?
Leonid Khachiyan in 1979 gave the first polynomial time algorithm
using the Ellipsoid method.

1 major theoretical advance

2 highly impractical algorithm, not used at all in practice

3 routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time
algorithm, the interior point method.

1 very practical for some large problems and beats simplex

2 also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved
enormously and is the method of choice.
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Degeneracy
1 The linear program could be infeasible: No points satisfy the

constraints.

2 The linear program could be unbounded: Polygon unbounded in
the direction of the objective function.
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Infeasibility: Example

maximize x1 + 6x2

subject to x1 ≤ 2 x2 ≤ 1 x1 + x2 ≥ 4
x1, x2 ≥ 0

Infeasibility has to do only with constraints.
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Unboundedness: Example

maximize x2

x1 + x2 ≥ 2

x1, x2 ≥ 0

Unboundedness depends on both constraints and the objective
function.

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 / 51

Feasible Solutions and Lower Bounds

Consider the program

maximize 4x1+ x2+ 3x3

subject to x1+ 4x2 ≤ 1
3x1− x2+ x3 ≤ 3

x1, x2, x3 ≥ 0

1 (1, 0, 0) satisfies all the constraints and gives value 4 for the
objective function.

2 Thus, optimal value σ∗ is at least 4.

3 (0, 0, 3) also feasible, and gives a better bound of 9.

4 How good is 9 when compared with σ∗?
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Obtaining Upper Bounds
1 Let us multiply the first constraint by 2 and the second by 3 and

add the result

2( x1+ 4x2 ) ≤ 2(1)
+3( 3x1− x2+ x3 ) ≤ 3(3)

11x1+ 5x2+ 3x3 ≤ 11

2 Since xis are positive, compared to objective function
4x1 + x2 + 3x3, we have

4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11

3 Thus, 11 is an upper bound on the optimum value!
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Generalizing . . .
1 Multiply first equation by y1 and second by y2 (both y1, y2

being positive) and add

y1( x1+ 4x2 ) ≤ y1(1)
+y2( 3x1− x2+ x3 ) ≤ y2(3)

(y1 + 3y2)x1+ (4y1 − y2)x2+ (y2)x3 ≤ y1 + 3y2

2 y1 + 3y2 is an upper bound, provided coefficients of xi are as
large as in the objective function, i.e.,

y1 + 3y2 ≥ 4 4y1 − y2 ≥ 1 y2 ≥ 3

3 The best upper bound is when y1 + 3y2 is minimized!
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Dual LP: Example

Thus, the optimum value of program

maximize 4x1 + x2 + 3x3

subject to x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

is upper bounded by the optimal value of the program

minimize y1 + 3y2

subject to y1 + 3y2 ≥ 4
4y1 − y2 ≥ 1

y2 ≥ 3
y1, y2 ≥ 0
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Dual Linear Program

Given a linear program Π in canonical form

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi i = 1, 2, . . . n
xj ≥ 0 j = 1, 2, . . . d

the dual Dual(Π) is given by

minimize
∑n

i=1 biyi

subject to
∑n

i=1 yiaij ≥ cj j = 1, 2, . . . d
yi ≥ 0 i = 1, 2, . . . n

Proposition

Dual(Dual(Π)) is equivalent to Π
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Duality Theorem

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to
Dual(Π) then c · x ≤ y · b.

Theorem (Strong Duality)

If x∗ is an optimal solution to Π and y∗ is an optimal solution to
Dual(Π) then c · x∗ = y∗ · b.

Many applications! Maxflow-Mincut theorem can be deduced from
duality.
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Maximum Flow Revisited

For a general flow network G = (V,E) with capacities ce on edge
e ∈ E, we have variables fe indicating flow on edge e

Maximize
∑

e out of s fe subject to
fe ≤ ce for each e ∈ E∑

e out of v fe −
∑

e into v fe = 0 for each v ∈ V − {s, t}
fe ≥ 0 for each e ∈ E

Number of variables: m, one for each edge
Number of constraints: m + n− 2 + m

Maximum flow can be reduced to Linear Programming.
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Integer Linear Programming

Problem
Find a vector x ∈ Zd (integer values) that

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . n

Input is matrix A = (aij) ∈ Rn×d, column vector b = (bi) ∈ Rn,
and row vector c = (cj) ∈ Rd
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Factory Example

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

Suppose we want x1, x2 to be integer valued.
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Factory Example Figure
x2

x1

300

200
1 Feasible values of x1 and x2 are integer

points in shaded region

2 Optimization function is a line; moving the
line until it just leaves the final integer
point in feasible region, gives optimal values
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Integer Programming

Can model many difficult discrete optimization problems as integer
programs!

Therefore integer programming is a hard problem. NP-hard.

Can relax integer program to linear program and approximate.

Practice: integer programs are solved by a variety of methods

1 branch and bound

2 branch and cut

3 adding cutting planes

4 linear programming plays a fundamental role
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Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer
coordinates.
Then solving linear program is same as solving integer program. We
know how to solve linear programs efficiently (polynomial time) and
hence we get an integer solution for free!

Luck or Structure:

1 Linear program for flows with integer capacities have integer
vertices

2 Linear program for matchings in bipartite graphs have integer
vertices

3 A complicated linear program for matchings in general graphs
have integer vertices.

All of above problems can hence be solved efficiently.
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Linear Programs with Integer Vertices

Meta Theorem: A combinatorial optimization problem can be solved
efficiently if and only if there is a linear program for problem with
integer vertices.

Consequence of the Ellipsoid method for solving linear programming.

In a sense linear programming and other geometric generalizations
such as convex programming are the most general problems that we
can solve efficiently.

Sariel, Alexandra (UIUC) CS473 43 Spring 2013 43 / 51

Summary
1 Linear Programming is a useful and powerful (modeling)

problem.

2 Can be solved in polynomial time. Practical solvers available
commercially as well as in open source. Whether there is a
strongly polynomial time algorithm is a major open problem.

3 Geometry and linear algebra are important to understand the
structure of LP and in algorithm design. Vertex solutions imply
that LPs have poly-sized optimum solutions. This implies that
LP is in NP.

4 Duality is a critical tool in the theory of linear programming.
Duality implies the Linear Programming is in co-NP. Do you
see why?

5 Integer Programming in NP-Complete. LP-based techniques
critical in heuristically solving integer programs.
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