CS 473: Fundamental Algorithms, Spring 2013

co-NP, Self-Reductions

Lecture 24
April 24, 2013

Part I

Complementation and Self-Reduction

The class \mathbf{P}

(1) A language \mathbf{L} (equivalently decision problem) is in the class \mathbf{P} if there is a polynomial time algorithm \mathbf{A} for deciding \mathbf{L}; that is given a string \mathbf{x}, \mathbf{A} correctly decides if $\mathbf{x} \in \mathbf{L}$ and running time of \mathbf{A} on \mathbf{x} is polynomial in $|\mathbf{x}|$, the length of \mathbf{x}.

The class NP

Two equivalent definitions:
(1) Language \mathbf{L} is in NP if there is a non-deterministic polynomial time algorithm \mathbf{A} (Turing Machine) that decides \mathbf{L}.

- For $\mathbf{x} \in \mathbf{L}, \mathbf{A}$ has some non-deterministic choice of moves that will make \mathbf{A} accept \mathbf{x}
© For $\mathbf{x} \notin \mathbf{L}$, no choice of moves will make \mathbf{A} accept \mathbf{x}
(2) L has an efficient certifier $\mathbf{C}(\cdot, \cdot)$.
(1) C is a polynomial time deterministic algorithm
(2) For $\mathbf{x} \in \mathbf{L}$ there is a string \mathbf{y} (proof) of length polynomial in $|\mathbf{x}|$ such that $\mathbf{C}(\mathbf{x}, \mathbf{y})$ accepts
(3) For $\mathbf{x} \notin \mathbf{L}$, no string \mathbf{y} will make $\mathbf{C}(\mathbf{x}, \mathbf{y})$ accept

Complementation

Definition

Given a decision problem \mathbf{X}, its complement $\overline{\mathbf{X}}$ is the collection of all instances \mathbf{s} such that $\mathbf{s} \notin \mathbf{L}(\mathbf{X})$

Equivalently, in terms of languages:

Definition

Given a language \mathbf{L} over alphabet $\boldsymbol{\Sigma}$, its complement $\overline{\mathbf{L}}$ is the language $\boldsymbol{\Sigma}^{*} \backslash \mathbf{L}$.

Examples

(1) PRIME $=\{\mathbf{n} \mid \mathbf{n}$ is an integer and \mathbf{n} is prime $\}$ $\overline{\text { PRIME }}=\{\mathbf{n} \mid \mathbf{n}$ is an integer and \mathbf{n} is not a prime $\}$ $\overline{\text { PRIME }}=$ COMPOSITE
(2) SAT $=\{\varphi \mid \varphi$ is a CNF formula and φ is satisfiable $\}$ $\overline{\mathrm{SAT}}=\{\varphi \mid \varphi$ is a CNF formula and φ is not satisfiable $\}$. $\overline{\mathrm{SAT}}=$ UnSAT .

Technicality: $\overline{\text { SAT }}$ also includes strings that do not encode any valid
CNF formula. Typically we ignore those strings because they are not interesting. In all problems of interest, we assume that it is "easy" to check whether a given string is a valid instance or not.

Examples

(1) PRIME $=\{\mathbf{n} \mid \mathbf{n}$ is an integer and \mathbf{n} is prime $\}$ $\overline{\text { PRIME }}=\{\mathbf{n} \mid \mathbf{n}$ is an integer and \mathbf{n} is not a prime $\}$ $\overline{\text { PRIME }}=$ COMPOSITE.
(2) SAT $=\{\varphi \mid \varphi$ is a CNF formula and φ is satisfiable $\}$ $\overline{\mathrm{SAT}}=\{\varphi \mid \varphi$ is a CNF formula and φ is not satisfiable $\}$. $\overline{\mathrm{SAT}}=$ UnSAT.

Technicality: $\overline{\text { SAT }}$ also includes strings that do not encode any valid CNF formula. Typically we ignore those strings because they are not interesting. In all problems of interest, we assume that it is "easy" to check whether a given string is a valid instance or not.

P is closed under complementation

Proposition

Decision problem \mathbf{X} is in \mathbf{P} if and only if $\overline{\mathbf{X}}$ is in P .

Proof.

(1) If \mathbf{X} is in \mathbf{P} let \mathbf{A} be a polynomial time algorithm for \mathbf{X}.
(2) Construct polynomial time algorithm \mathbf{A}^{\prime} for $\overline{\mathbf{X}}$ as follows: given input $\mathbf{x}, \mathbf{A}^{\prime}$ runs \mathbf{A} on \mathbf{x} and if \mathbf{A} accepts $\mathbf{x}, \mathbf{A}^{\prime}$ rejects \mathbf{x} and if \mathbf{A} rejects \mathbf{x} then \mathbf{A}^{\prime} accepts \mathbf{x}.
(0) Only if direction is essentially the same argument.

Asymmetry of NP

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Observation

To show that a problem is in NP we only need short, efficiently checkable certificates for "yes"-instances. What about "no"-instances?

Given a CNF formula φ, is φ unsatisfiable?
Easy to give a proof that φ is satisfiable (an assignment) but no easy (known) proof to show that φ is unsatisfiable!

Asymmetry of NP

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Observation

To show that a problem is in NP we only need short, efficiently checkable certificates for "yes"-instances. What about "no"-instances?

Given a CNF formula φ, is φ unsatisfiable?

Asymmetry of NP

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Observation

To show that a problem is in NP we only need short, efficiently checkable certificates for "yes"-instances. What about "no"-instances?

Given a CNF formula φ, is φ unsatisfiable?
Easy to give a proof that φ is satisfiable (an assignment) but no easy (known) proof to show that φ is unsatisfiable!

Examples of complement problems

Some languages
(1) UnSAT: CNF formulas φ that are not satisfiable
(2) No-Hamilton-Cycle: graphs \mathbf{G} that do not have a Hamilton cycle
(3) No-3-Color: graphs G that are not 3-colorable

Above problems are complements of known NP problems (viewed as languages).

Examples of complement problems

Some languages
(1) UnSAT: CNF formulas φ that are not satisfiable
(2) No-Hamilton-Cycle: graphs G that do not have a Hamilton cycle
(3) No-3-Color: graphs G that are not 3-colorable

Above problems are complements of known NP problems (viewed as languages).

NP and co-NP

NP

Decision problems with a polynomial certifier.
Examples: SAT, Hamiltonian Cycle, 3-Colorability.

Definition

co-NP is the class of all decision problems \mathbf{X} such that $\overline{\mathbf{X}} \in \mathbf{N P}$. Examples: UnSAT, No-Hamiltonian-Cycle, No-3-Colorable.

co-NP

If \mathbf{L} is a language in co-NP then that there is a polynomial time certifier/verifier $\mathbf{C}(\cdot, \cdot)$, such that:
(1) for $\mathbf{s} \notin \mathbf{L}$ there is a proof \mathbf{t} of size polynomial in $|\mathbf{s}|$ such that C($\mathbf{s}, \mathrm{t})$ correctly says NO.
(2) for $\mathbf{s} \in \mathbf{L}$ there is no proof \mathbf{t} for which $\mathbf{C}(\mathbf{s}, \mathbf{t})$ will say NO
co-NP has checkable proofs for strings NOT in the language.

co-NP

If \mathbf{L} is a language in co-NP then that there is a polynomial time certifier/verifier $\mathbf{C}(\cdot, \cdot)$, such that:
(1) for $\mathbf{s} \notin \mathbf{L}$ there is a proof \mathbf{t} of size polynomial in $|\mathbf{s}|$ such that C($\mathbf{s}, \mathrm{t})$ correctly says NO.
(2) for $\mathbf{s} \in \mathbf{L}$ there is no proof \mathbf{t} for which $\mathbf{C}(\mathbf{s}, \mathbf{t})$ will say NO
co-NP has checkable proofs for strings NOT in the language.

Natural Problems in co-NP

(1) Tautology: given a Boolean formula (not necessarily in CNF form), is it true for all possible assignments to the variables?
(2) Graph expansion: given a graph \mathbf{G}, is it an expander? A graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ is an expander if and only if for each $\mathbf{S} \subset \mathbf{V}$ with $|\mathbf{S}| \leq|\mathbf{V}| / \mathbf{2},|\mathbf{N}(\mathbf{S})| \geq|\mathbf{S}|$. Expanders are very important graphs in theoretical computer science and mathematics.

Factorization, Primality

Problem: Primality

Instance: An integer n.
Question: Is the number n prime?

Problem: Factoring

Instance: Integers n, k.
Question: Does the number \mathbf{n} has a factor $\leq \mathbf{k}$? Formally, is there ℓ, such that $2 \leq \ell \leq \mathbf{k}$, such that ℓ divides \mathbf{n} ?
(1) Primality is in P.
(2) Factoring is in NP \cap co-NP.

Factoring is a very naughty problem

Problem: Factoring

> Instance: Integers \mathbf{n}, \mathbf{k}.
> Question: Does the number \mathbf{n} has a factor $\leq \mathbf{k}$? Formally, is there ℓ, such that $2 \leq \ell \leq \mathbf{k}$, such that ℓ divides \mathbf{n} ?

If answer is:
(1) NO: certificate is all prime factors of \mathbf{n}. Certification: multiply the given numbers.
(2) YES: Certificate is the factor ℓ. Verify it divides \mathbf{n}.

Belief: Unlikely Factoring is NP-Complete. Can be solved in polynomial time on a quantum computer.

P, NP, co-NP

co- P : complement of P . Language \mathbf{X} is in co- \mathbf{P} iff $\overline{\mathbf{X}} \in \mathbf{P}$

Proposition

Proposition

Saw that $\mathrm{P} \subseteq \mathrm{NP}$. Same proof shows $\mathrm{P} \subseteq$ co-NP

P, NP, co-NP

co- \mathbf{P} : complement of P. Language \mathbf{X} is in co- \mathbf{P} iff $\overline{\mathbf{X}} \in \mathbf{P}$
Proposition
$\mathrm{P}=\mathrm{co}-\mathrm{P}$.

Proposition

$P \subseteq N P \cap c o-N P$
Saw that $\mathbf{P} \subseteq$ NP. Same proof shows $\mathrm{P} \subseteq c o-N P$

P, NP, co-NP

co- \mathbf{P} : complement of P. Language \mathbf{X} is in co- \mathbf{P} iff $\overline{\mathbf{X}} \in \mathbf{P}$
Proposition
$\mathrm{P}=\mathrm{co}-\mathrm{P}$.

Proposition

$P \subseteq N P \cap$ co-NP.
Saw that $\mathbf{P} \subseteq \mathbf{N P}$. Same proof shows $\mathbb{P} \subseteq$ co- NP

P, NP, co-NP

co-P: complement of \mathbf{P}. Language \mathbf{X} is in co- \mathbf{P} iff $\overline{\mathbf{X}} \in \mathbf{P}$
Proposition
$\mathrm{P}=\mathrm{co}-\mathrm{P}$.

Proposition

P \subseteq NP \cap co-NP.

Saw that $\mathrm{P} \subseteq$ NP. Same proof shows $\mathrm{P} \subseteq$ co-NP.

P, NP, and co-NP

Open Problems:
(1) Does NP $=$ co-NP?

Consensus opinion: No.
(2) Is $\mathrm{P}=\mathrm{NP} \cap \mathrm{co-NP}$?

No real consensus.

P, NP, and co-NP

Open Problems:
(1) Does NP $=$ co-NP?

Consensus opinion: No.
(2) $\mathrm{Is} \mathrm{P}=\mathrm{NP} \cap \mathrm{co-NP}$?

No real consensus.

P, NP, and co-NP

Open Problems:
(1) Does NP $=$ co-NP?

Consensus opinion: No.
(2) Is $P=N P \cap$ co-NP?

No real consensus.

P, NP, and co-NP

Open Problems:
(1) Does NP $=$ co-NP?

Consensus opinion: No.
(2) Is $\mathrm{P}=\mathrm{NP} \cap$ co-NP?

No real consensus.

P, NP, and co-NP

Proposition

 If $\mathrm{P}=\mathrm{NP}$ then $\mathrm{NP}=$ co-NP.
Proof.

P, NP, and co-NP

Proposition
 If $\mathrm{P}=\mathrm{NP}$ then $\mathrm{NP}=$ co-NP.

Proof.
P = co- P
If $P=N P$ then co- $N P=\operatorname{co}-P=P$.

P, NP, and co-NP

Which means that...

Corollary
 If NP \neq co-NP then $\mathrm{P} \neq \mathrm{NP}$.

Importance of corollary: try to prove $\mathrm{P} \neq \mathrm{NP}$ by proving that NP \neq co-NP

P, NP, and co-NP

Which means that...

Corollary
 If NP \neq co-NP then $\mathrm{P} \neq \mathrm{NP}$.
 Importance of corollary: try to prove $\mathbf{P} \neq \mathrm{NP}$ by proving that NP \neq co-NP.

$N P \cap$ co-NP

Complexity Class NP \cap co-NP

Problems in this class have
(1) Efficient certifiers for yes-instances
(2) Efficient disqualifiers for no-instances

Problems have a good characterization property, since for both yes and no instances we have short efficiently checkable proofs.

$N P \cap$ co-NP: Example

Example

Bipartite Matching: Given bipartite graph $\mathbf{G}=(\mathbf{U} \cup \mathbf{V}, \mathbf{E})$, does
G have a perfect matching?
Bipartite Matching $\in N P \cap$ co-NP
© If G is a yes-instance, then proof is just the perfect matching.

Example (More interesting...)
 Factoring $\in N P \cap$ co-NP, and we do not know if it is in P!

$N P \cap$ co-NP: Example

Example

Bipartite Matching: Given bipartite graph $\mathbf{G}=(\mathbf{U} \cup \mathbf{V}, \mathbf{E})$, does
G have a perfect matching? Bipartite Matching $\in N P \cap$ co-NP
(1) If \mathbf{G} is a yes-instance, then proof is just the perfect matching.

Example (More interesting...)

Factoring $\in N P \cap$ co-NP, and we do not know if it is in P!

$N P \cap$ co-NP: Example

Example

Bipartite Matching: Given bipartite graph $\mathbf{G}=(\mathbf{U} \cup \mathbf{V}, \mathbf{E})$, does G have a perfect matching? Bipartite Matching \in NP \cap co-NP
(1) If \mathbf{G} is a yes-instance, then proof is just the perfect matching.
(2) If \mathbf{G} is a no-instance, then by Hall's Theorem, there is a subset of vertices $\mathbf{A} \subseteq \mathbf{U}$ such that $|\mathbf{N}(\mathbf{A})|<|\mathbf{A}|$.

Example (More interesting...)

Factoring $\in N P \cap$ co-NP, and we do not know if it is in P!

Good Characterization ?

(1) Bipartite Matching has a polynomial time algorithm
(2) Do all problems in NP \cap co-NP have polynomial time algorithms? That is, is $\mathrm{P}=\mathrm{NP} \cap$ co-NP?

```
Problems in NP \cap co-NP have been proved to be in P many
years later
(1) Linear programming (Khachiyan 1979)
    (0) Duality easily shows that it is in NP \cap co-NP
(2 Primality Testing (Agarwal-Kayal-Saxena 2002)
    (1) Easy to see that PRIME is in co-NP (why?)
    (3) PRIME is in NP - not easy to show! (Vaughan Pratt 1975)
```


Good Characterization $\stackrel{?}{=}$ Efficient Solution

(1) Bipartite Matching has a polynomial time algorithm
(2) Do all problems in NP \cap co-NP have polynomial time algorithms? That is, is $P=N P \cap$ co-NP? Problems in NP \cap co-NP have been proved to be in P many years later
(1) Linear programming (Khachiyan 1979)
(1) Duality easily shows that it is in NP \cap co-NP
(2) Primality Testing (Agarwal-Kayal-Saxena 2002)
(1) Easy to see that PRIME is in co-NP (why?)
(2) PRIME is in NP - not easy to show! (Vaughan Pratt 1975)

$\mathbf{P} \stackrel{?}{=} \mathrm{NP} \cap \mathrm{co}-\mathrm{NP}($ contd $)$

(1) Some problems in NP \cap co-NP still cannot be proved to have polynomial time algorithms
(1) Parity Games.
(2) Other more specialized problems.

co-NP Completeness

Definition

A problem \mathbf{X} is said to be co-NP-Complete (co-NPC) if
(1) $X \in$ co-NP
(2) (Hardness) For any $\mathbf{Y} \in$ co- $\mathbf{N P}, \mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$
co-NP-Complete problems are the hardest problems in co-NP.

Lemma

\mathbf{X} is co-NPC if and only if $\overline{\mathbf{X}}$ is NP-Complete.
Proof left as an exercise.

co-NP Completeness

Definition

A problem \mathbf{X} is said to be co-NP-Complete (co-NPC) if
(1) $X \in$ co-NP
(2) Hardness) For any $\mathbf{Y} \in$ co- $\mathbf{N P}, \mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$
co-NP-Complete problems are the hardest problems in co-NP.
X is co-NPC if and only if \bar{X} is NP-Complete.
Proof left as an exercise.

co-NP Completeness

Definition

A problem \mathbf{X} is said to be co-NP-Complete (co-NPC) if
(1) $X \in \operatorname{co}-N P$
(2) (Hardness) For any $\mathbf{Y} \in$ co- $\mathbf{N P}, \mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$
co-NP-Complete problems are the hardest problems in co-NP.
Lemma
\mathbf{X} is co-NPC if and only if $\overline{\mathbf{X}}$ is NP-Complete.
Proof left as an exercise.

P, NP and co-NP

Possible scenarios:
(1) $P=N P$. Then $P=N P=$ co-NP.
(2) NP $=$ co-NP and $P \neq N P$ (and hence also $P \neq$ co-NP).
(0) NP \neq co-NP. Then $P \neq N P$ and also $P \neq$ co-NP.

Most people believe that the last scenario is the likely one.
Question: Suppose $P \neq N P$. Is every problem that is in NP $\backslash P$ is also NP-Complete?

[^0]
P, NP and co-NP

Possible scenarios:
(1) $P=N P$. Then $P=N P=\operatorname{co}-N P$.
(2) NP $=$ co-NP and $P \neq N P$ (and hence also $P \neq$ co-NP).
(3) NP \neq co-NP. Then $P \neq N P$ and also $P \neq$ co-NP.

Most people believe that the last scenario is the likely one.

Question: Suppose $P \neq N P$. Is every problem that is in NP $\backslash P$ is also NP-Complete?

Theorem (Ladner)
 If $\mathbf{P} \neq \mathrm{NP}$ then there is a problem/language $\mathbf{X} \in \mathbb{N P} \backslash \mathbf{P}$ such that
 X is not NP-Complete.

P, NP and co-NP

Possible scenarios:
(1) $P=N P$. Then $P=N P=$ co-NP.
(2) NP $=$ co-NP and $P \neq N P$ (and hence also $P \neq$ co-NP).
(3) NP \neq co-NP. Then $P \neq N P$ and also $P \neq$ co-NP.

Most people believe that the last scenario is the likely one.

Question: Suppose $P \neq N P$. Is every problem that is in NP $\backslash P$ is also NP-Complete?

Theorem (Ladner)

If $\mathrm{P} \neq \mathrm{NP}$ then there is a problem/language $\mathbf{X} \in \mathrm{NP} \backslash \mathrm{P}$ such that X is not NP-Complete.

Karp vs Turing Reduction and NP vs co-NP

Question: Why restrict to Karp reductions for NP-Completeness?
Lemma
If $\mathbf{X} \in$ co-NP and \mathbf{Y} is NP-Complete then $\mathbf{X} \leq_{\mathbf{P}} \mathbf{Y}$ under Turing reduction.

Thus, Turing reductions cannot distinguish NP and co-NP.

Back to Decision versus Search

(1) Recall, decision problems are those with yes/no answers, while search problems require an explicit solution for a yes instance

Example

(1) Satisfiability
(1) Decision: Is the formula φ satisfiable?
(2) Search: Find assignment that satisfies φ
(2) Graph coloring
(1) Decision: Is graph G 3-colorable?
(2) Search: Find a 3-coloring of the vertices of \mathbf{G}

Decision "reduces to" Search

(1) Efficient algorithm for search implies efficient algorithm for decision.
(2) If decision problem is difficult then search problem is also difficult.
(3) Can an efficient algorithm for decision imply an efficient algorithm for search?
Yes, for all the problems we have seen. In fact for all NP-Complete Problems.

Self Reduction

Definition

A problem is said to be self reducible if the search problem reduces (by Turing reduction) in polynomial time to decision problem. In other words, there is an algorithm to solve the search problem that has polynomially many steps, where each step is either
(1) A conventional computational step, or
(2) a call to subroutine solving the decision problem.

Back to SAT

Proposition

SAT is self reducible.

In other words, there is a polynomial time algorithm to find the satisfying assignment if one can periodically check if some formula is satisfiable.

Search Algorithm for SAT

given a Decision Algorithm for SAT

Input: SAT formula φ with \mathbf{n} variables $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}$.
(1) set $x_{1}=0$ in φ and get new formula φ_{1}. check if φ_{1} is satisfiable using decision algorithm. if φ_{1} is satisfiable, recursively find assignment to $x_{2}, x_{3}, \ldots, x_{n}$ that satisfy φ_{1} and output $\mathbf{x}_{1}=\mathbf{0}$ along with the assignment to $\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$.
(2) if φ_{1} is not satisfiable then set $x_{1}=1$ in φ to get formula φ_{2}. if φ_{2} is satisfiable, recursively find assignment to $\mathbf{x}_{2}, x_{3}, \ldots, x_{n}$ that satisfy φ_{2} and output $\mathbf{x}_{1}=\mathbf{1}$ along with the assignment to x_{2}, \ldots, x_{n}.
(3) if φ_{1} and φ_{2} are both not satisfiable then φ is not satisfiable.

Algorithm runs in polynomial time if the decision algorithm for SAT runs in polynomial time. At most $\mathbf{2 n}$ calls to decision algorithm.

Self-Reduction for NP-Complete Problems

Theorem

Every NP-Complete problem/language \mathbf{L} is self-reducible.
Proof is not hard but requires understanding of proof of Cook-Levin theorem.

Note that proof is only for complete languages, not for all languages in NP. Otherwise Factoring would be in polynomial time and we would not rely on it for our current security protocols.

Easy and instructive to prove self-reducibility for specific NP-Complete problems such as Independent Set, Vertex Cover, Hamiltonian Cycle, etc.
See discussion section problems.

Notes

Notes

Notes

Notes

[^0]: Theorem (Ladner)
 If $\mathrm{P} \neq \mathrm{NP}$ then there is a problem/language $\mathrm{X} \in \mathrm{NP} \backslash \mathrm{P}$ such that

