
CS 473: Fundamental Algorithms, Spring 2013

co-NP, Self-Reductions
Lecture 24
April 24, 2013

Sariel, Alexandra (UIUC) CS473 1 Spring 2013 1 / 42

Part I

Complementation and Self-Reduction

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2 / 42

The class P
1 A language L (equivalently decision problem) is in the class P if

there is a polynomial time algorithm A for deciding L; that is
given a string x, A correctly decides if x ∈ L and running time
of A on x is polynomial in |x|, the length of x.

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3 / 42

The class NP

Two equivalent definitions:

1 Language L is in NP if there is a non-deterministic polynomial
time algorithm A (Turing Machine) that decides L.

1 For x ∈ L, A has some non-deterministic choice of moves that
will make A accept x

2 For x 6∈ L, no choice of moves will make A accept x

2 L has an efficient certifier C(·, ·).
1 C is a polynomial time deterministic algorithm
2 For x ∈ L there is a string y (proof) of length polynomial in |x|

such that C(x, y) accepts
3 For x 6∈ L, no string y will make C(x, y) accept

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 / 42

Complementation

Definition

Given a decision problem X, its complement X is the collection of
all instances s such that s 6∈ L(X)

Equivalently, in terms of languages:

Definition

Given a language L over alphabet Σ, its complement L is the
language Σ∗ \ L.

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 42

Examples
1 PRIME = {n | n is an integer and n is prime}

PRIME =
{

n
∣∣∣ n is an integer and n is not a prime

}
PRIME = COMPOSITE.

2 SAT =
{
ϕ
∣∣∣ϕ is a CNF formula and ϕ is satisfiable

}
SAT =

{
ϕ
∣∣∣ϕ is a CNF formula and ϕ is not satisfiable

}
.

SAT = UnSAT.

Technicality: SAT also includes strings that do not encode any valid
CNF formula. Typically we ignore those strings because they are not
interesting. In all problems of interest, we assume that it is “easy” to
check whether a given string is a valid instance or not.

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 / 42

P is closed under complementation

Proposition

Decision problem X is in P if and only if X is in P.

Proof.
1 If X is in P let A be a polynomial time algorithm for X.

2 Construct polynomial time algorithm A′ for X as follows: given
input x, A′ runs A on x and if A accepts x, A′ rejects x and if
A rejects x then A′ accepts x.

3 Only if direction is essentially the same argument.

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 42

Asymmetry of NP

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Observation
To show that a problem is in NP we only need short, efficiently
checkable certificates for “yes”-instances. What about
“no”-instances?

Given a CNF formula ϕ, is ϕ unsatisfiable?

Easy to give a proof that ϕ is satisfiable (an assignment) but no easy
(known) proof to show that ϕ is unsatisfiable!

Sariel, Alexandra (UIUC) CS473 8 Spring 2013 8 / 42

Examples of complement problems

Some languages

1 UnSAT: CNF formulas ϕ that are not satisfiable

2 No-Hamilton-Cycle: graphs G that do not have a Hamilton
cycle

3 No-3-Color: graphs G that are not 3-colorable

Above problems are complements of known NP problems (viewed as
languages).

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 42

NP and co-NP

NP
Decision problems with a polynomial certifier.
Examples: SAT, Hamiltonian Cycle, 3-Colorability.

Definition

co-NP is the class of all decision problems X such that X ∈ NP.
Examples: UnSAT, No-Hamiltonian-Cycle, No-3-Colorable.

Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 42

co-NP

If L is a language in co-NP then that there is a polynomial time
certifier/verifier C(·, ·), such that:

1 for s 6∈ L there is a proof t of size polynomial in |s| such that
C(s, t) correctly says NO.

2 for s ∈ L there is no proof t for which C(s, t) will say NO

co-NP has checkable proofs for strings NOT in the language.

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 42

Natural Problems in co-NP
1 Tautology: given a Boolean formula (not necessarily in CNF

form), is it true for all possible assignments to the variables?

2 Graph expansion: given a graph G, is it an expander? A graph
G = (V, E) is an expander if and only if for each S ⊂ V with
|S| ≤ |V|/2, |N(S)| ≥ |S|. Expanders are very important
graphs in theoretical computer science and mathematics.

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 / 42

Factorization, Primality

Problem: Primality

Instance: An integer n.
Question: Is the number n prime?

Problem: Factoring

Instance: Integers n, k.
Question: Does the number n has a factor ≤ k? For-
mally, is there `, such that 2 ≤ ` ≤ k, such that `
divides n?

1 Primality is in P.

2 Factoring is in NP ∩ co-NP.

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 / 42

Factoring is a very naughty problem

Problem: Factoring

Instance: Integers n, k.
Question: Does the number n has a factor ≤ k? For-
mally, is there `, such that 2 ≤ ` ≤ k, such that `
divides n?

If answer is:
1 NO: certificate is all prime factors of n. Certification: multiply

the given numbers.

2 YES: Certificate is the factor `. Verify it divides n.

Belief: Unlikely Factoring is NP-Complete. Can be solved in
polynomial time on a quantum computer.

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 42

P, NP, co-NP

co-P: complement of P. Language X is in co-P iff X ∈ P

Proposition
P = co-P.

Proposition
P ⊆ NP ∩ co-NP.

Saw that P ⊆ NP. Same proof shows P ⊆ co-NP.

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 42

P, NP, and co-NP

P

NP co-NP

NP ∩ co-NP

Open Problems:
1 Does NP = co-NP?

Consensus opinion: No.

2 Is P = NP ∩ co-NP?
No real consensus.

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 42

P, NP, and co-NP

Proposition
If P = NP then NP = co-NP.

Proof.
P = co-P
If P = NP then co-NP = co-P = P.

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 42

P, NP, and co-NP
Which means that...

Corollary
If NP 6= co-NP then P 6= NP.

Importance of corollary: try to prove P 6= NP by proving that
NP 6= co-NP.

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 42

NP ∩ co-NP

Complexity Class NP ∩ co-NP
Problems in this class have

1 Efficient certifiers for yes-instances

2 Efficient disqualifiers for no-instances

Problems have a good characterization property, since for both yes
and no instances we have short efficiently checkable proofs.

Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 42

NP ∩ co-NP: Example

Example

Bipartite Matching: Given bipartite graph G = (U ∪ V, E), does
G have a perfect matching?
Bipartite Matching ∈ NP ∩ co-NP

1 If G is a yes-instance, then proof is just the perfect matching.

2 If G is a no-instance, then by Hall’s Theorem, there is a subset
of vertices A ⊆ U such that |N(A)| < |A|.

Example (More interesting...)

Factoring ∈ NP ∩ co-NP, and we do not know if it is in P!

Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20 / 42

Good Characterization
?
= Efficient Solution

1 Bipartite Matching has a polynomial time algorithm

2 Do all problems in NP ∩ co-NP have polynomial time
algorithms? That is, is P = NP ∩ co-NP?
Problems in NP ∩ co-NP have been proved to be in P many
years later

1 Linear programming (Khachiyan 1979)
1 Duality easily shows that it is in NP ∩ co-NP

2 Primality Testing (Agarwal-Kayal-Saxena 2002)
1 Easy to see that PRIME is in co-NP (why?)
2 PRIME is in NP - not easy to show! (Vaughan Pratt 1975)

Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 / 42

P
?
= NP ∩ co-NP (contd)

1 Some problems in NP ∩ co-NP still cannot be proved to have
polynomial time algorithms

1 Parity Games.
2 Other more specialized problems.

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 / 42

co-NP Completeness

Definition
A problem X is said to be co-NP-Complete (co-NPC) if

1 X ∈ co-NP

2 (Hardness) For any Y ∈ co-NP, Y ≤P X

co-NP-Complete problems are the hardest problems in co-NP.

Lemma

X is co-NPC if and only if X is NP-Complete.

Proof left as an exercise.

Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 / 42

P, NP and co-NP

Possible scenarios:

1 P = NP. Then P = NP = co-NP.

2 NP = co-NP and P 6= NP (and hence also P 6= co-NP).

3 NP 6= co-NP. Then P 6= NP and also P 6= co-NP.

Most people believe that the last scenario is the likely one.

Question: Suppose P 6= NP. Is every problem that is in NP \ P is
also NP-Complete?

Theorem (Ladner)

If P 6= NP then there is a problem/language X ∈ NP \ P such that
X is not NP-Complete.

Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 42

Karp vs Turing Reduction and NP vs co-NP

Question: Why restrict to Karp reductions for NP-Completeness?

Lemma
If X ∈ co-NP and Y is NP-Complete then X ≤P Y under Turing
reduction.

Thus, Turing reductions cannot distinguish NP and co-NP.

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 42

Back to Decision versus Search
1 Recall, decision problems are those with yes/no answers, while

search problems require an explicit solution for a yes instance

Example
1 Satisfiability

1 Decision: Is the formula ϕ satisfiable?
2 Search: Find assignment that satisfies ϕ

2 Graph coloring
1 Decision: Is graph G 3-colorable?
2 Search: Find a 3-coloring of the vertices of G

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 42

Decision “reduces to” Search
1 Efficient algorithm for search implies efficient algorithm for

decision.

2 If decision problem is difficult then search problem is also
difficult.

3 Can an efficient algorithm for decision imply an efficient
algorithm for search?
Yes, for all the problems we have seen. In fact for all
NP-Complete Problems.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Self Reduction

Definition
A problem is said to be self reducible if the search problem reduces
(by Turing reduction) in polynomial time to decision problem. In
other words, there is an algorithm to solve the search problem that
has polynomially many steps, where each step is either

1 A conventional computational step, or

2 a call to subroutine solving the decision problem.

Sariel, Alexandra (UIUC) CS473 28 Spring 2013 28 / 42

Back to SAT

Proposition
SAT is self reducible.

In other words, there is a polynomial time algorithm to find the
satisfying assignment if one can periodically check if some formula is
satisfiable.

Sariel, Alexandra (UIUC) CS473 29 Spring 2013 29 / 42

Search Algorithm for SAT
given a Decision Algorithm for SAT

Input: SAT formula ϕ with n variables x1, x2, . . . , xn.

1 set x1 = 0 in ϕ and get new formula ϕ1. check if ϕ1 is
satisfiable using decision algorithm. if ϕ1 is satisfiable,
recursively find assignment to x2, x3, . . . , xn that satisfy ϕ1 and
output x1 = 0 along with the assignment to x2, . . . , xn.

2 if ϕ1 is not satisfiable then set x1 = 1 in ϕ to get formula ϕ2.
if ϕ2 is satisfiable , recursively find assignment to x2, x3, . . . , xn

that satisfy ϕ2 and output x1 = 1 along with the assignment to
x2, . . . , xn.

3 if ϕ1 and ϕ2 are both not satisfiable then ϕ is not satisfiable.

Algorithm runs in polynomial time if the decision algorithm for SAT
runs in polynomial time. At most 2n calls to decision algorithm.

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 / 42

Self-Reduction for NP-Complete Problems

Theorem
Every NP-Complete problem/language L is self-reducible.

Proof is not hard but requires understanding of proof of Cook-Levin
theorem.

Note that proof is only for complete languages, not for all languages
in NP. Otherwise Factoring would be in polynomial time and we
would not rely on it for our current security protocols.

Easy and instructive to prove self-reducibility for specific
NP-Complete problems such as Independent Set, Vertex Cover,
Hamiltonian Cycle, etc.
See discussion section problems.

Sariel, Alexandra (UIUC) CS473 31 Spring 2013 31 / 42

	coNP, Self-Reductions
	Complementation and Self-Reduction
	Complementation
	Recap
	Motivation
	co-NPDefinition
	Relationship between P, NP and co-NP
	P, NP, and co-NP

	Self Reduction
	Introduction
	Self Reduction
	SAT is Self Reducible
	Search Algorithm for SAT

