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Part I

Complementation and Self-Reduction
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The class P
1 A language L (equivalently decision problem) is in the class P if

there is a polynomial time algorithm A for deciding L; that is
given a string x, A correctly decides if x ∈ L and running time
of A on x is polynomial in |x|, the length of x.
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The class NP

Two equivalent definitions:

1 Language L is in NP if there is a non-deterministic polynomial
time algorithm A (Turing Machine) that decides L.

1 For x ∈ L, A has some non-deterministic choice of moves that
will make A accept x

2 For x 6∈ L, no choice of moves will make A accept x

2 L has an efficient certifier C(·, ·).
1 C is a polynomial time deterministic algorithm
2 For x ∈ L there is a string y (proof) of length polynomial in |x|

such that C(x, y) accepts
3 For x 6∈ L, no string y will make C(x, y) accept
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Complementation

Definition

Given a decision problem X, its complement X is the collection of
all instances s such that s 6∈ L(X)

Equivalently, in terms of languages:

Definition

Given a language L over alphabet Σ, its complement L is the
language Σ∗ \ L.
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Examples
1 PRIME = {n | n is an integer and n is prime}

PRIME =
{

n
∣∣∣ n is an integer and n is not a prime

}
PRIME = COMPOSITE.

2 SAT =
{
ϕ
∣∣∣ϕ is a CNF formula and ϕ is satisfiable

}
SAT =

{
ϕ
∣∣∣ϕ is a CNF formula and ϕ is not satisfiable

}
.

SAT = UnSAT.

Technicality: SAT also includes strings that do not encode any valid
CNF formula. Typically we ignore those strings because they are not
interesting. In all problems of interest, we assume that it is “easy” to
check whether a given string is a valid instance or not.
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P is closed under complementation

Proposition

Decision problem X is in P if and only if X is in P.

Proof.
1 If X is in P let A be a polynomial time algorithm for X.

2 Construct polynomial time algorithm A′ for X as follows: given
input x, A′ runs A on x and if A accepts x, A′ rejects x and if
A rejects x then A′ accepts x.

3 Only if direction is essentially the same argument.
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Asymmetry of NP

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Observation
To show that a problem is in NP we only need short, efficiently
checkable certificates for “yes”-instances. What about
“no”-instances?

Given a CNF formula ϕ, is ϕ unsatisfiable?

Easy to give a proof that ϕ is satisfiable (an assignment) but no easy
(known) proof to show that ϕ is unsatisfiable!
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Examples of complement problems

Some languages

1 UnSAT: CNF formulas ϕ that are not satisfiable

2 No-Hamilton-Cycle: graphs G that do not have a Hamilton
cycle

3 No-3-Color: graphs G that are not 3-colorable

Above problems are complements of known NP problems (viewed as
languages).
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NP and co-NP

NP
Decision problems with a polynomial certifier.
Examples: SAT, Hamiltonian Cycle, 3-Colorability.

Definition

co-NP is the class of all decision problems X such that X ∈ NP.
Examples: UnSAT, No-Hamiltonian-Cycle, No-3-Colorable.
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co-NP

If L is a language in co-NP then that there is a polynomial time
certifier/verifier C(·, ·), such that:

1 for s 6∈ L there is a proof t of size polynomial in |s| such that
C(s, t) correctly says NO.

2 for s ∈ L there is no proof t for which C(s, t) will say NO

co-NP has checkable proofs for strings NOT in the language.
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Natural Problems in co-NP
1 Tautology: given a Boolean formula (not necessarily in CNF

form), is it true for all possible assignments to the variables?

2 Graph expansion: given a graph G, is it an expander? A graph
G = (V, E) is an expander if and only if for each S ⊂ V with
|S| ≤ |V|/2, |N(S)| ≥ |S|. Expanders are very important
graphs in theoretical computer science and mathematics.
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Factorization, Primality

Problem: Primality

Instance: An integer n.
Question: Is the number n prime?

Problem: Factoring

Instance: Integers n, k.
Question: Does the number n has a factor ≤ k? For-
mally, is there `, such that 2 ≤ ` ≤ k, such that `
divides n?

1 Primality is in P.

2 Factoring is in NP ∩ co-NP.
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Factoring is a very naughty problem

Problem: Factoring

Instance: Integers n, k.
Question: Does the number n has a factor ≤ k? For-
mally, is there `, such that 2 ≤ ` ≤ k, such that `
divides n?

If answer is:
1 NO: certificate is all prime factors of n. Certification: multiply

the given numbers.

2 YES: Certificate is the factor `. Verify it divides n.

Belief: Unlikely Factoring is NP-Complete. Can be solved in
polynomial time on a quantum computer.
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P, NP, co-NP

co-P: complement of P. Language X is in co-P iff X ∈ P

Proposition
P = co-P.

Proposition
P ⊆ NP ∩ co-NP.

Saw that P ⊆ NP. Same proof shows P ⊆ co-NP.
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P, NP, and co-NP

P

NP co-NP

NP ∩ co-NP

Open Problems:
1 Does NP = co-NP?

Consensus opinion: No.

2 Is P = NP ∩ co-NP?
No real consensus.
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P, NP, and co-NP

Proposition
If P = NP then NP = co-NP.

Proof.
P = co-P
If P = NP then co-NP = co-P = P.
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P, NP, and co-NP
Which means that...

Corollary
If NP 6= co-NP then P 6= NP.

Importance of corollary: try to prove P 6= NP by proving that
NP 6= co-NP.
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NP ∩ co-NP

Complexity Class NP ∩ co-NP
Problems in this class have

1 Efficient certifiers for yes-instances

2 Efficient disqualifiers for no-instances

Problems have a good characterization property, since for both yes
and no instances we have short efficiently checkable proofs.
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NP ∩ co-NP: Example

Example

Bipartite Matching: Given bipartite graph G = (U ∪ V, E), does
G have a perfect matching?
Bipartite Matching ∈ NP ∩ co-NP

1 If G is a yes-instance, then proof is just the perfect matching.

2 If G is a no-instance, then by Hall’s Theorem, there is a subset
of vertices A ⊆ U such that |N(A)| < |A|.

Example (More interesting...)

Factoring ∈ NP ∩ co-NP, and we do not know if it is in P!
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Good Characterization
?
= Efficient Solution

1 Bipartite Matching has a polynomial time algorithm

2 Do all problems in NP ∩ co-NP have polynomial time
algorithms? That is, is P = NP ∩ co-NP?
Problems in NP ∩ co-NP have been proved to be in P many
years later

1 Linear programming (Khachiyan 1979)
1 Duality easily shows that it is in NP ∩ co-NP

2 Primality Testing (Agarwal-Kayal-Saxena 2002)
1 Easy to see that PRIME is in co-NP (why?)
2 PRIME is in NP - not easy to show! (Vaughan Pratt 1975)
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P
?
= NP ∩ co-NP (contd)

1 Some problems in NP ∩ co-NP still cannot be proved to have
polynomial time algorithms

1 Parity Games.
2 Other more specialized problems.

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 / 42

co-NP Completeness

Definition
A problem X is said to be co-NP-Complete (co-NPC) if

1 X ∈ co-NP

2 (Hardness) For any Y ∈ co-NP, Y ≤P X

co-NP-Complete problems are the hardest problems in co-NP.

Lemma

X is co-NPC if and only if X is NP-Complete.

Proof left as an exercise.
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P, NP and co-NP

Possible scenarios:

1 P = NP. Then P = NP = co-NP.

2 NP = co-NP and P 6= NP (and hence also P 6= co-NP).

3 NP 6= co-NP. Then P 6= NP and also P 6= co-NP.

Most people believe that the last scenario is the likely one.

Question: Suppose P 6= NP. Is every problem that is in NP \ P is
also NP-Complete?

Theorem (Ladner)

If P 6= NP then there is a problem/language X ∈ NP \ P such that
X is not NP-Complete.
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Karp vs Turing Reduction and NP vs co-NP

Question: Why restrict to Karp reductions for NP-Completeness?

Lemma
If X ∈ co-NP and Y is NP-Complete then X ≤P Y under Turing
reduction.

Thus, Turing reductions cannot distinguish NP and co-NP.
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Back to Decision versus Search
1 Recall, decision problems are those with yes/no answers, while

search problems require an explicit solution for a yes instance

Example
1 Satisfiability

1 Decision: Is the formula ϕ satisfiable?
2 Search: Find assignment that satisfies ϕ

2 Graph coloring
1 Decision: Is graph G 3-colorable?
2 Search: Find a 3-coloring of the vertices of G
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Decision “reduces to” Search
1 Efficient algorithm for search implies efficient algorithm for

decision.

2 If decision problem is difficult then search problem is also
difficult.

3 Can an efficient algorithm for decision imply an efficient
algorithm for search?
Yes, for all the problems we have seen. In fact for all
NP-Complete Problems.
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Self Reduction

Definition
A problem is said to be self reducible if the search problem reduces
(by Turing reduction) in polynomial time to decision problem. In
other words, there is an algorithm to solve the search problem that
has polynomially many steps, where each step is either

1 A conventional computational step, or

2 a call to subroutine solving the decision problem.
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Back to SAT

Proposition
SAT is self reducible.

In other words, there is a polynomial time algorithm to find the
satisfying assignment if one can periodically check if some formula is
satisfiable.
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Search Algorithm for SAT
given a Decision Algorithm for SAT

Input: SAT formula ϕ with n variables x1, x2, . . . , xn.

1 set x1 = 0 in ϕ and get new formula ϕ1. check if ϕ1 is
satisfiable using decision algorithm. if ϕ1 is satisfiable,
recursively find assignment to x2, x3, . . . , xn that satisfy ϕ1 and
output x1 = 0 along with the assignment to x2, . . . , xn.

2 if ϕ1 is not satisfiable then set x1 = 1 in ϕ to get formula ϕ2.
if ϕ2 is satisfiable , recursively find assignment to x2, x3, . . . , xn

that satisfy ϕ2 and output x1 = 1 along with the assignment to
x2, . . . , xn.

3 if ϕ1 and ϕ2 are both not satisfiable then ϕ is not satisfiable.

Algorithm runs in polynomial time if the decision algorithm for SAT
runs in polynomial time. At most 2n calls to decision algorithm.
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Self-Reduction for NP-Complete Problems

Theorem
Every NP-Complete problem/language L is self-reducible.

Proof is not hard but requires understanding of proof of Cook-Levin
theorem.

Note that proof is only for complete languages, not for all languages
in NP. Otherwise Factoring would be in polynomial time and we
would not rely on it for our current security protocols.

Easy and instructive to prove self-reducibility for specific
NP-Complete problems such as Independent Set, Vertex Cover,
Hamiltonian Cycle, etc.
See discussion section problems.
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