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Recap

NP: languages that have polynomial time certifiers/verifiers

A language L is NP-Complete iff

L is in NP

for every L′ in NP, L′ ≤P L

L is NP-Hard if for every L′ in NP, L′ ≤P L.

.
Theorem (Cook-Levin)
..
......Circuit-SAT and SAT are NP-Complete.
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Recap contd

.
Theorem (Cook-Levin)
..
......Circuit-SAT and SAT are NP-Complete.

Establish NP-Completeness via reductions:

SAT ≤P 3-SAT and hence 3-SAT is NP-complete

3-SAT ≤P Independent Set (which is in NP) and hence
Independent Set is NP-Complete

Vertex Cover is NP-Complete

Clique is NP-Complete

Set Cover is NP-Complete
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Today

Prove

Hamiltonian Cycle Problem is NP-Complete

3-Coloring is NP-Complete
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Part I
.

......

NP-Completeness of Hamiltonian
Cycle
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Directed Hamiltonian Cycle

Input Given a directed graph G = (V,E) with n vertices

Goal Does G have a Hamiltonian cycle?

A Hamiltonian cycle is a cycle in the graph that
visits every vertex in G exactly once
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Directed Hamiltonian Cycle is NP-Complete

Directed Hamiltonian Cycle is in NP

Certificate: Sequence of vertices
Certifier: Check if every vertex (except the first) appears exactly
once, and that consecutive vertices are connected by a directed
edge

Hardness: We will show
3-SAT ≤P Directed Hamiltonian Cycle
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Reduction

Given 3-SAT formula φ create a graph Gφ such that

Gφ has a Hamiltonian cycle if and only if φ is satisfiable

Gφ should be constructible from φ by a polynomial time
algorithm A

Notation: φ has n variables x1, x2, . . . , xn and m clauses
C1,C2, . . . ,Cm.
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Reduction: First Ideas

Viewing SAT: Assign values to n variables, and each clauses has
3 ways in which it can be satisfied.

Construct graph with 2n Hamiltonian cycles, where each cycle
corresponds to some boolean assignment.

Then add more graph structure to encode constraints on
assignments imposed by the clauses.
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The Reduction: Phase I

Traverse path i from left to right iff xi is set to true

Each path has 3(m + 1) nodes where m is number of clauses in
φ; nodes numbered from left to right (1 to 3m + 3)

x2

x3

x1

x4

Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 48



The Reduction: Phase II

Add vertex cj for clause Cj. cj has edge from vertex 3j and to
vertex 3j + 1 on path i if xi appears in clause Cj, and has edge
from vertex 3j + 1 and to vertex 3j if ¬xi appears in Cj.

x2

x3

¬x1 ∨ ¬x2 ∨ ¬x3

x1

x1 ∨ ¬x2 ∨ x4

x4
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Correctness Proof

.
Proposition
..
......φ has a satisfying assignment iff Gφ has a Hamiltonian cycle.

.
Proof.
..

......

⇒ Let a be the satisfying assignment for φ. Define Hamiltonian
cycle as follows

If a(xi) = 1 then traverse path i from left to right
If a(xi) = 0 then traverse path i from right to left
For each clause, path of at least one variable is in the “right”
direction to splice in the node corresponding to clause
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Hamiltonian Cycle ⇒ Satisfying assignment

Suppose Π is a Hamiltonian cycle in Gφ

If Π enters cj (vertex for clause Cj) from vertex 3j on path i
then it must leave the clause vertex on edge to 3j + 1 on the
same path i

If not, then only unvisited neighbor of 3j + 1 on path i is 3j + 2
Thus, we don’t have two unvisited neighbors (one to enter
from, and the other to leave) to have a Hamiltonian Cycle

Similarly, if Π enters cj from vertex 3j + 1 on path i then it
must leave the clause vertex cj on edge to 3j on path i
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Example

x2

x3

x1

x4
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Hamiltonian Cycle =⇒ Satisfying assignment

(contd)

Thus, vertices visited immediately before and after Ci are
connected by an edge

We can remove cj from cycle, and get Hamiltonian cycle in
G − cj

Consider Hamiltonian cycle in G − {c1, . . . cm}; it traverses
each path in only one direction, which determines the truth
assignment
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Hamiltonian Cycle

.
Problem
..

......

Input Given undirected graph G = (V,E)

Goal Does G have a Hamiltonian cycle? That is, is there a
cycle that visits every vertex exactly one (except start
and end vertex)?
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NP-Completeness

.
Theorem
..

......

Hamiltonian cycle problem for undirected graphs is
NP-Complete.

.
Proof.
..

......

The problem is in NP; proof left as exercise.

Hardness proved by reducing Directed Hamiltonian Cycle to this
problem
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G′

such that G has Hamiltonian Path iff G′ has Hamiltonian path
.
Reduction
..

......

Replace each vertex v by 3 vertices: vin, v, and vout

A directed edge (a, b) is replaced by edge (aout, bin)

..b

.v

.a

.d

.c

..bo

.vi

.ao
.v .vo

.di

.ci
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Reduction: Wrapup

The reduction is polynomial time (exercise)

The reduction is correct (exercise)
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Part II
.

......

NP-Completeness of Graph
Coloring
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Graph Coloring

Problem: Graph Coloring

Instance: G = (V,E): Undirected graph, integer k.
Question: Can the vertices of the graph be colored
using k colors so that vertices connected by an edge do
not get the same color?
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V,E): Undirected graph.
Question: Can the vertices of the graph be colored
using 3 colors so that vertices connected by an edge do
not get the same color?

.
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V,E): Undirected graph.
Question: Can the vertices of the graph be colored
using 3 colors so that vertices connected by an edge do
not get the same color?

.
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Graph Coloring

Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G can be
partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to
check if G is bipartite using BFS (we saw this earlier).
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Graph Coloring and Register Allocation

.
Register Allocation
..

......

Assign variables to (at most) k registers such that variables needed at
the same time are not assigned to the same register

.
Interference Graph
..

......
Vertices are variables, and there is an edge between two vertices, if
the two variables are “live” at the same time.

.
Observations
..

......

[Chaitin] Register allocation problem is equivalent to coloring the
interference graph with k colors

Moreover, 3-COLOR ≤P k-Register Allocation, for any
k ≥ 3
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Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

a node vi for each class i

an edge between vi and vj if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient
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Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple
Access (FDMA) (example: GSM in Europe and Asia and AT&T in
USA)

Breakup a frequency range [a, b] into disjoint bands of
frequencies [a0, b0], [a1, b1], . . . , [ak, bk]

Each cell phone tower (simplifying) gets one band

Constraint: nearby towers cannot be assigned same band,
otherwise signals will interference

Problem: given k bands and some region with n towers, is there a
way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on
towers.
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3-Coloring is NP-Complete

3-Coloring is in NP.

Certificate: for each node a color from {1, 2, 3}.
Certifier: Check if for each edge (u, v), the color of u is
different from that of v.

Hardness: We will show 3-SAT ≤P 3-Coloring.
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Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with n variables
x1, . . . , xn and m clauses C1, . . . ,Cm. Create graph Gφ such that
Gφ is 3-colorable iff φ is satisfiable

need to establish truth assignment for x1, . . . , xn via colors for
some nodes in Gφ.

create triangle with node True, False, Base

for each variable xi two nodes vi and v̄i connected in a triangle
with common Base

If graph is 3-colored, either vi or v̄i gets the same color as True.
Interpret this as a truth assignment to vi

Need to add constraints to ensure clauses are satisfied (next
phase)
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Figure

v1

v1

v2

v2

vn

vn

T F

Base
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Clause Satisfiability Gadget

For each clause Cj = (a ∨ b ∨ c), create a small gadget graph

gadget graph connects to nodes corresponding to a, b, c

needs to implement OR

OR-gadget-graph:

a

b

c

a ∨ b

a ∨ b ∨ c
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OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output node
of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be
3-colored such that output node of OR-gadget is colored True.
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Reduction

create triangle with nodes True, False, Base

for each variable xi two nodes vi and v̄i connected in a triangle
with common Base

for each clause Cj = (a ∨ b ∨ c), add OR-gadget graph with
input nodes a, b, c and connect output node of gadget to both
False and Base

a

b

c

a ∨ b

a ∨ b ∨ c

T

F

Base
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Reduction

a

b

c

a ∨ b

a ∨ b ∨ c

T

F

Base

.
Claim
..

......

No legal 3-coloring of above graph (with coloring of nodes T, F,B
fixed) in which a, b, c are colored False. If any of a, b, c are colored
True then there is a legal 3-coloring of above graph.
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3 coloring of the clause gadget
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Reduction Outline

.
Example
..

......

φ = (u ∨ ¬v ∨ w) ∧ (v ∨ x ∨ ¬y)

v

u

~w

y

x

w

~y

~x

~v

~u

FT

N

Literals get colour T or F
colours

have complementary
Variable and negation

OR−gates

Palette
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Correctness of Reduction

φ is satisfiable implies Gφ is 3-colorable

if xi is assigned True, color vi True and v̄i False

for each clause Cj = (a ∨ b ∨ c) at least one of a, b, c is
colored True. OR-gadget for Cj can be 3-colored such that
output is True.

Gφ is 3-colorable implies φ is satisfiable

if vi is colored True then set xi to be True, this is a legal truth
assignment

consider any clause Cj = (a ∨ b ∨ c). it cannot be that all
a, b, c are False. If so, output of OR-gadget for Cj has to be
colored False but output is connected to Base and False!
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consider any clause Cj = (a ∨ b ∨ c). it cannot be that all
a, b, c are False. If so, output of OR-gadget for Cj has to be
colored False but output is connected to Base and False!
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Graph generated in reduction...
... from 3SAT to 3COLOR

d

X

ca b

T

a b c d

F
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Part III
.

......
Hardness of Subset Sum
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Subset Sum

Problem: Subset Sum

Instance: S - set of positive integers,t: - an integer
number (Target)
Question: Is there a subset X ⊆ S such that

∑
x∈X x =

t?

.
Claim
..
......Subset Sum is NP-Complete.
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Vec Subset Sum

We will prove following problem is NP-Complete...

Problem: Vec Subset Sum

Instance: S - set of n vectors of dimension k, each
vector has non-negative numbers for its coordinates, and
a target vector

−→
t .

Question: Is there a subset X ⊆ S such that∑
−→x ∈X

−→x =
−→
t ?

Reduction from 3SAT.
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Vec Subset Sum
Handling a single clause

Think about vectors as being lines in a table.
.
First gadget
..
......Selecting between two lines.

Target ?? ?? 01 ???

a1 ?? ?? 01 ??
a2 ?? ?? 01 ??

Two rows for every variable x: selecting either x = 0 or x = 1.
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Handling a clause...

We will have a column for every clause...
numbers ... C ≡ a ∨ b ∨ c ...

a ... 01 ...
a ... 00 ...
b ... 01 ...

b ... 00 ...
c ... 00 ...
c ... 01 ...

C fix-up 1 000 07 000
C fix-up 2 000 08 000
C fix-up 3 000 09 000

TARGET 10
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3SAT to Vec Subset Sum

numbers a ∨ a b ∨ b c ∨ c d ∨ d D ≡ b ∨ c ∨ d C ≡ a ∨ b ∨ c

a 1 0 0 0 00 01
a 1 0 0 0 00 00
b 0 1 0 0 00 01

b 0 1 0 0 01 00
c 0 0 1 0 01 00
c 0 0 1 0 00 01
d 0 0 0 1 00 00

d 0 0 0 1 01 01
C fix-up 1 0 0 0 0 00 07
C fix-up 2 0 0 0 0 00 08
C fix-up 3 0 0 0 0 00 09
D fix-up 1 0 0 0 0 07 00
D fix-up 2 0 0 0 0 08 00
D fix-up 3 0 0 0 0 09 00

TARGET 1 1 1 1 10 10
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Vec Subset Sum to Subset Sum

numbers

010000000001
010000000000
000100000001
000100000100
000001000100
000001000001
000000010000
000000010101
000000000007
000000000008
000000000009
000000000700
000000000800
000000000900

010101011010
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Other NP-Complete Problems

3-Dimensional Matching

Subset Sum

Read book.

Sariel, Alexandra (UIUC) CS473 45 Spring 2013 45 / 48



Need to Know NP-Complete Problems

3-SAT

Circuit-SAT

Independent Set

Vertex Cover

Clique

Set Cover

Hamiltonian Cycle in Directed/Undirected Graphs

3-Coloring

3-D Matching

Subset Sum
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Subset Sum and Knapsack

Subset Sum Problem: Given n integers a1, a2, . . . , an and a target
B, is there a subset of S of {a1, . . . , an} such that the numbers in S
add up precisely to B?

Subset Sum is NP-Complete— see book.

Knapsack: Given n items with item i having size si and profit pi, a
knapsack of capacity B, and a target profit P, is there a subset S of
items that can be packed in the knapsack and the profit of S is at
least P?

Show Knapsack problem is NP-Complete via reduction from Subset
Sum (exercise).
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Subset Sum and Knapsack

Subset Sum can be solved in O(nB) time using dynamic
programming (exercise).

Implies that problem is hard only when numbers a1, a2, . . . , an are
exponentially large compared to n. That is, each ai requires
polynomial in n bits.

Number problems of the above type are said to be weakly
NPComplete.
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Notes
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