CS 473: Fundamental Algorithms, Spring 2013

More NP-Complete Problems

Lecture 23 April 19, 2013

NP: languages that have polynomial time certifiers/verifiers

A language L is NP-Complete iff

- L is in NP
- for every L' in NP, $L' \leq_P L$

L is NP-Hard if for every L' in NP, L' \leq_P L.

Theorem (Cook-Levin)

Recap

NP: languages that have polynomial time certifiers/verifiers

- A language L is NP-Complete iff
 - L is in NP
 - for every L' in NP, $L' \leq_P L$

L is NP-Hard if for every L' in NP, L' \leq_P L.

Theorem (Cook-Levin)

Recap

NP: languages that have polynomial time certifiers/verifiers

- A language L is NP-Complete iff
 - L is in NP
 - for every L' in NP, $L' \leq_P L$
- **L** is **NP-Hard** if for every **L'** in **NP**, $\mathbf{L'} \leq_{\mathbf{P}} \mathbf{L}$.

Theorem (Cook-Levin)

Recap

NP: languages that have polynomial time certifiers/verifiers

- A language L is NP-Complete iff
 - L is in NP
 - for every L' in NP, $L' \leq_P L$
- **L** is **NP-Hard** if for every **L'** in **NP**, $\mathbf{L'} \leq_{\mathbf{P}} \mathbf{L}$.

Theorem (Cook-Levin)

Recap contd

Theorem (Cook-Levin)

Circuit-SAT and SAT are NP-Complete.

Establish NP-Completeness via reductions:

- SAT \leq_{P} 3-SAT and hence 3-SAT is NP-complete
- 3-SAT ≤_P Independent Set (which is in NP) and hence Independent Set is NP-Complete
- Vertex Cover is NP-Complete
- Clique is NP-Complete
- Set Cover is NP-Complete

Today

Prove

- Hamiltonian Cycle Problem is NP-Complete
- 3-Coloring is NP-Complete

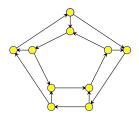
Part I

NP-Completeness of Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian cycle?

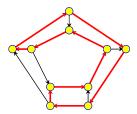
• A Hamiltonian cycle is a cycle in the graph that visits every vertex in **G** exactly once



Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every vertex in **G** exactly once



Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP
 - Certificate: Sequence of vertices
 - Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- Hardness: We will show
 3-SAT < Directed Hamiltonian Cycle

Reduction

Given 3-SAT formula φ create a graph \mathbf{G}_{φ} such that

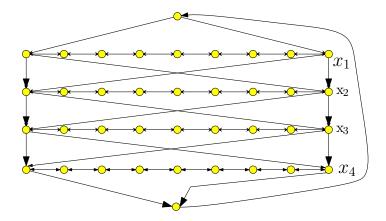
- \mathbf{G}_{arphi} has a Hamiltonian cycle if and only if arphi is satisfiable
- \mathbf{G}_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

Notation: φ has **n** variables x_1, x_2, \ldots, x_n and **m** clauses C_1, C_2, \ldots, C_m .

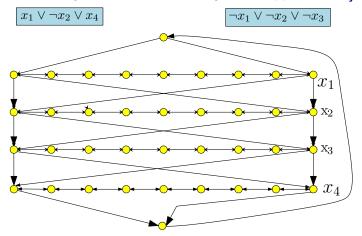
Reduction: First Ideas

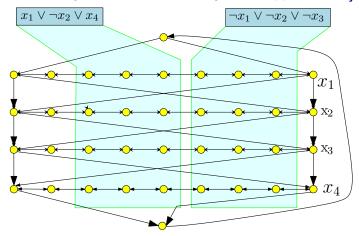
- Viewing SAT: Assign values to **n** variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with 2ⁿ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

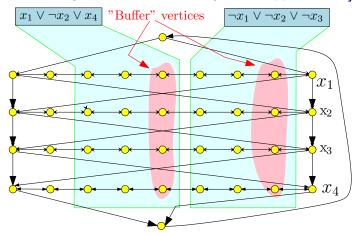
- Traverse path i from left to right iff x_i is set to true
- Each path has 3(m + 1) nodes where m is number of clauses in φ; nodes numbered from left to right (1 to 3m + 3)

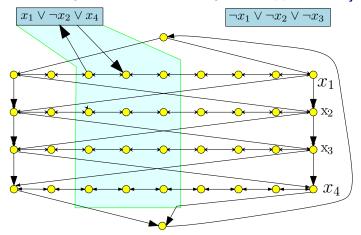


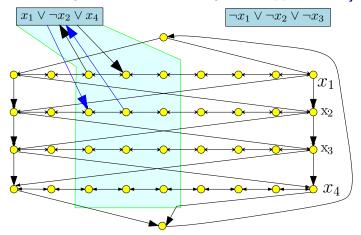
• Add vertex c_i for clause C_i. c_i has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_i , and has edge from vertex $3\mathbf{j} + 1$ and to vertex $3\mathbf{j}$ if $\neg \mathbf{x}_i$ appears in \mathbf{C}_i .

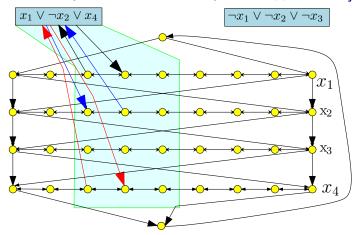


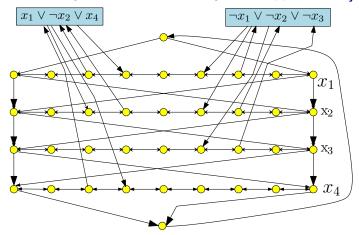












Correctness Proof

Proposition

 φ has a satisfying assignment iff G_{φ} has a Hamiltonian cycle.

Proof.

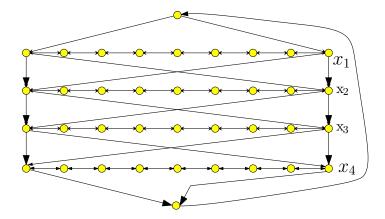
- \Rightarrow Let ${\bf a}$ be the satisfying assignment for $\varphi.$ Define Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path i from left to right
 - If $a(x_i) = 0$ then traverse path i from right to left
 - For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

Hamiltonian Cycle \Rightarrow Satisfying assignment

Suppose Π is a Hamiltonian cycle in \mathbf{G}_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j+1 on the same path i
 - If not, then only unvisited neighbor of 3j + 1 on path i is 3j + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_j from vertex 3j + 1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

Example



Hamiltonian Cycle \implies Satisfying assignment (contd)

- Thus, vertices visited immediately before and after C_i are connected by an edge
- $\bullet~$ We can remove \textbf{c}_{j} from cycle, and get Hamiltonian cycle in $\textbf{G}-\textbf{c}_{j}$
- Consider Hamiltonian cycle in $G-\{c_1,\ldots c_m\};$ it traverses each path in only one direction, which determines the truth assignment

Hamiltonian Cycle

Problem

Input Given undirected graph G = (V, E)

Goal Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem

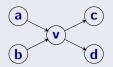
Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

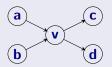
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- \bullet Replace each vertex v by 3 vertices: $v_{in}, v,$ and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})



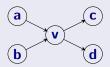
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- Replace each vertex **v** by 3 vertices: v_{in} , **v**, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})



Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- \bullet Replace each vertex v by 3 vertices: $v_{in}, v,$ and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})



Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- Replace each vertex **v** by 3 vertices: v_{in} , **v**, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})



Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

Part II

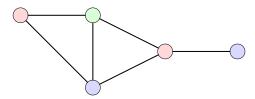
NP-Completeness of Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k. Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

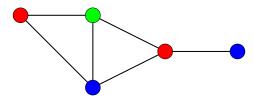
Problem: 3 Coloring

Instance: G = (V, E): Undirected graph. **Question:** Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?



Problem: 3 Coloring

Instance: G = (V, E): Undirected graph. **Question:** Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?



Observation: If **G** is colored with **k** colors then each color class (nodes of same color) form an independent set in **G**. Thus, **G** can be partitioned into **k** independent sets iff **G** is **k**-colorable.

Graph 2-Coloring can be decided in polynomial time.

Observation: If **G** is colored with **k** colors then each color class (nodes of same color) form an independent set in **G**. Thus, **G** can be partitioned into **k** independent sets iff **G** is **k**-colorable.

Graph 2-Coloring can be decided in polynomial time.

Observation: If **G** is colored with **k** colors then each color class (nodes of same color) form an independent set in **G**. Thus, **G** can be partitioned into **k** independent sets iff **G** is **k**-colorable.

Graph 2-Coloring can be decided in polynomial time.

Observation: If **G** is colored with **k** colors then each color class (nodes of same color) form an independent set in **G**. Thus, **G** can be partitioned into **k** independent sets iff **G** is **k**-colorable.

Graph 2-Coloring can be decided in polynomial time.

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) ${\bf k}$ registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with **k** colors
- Moreover, 3-COLOR \leq_P k-Register Allocation, for any $k\geq 3$

Class Room Scheduling

Given \mathbf{n} classes and their meeting times, are \mathbf{k} rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

- a node v_i for each class i
- \bullet an edge between v_i and v_j if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient

Class Room Scheduling

Given \mathbf{n} classes and their meeting times, are \mathbf{k} rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

- a node v_i for each class i
- \bullet an edge between v_i and v_j if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient

Class Room Scheduling

Given \mathbf{n} classes and their meeting times, are \mathbf{k} rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

- a node v_i for each class i
- \bullet an edge between v_i and v_j if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given **k** bands and some region with **n** towers, is there a way to assign the bands to avoid interference?

Can reduce to ${\bf k}\text{-coloring}$ by creating intereference/conflict graph on towers.

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given \mathbf{k} bands and some region with \mathbf{n} towers, is there a way to assign the bands to avoid interference?

Can reduce to ${\bf k}\mbox{-}{\rm coloring}$ by creating intereference/conflict graph on towers.

3-Coloring is NP-Complete

- 3-Coloring is in NP.
 - Certificate: for each node a color from {1, 2, 3}.
 - Certifier: Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: We will show 3-SAT \leq_P 3-Coloring.

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- \bullet for each variable x_i two nodes v_i and $\overline{v_i}$ connected in a triangle with common Base
- If graph is 3-colored, either v_i or v

 i gets the same color as True. Interpret this as a truth assignment to v_i
- Need to add constraints to ensure clauses are satisfied (next phase)

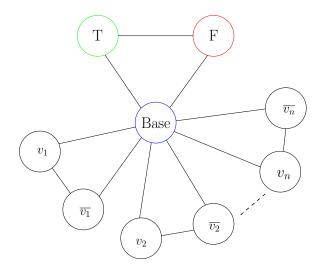
- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- \bullet for each variable x_i two nodes v_i and $\overline{v_i}$ connected in a triangle with common Base
- Need to add constraints to ensure clauses are satisfied (next phase)

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and $\bar{v_i}$ connected in a triangle with common Base
- If graph is 3-colored, either v_i or $\bar{v_i}$ gets the same color as True. Interpret this as a truth assignment to v_i
- Need to add constraints to ensure clauses are satisfied (next phase)

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and $\bar{v_i}$ connected in a triangle with common Base
- If graph is 3-colored, either v_i or v
 _i gets the same color as True. Interpret this as a truth assignment to v_i
- Need to add constraints to ensure clauses are satisfied (next phase)

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and $\bar{v_i}$ connected in a triangle with common Base
- If graph is 3-colored, either v_i or v
 _i gets the same color as True. Interpret this as a truth assignment to v_i
- Need to add constraints to ensure clauses are satisfied (next phase)

Figure

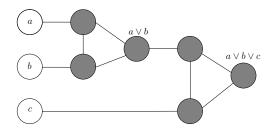


Clause Satisfiability Gadget

For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

OR-gadget-graph:



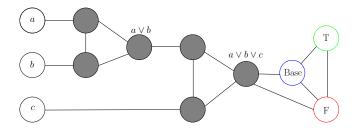
OR-Gadget Graph

Property: if **a**, **b**, **c** are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

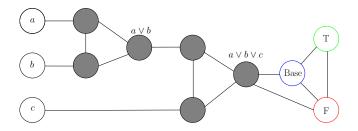
Property: if one of **a**, **b**, **c** is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- \bullet for each variable x_i two nodes v_i and $\bar{v_i}$ connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base



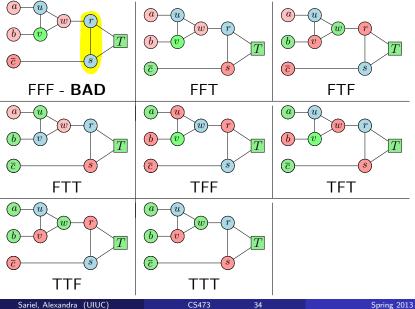
Reduction



Claim

No legal **3**-coloring of above graph (with coloring of nodes **T**, **F**, **B** fixed) in which **a**, **b**, **c** are colored False. If any of **a**, **b**, **c** are colored True then there is a legal **3**-coloring of above graph.

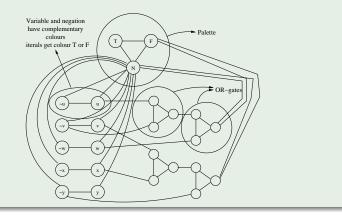
3 coloring of the clause gadget



Reduction Outline

Example

 $\varphi = (\mathbf{u} \vee \neg \mathbf{v} \vee \mathbf{w}) \land (\mathbf{v} \vee \mathbf{x} \vee \neg \mathbf{y})$



arphi is satisfiable implies ${f G}_arphi$ is 3-colorable

- \bullet if x_i is assigned True, color v_i True and $\bar{v_i}$ False
- for each clause C_j = (a ∨ b ∨ c) at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

\mathbf{G}_{φ} is 3-colorable implies φ is satisfiable

- if v_i is colored True then set x_i to be True, this is a legal truth assignment
- consider any clause C_j = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

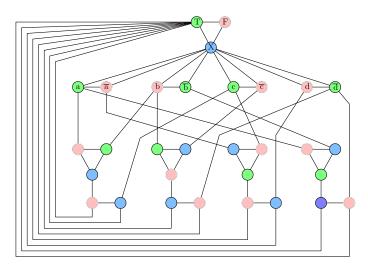
- \bullet if x_i is assigned True, color v_i True and $\bar{v_i}$ False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- ${\sf G}_arphi$ is 3-colorable implies arphi is satisfiable
 - if v_i is colored True then set x_i to be True, this is a legal truth assignment
 - consider any clause C_j = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

- \bullet if x_i is assigned True, color v_i True and $\bar{v_i}$ False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- ${\sf G}_arphi$ is 3-colorable implies arphi is satisfiable
 - if v_i is colored True then set x_i to be True, this is a legal truth assignment
 - consider any clause C_j = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

- \bullet if x_i is assigned True, color v_i True and $\bar{v_i}$ False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- \mathbf{G}_{φ} is 3-colorable implies φ is satisfiable
 - \bullet if v_i is colored True then set x_i to be True, this is a legal truth assignment
 - consider any clause C_j = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

- \bullet if x_i is assigned True, color v_i True and $\bar{v_i}$ False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- \mathbf{G}_{φ} is 3-colorable implies φ is satisfiable
 - \bullet if \textbf{v}_i is colored True then set \textbf{x}_i to be True, this is a legal truth assignment
 - consider any clause C_j = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

Graph generated in reduction... ... from 3SAT to 3COLOR



Part III

Hardness of Subset Sum

Problem: Subset Sum

Instance: S - set of positive integers,t: - an integer number (Target) Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x = t$?

Claim

Subset Sum is NP-Complete.

We will prove following problem is NP-Complete...

Problem: Vec Subset Sum

Instance: S - set of n vectors of dimension k, each vector has non-negative numbers for its coordinates, and a target vector \overrightarrow{t} . Question: Is there a subset $X \subseteq S$ such that $\sum_{\overrightarrow{x}\in X} \overrightarrow{x} = \overrightarrow{t}$?

Reduction from **3SAT**.

Think about vectors as being lines in a table.

First gadget

Selecting between two lines.

Target	??	??	01	???
a ₁	??	??	01	??
a ₂	??	??	01	??

Two rows for every variable \mathbf{x} : selecting either $\mathbf{x} = \mathbf{0}$ or $\mathbf{x} = \mathbf{1}$.

Handling a clause...

we will have a column for every clause				
numbers		$C \equiv a \lor b \lor \overline{c}$		
а		01		
ā		00		
b		01		
b		00		
С		00		
Ē		01		
C fix-up 1	000	07	000	
C fix-up 2	000	08	000	
C fix-up 3	000	09	000	
TARGET		10		

We will have a column for every clause...

3SAT to Vec Subset Sum

numbers	a∨ā	$\mathbf{b} \lor \overline{\mathbf{b}}$	$c \lor \overline{c}$	$\mathbf{d} \lor \overline{\mathbf{d}}$	$D \equiv \overline{b} \lor c \lor \overline{d}$	$C \equiv a \lor b \lor \bar{c}$
а	1	0	0	0	00	01
ā	1	0	0	0	00	00
b	0	1	0	0	00	01
b	0	1	0	0	01	00
С	0	0	1	0	01	00
Ē	0	0	1	0	00	01
d	0	0	0	1	00	00
d	0	0	0	1	01	01
C fix-up 1	0	0	0	0	00	07
C fix-up 2	0	0	0	0	00	08
C fix-up 3	0	0	0	0	00	09
D fix-up 1	0	0	0	0	07	00
D fix-up 2	0	0	0	0	08	00
D fix-up 3	0	0	0	0	09	00
TARGET	1	1	1	1	10	10

Vec Subset Sum to Subset Sum

numbers
01000000001
01000000000
00010000001
000100000100
000001000100
000001000001
00000010000
00000010101
00000000007
80000000000
00000000009
00000000700
00000000800
00000000900

Other **NP-Complete** Problems

- 3-Dimensional Matching
- Subset Sum

Read book.

Need to Know NP-Complete Problems

- 3-SAT
- Circuit-SAT
- Independent Set
- Vertex Cover
- Clique
- Set Cover
- Hamiltonian Cycle in Directed/Undirected Graphs
- 3-Coloring
- 3-D Matching
- Subset Sum

Subset Sum Problem: Given **n** integers a_1, a_2, \ldots, a_n and a target **B**, is there a subset of **S** of $\{a_1, \ldots, a_n\}$ such that the numbers in **S** add up *precisely* to **B**?

Subset Sum is NP-Complete— see book.

Knapsack: Given **n** items with item **i** having size s_i and profit p_i , a knapsack of capacity **B**, and a target profit **P**, is there a subset **S** of items that can be packed in the knapsack and the profit of **S** is at least **P**?

Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up *precisely* to B?

Subset Sum is NP-Complete— see book.

Knapsack: Given **n** items with item **i** having size s_i and profit p_i , a knapsack of capacity **B**, and a target profit **P**, is there a subset **S** of items that can be packed in the knapsack and the profit of **S** is at least **P**?

Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up *precisely* to B?

Subset Sum is NP-Complete— see book.

Knapsack: Given **n** items with item **i** having size s_i and profit p_i , a knapsack of capacity **B**, and a target profit **P**, is there a subset **S** of items that can be packed in the knapsack and the profit of **S** is at least **P**?

Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up *precisely* to B?

Subset Sum is NP-Complete— see book.

Knapsack: Given **n** items with item **i** having size s_i and profit p_i , a knapsack of capacity **B**, and a target profit **P**, is there a subset **S** of items that can be packed in the knapsack and the profit of **S** is at least **P**?

Subset Sum can be solved in **O(nB)** time using dynamic programming (exercise).

Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to **n**. That is, each a_i requires polynomial in **n** bits.

Number problems of the above type are said to be **weakly NPComplete**.

Subset Sum can be solved in **O(nB)** time using dynamic programming (exercise).

Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.

Number problems of the above type are said to be **weakly NPComplete**.

Subset Sum can be solved in **O(nB)** time using dynamic programming (exercise).

Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.

Number problems of the above type are said to be **weakly NPComplete**.

S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems. *SIAM J. Comput.*, 5(4):691–703, 1976.