CS 473: Fundamental Algorithms, Spring 2013

More NP-Complete Problems

Lecture 23 April 19, 2013

Recap

NP: languages that have polynomial time certifiers/verifiers

A language L is NP-Complete iff

- L is in NP
- for every L' in NP, L' \leq_P L

L is NP-Hard if for every L' in NP, L' \leq_P L.

Theorem (Cook-Levin)

Circuit-SAT and **SAT** are NP-Complete.

Recap contd

Theorem (Cook-Levin)

Circuit-SAT and SAT are NP-Complete.

Establish NP-Completeness via reductions:

- SAT <_P 3-SAT and hence 3-SAT is **NP**-complete
- 3-SAT <_P Independent Set (which is in NP) and hence Independent Set is NP-Complete
- Vertex Cover is NP-Complete
- Clique is NP-Complete
- Set Cover is NP-Complete

Today

Prove

- Hamiltonian Cycle Problem is NP-Complete
- 3-Coloring is **NP-Complete**

Spring 2013

Part I

NP-Completeness of Hamiltonian Cycle

Sariel, Alexandra (UIUC)

CS473

Spring 20

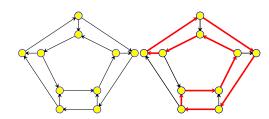
Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP
 - ► Certificate: Sequence of vertices
 - Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- Hardness: We will show
 3-SAT <_P Directed Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every vertex in **G** exactly once



Sariel, Alexandra (UIUC)

CS473

Spring 2013

Reduction

Given 3-SAT formula φ create a graph \mathbf{G}_{φ} such that

- \bullet \mathbf{G}_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
- ullet ${f G}_{arphi}$ should be constructible from ${f arphi}$ by a polynomial time algorithm ${m {\cal A}}$

Notation: φ has \mathbf{n} variables $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ and \mathbf{m} clauses $\mathbf{C}_1, \mathbf{C}_2, \ldots, \mathbf{C}_m$.

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 5

Sariel Alexandra (IIIIIC)

Spring 20

Reduction: First Ideas

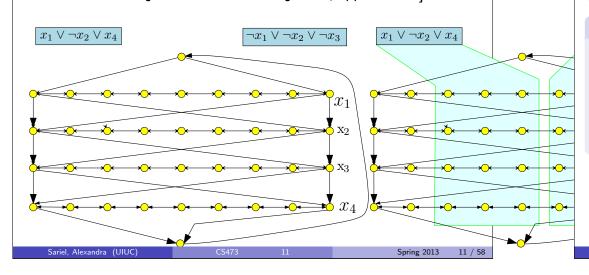
- Viewing SAT: Assign values to **n** variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with **2**ⁿ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 58

The Reduction: Phase I • Traverse path i from left to right iff x_i is set to true • Each path has 3(m+1) nodes where m is number of clauses in φ ; nodes numbered from left to right (1 to 3m+3)

The Reduction: Phase II

• Add vertex $\mathbf{c_j}$ for clause $\mathbf{C_j}$. $\mathbf{c_j}$ has edge from vertex $\mathbf{3j}$ and to vertex $\mathbf{3j} + \mathbf{1}$ on path \mathbf{i} if $\mathbf{x_i}$ appears in clause $\mathbf{C_j}$, and has edge from vertex $\mathbf{3j} + \mathbf{1}$ and to vertex $\mathbf{3j}$ if $\neg \mathbf{x_i}$ appears in $\mathbf{C_i}$.



Correctness Proof

Proposition

arphi has a satisfying assignment iff \mathbf{G}_{arphi} has a Hamiltonian cycle.

Proof.

- \Rightarrow Let ${\bf a}$ be the satisfying assignment for ${f arphi}$. Define Hamiltonian cycle as follows
 - $\qquad \qquad \text{If } a(x_i) = 1 \text{ then traverse path } i \text{ from left to right}$
 - If $a(x_i) = 0$ then traverse path i from right to left
 - For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

 $x_1 \vee \overline{}$

el, Alexandra (UIUC) CS473 12 Spring 2013 12 / 58

Hamiltonian Cycle ⇒ Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j+1 on the same path i
 - ▶ If not, then only unvisited neighbor of 3j + 1 on path i is 3j + 2
 - ► Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters $\mathbf{c_j}$ from vertex $3\mathbf{j} + \mathbf{1}$ on path \mathbf{i} then it must leave the clause vertex $\mathbf{c_i}$ on edge to $3\mathbf{j}$ on path \mathbf{i}

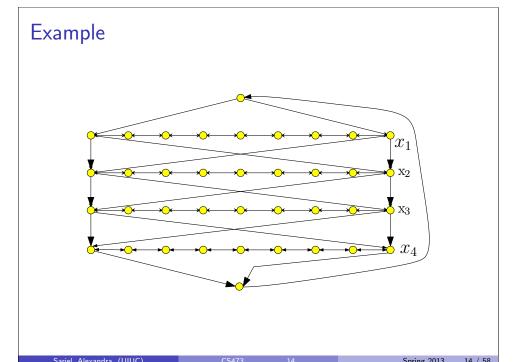
Sariel, Alexandra (UIUC)

S473

13

oring 2013

13 / 58



Hamiltonian Cycle → Satisfying assignment (contd)

- \bullet Thus, vertices visited immediately before and after $\textbf{C}_{\textbf{i}}$ are connected by an edge
- \bullet We can remove c_j from cycle, and get Hamiltonian cycle in $G-c_j$
- \bullet Consider Hamiltonian cycle in $G-\{c_1,\dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

Hamiltonian Cycle

Problem

Input Given undirected graph G = (V, E)

Goal Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness Theorem

Hamiltonian cycle problem for undirected graphs is **NP-Complete**.

Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Sariel, Alexandra (UIUC)

S473

17

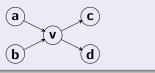
Spring 2013

Reduction Sketch

Goal: Given directed graph \mathbf{G} , need to construct undirected graph $\mathbf{G'}$ such that \mathbf{G} has Hamiltonian Path iff $\mathbf{G'}$ has Hamiltonian path

Reduction

- \bullet Replace each vertex v by 3 vertices: $v_{in}, v,$ and v_{out}
- \bullet A directed edge (a,b) is replaced by edge (a_{out},b_{in})



Sariel, Alexandra (UIUC)

S173

pring 2013 1

Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

Part II

NP-Completeness of Graph Coloring

Sariel, Alexandra (UIUC)

73 :

Spring 2013

g 2013 20 /

Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k. Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

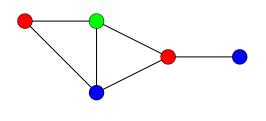
Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do

not get the same color?



Graph Coloring

Observation: If **G** is colored with **k** colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is **2**-colorable iff **G** is bipartite! There is a linear time algorithm to check if **G** is bipartite using **BFS** (we saw this earlier).

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with **k** colors
- Moreover, 3-COLOR < k-Register Allocation, for any k > 3

Class Room Scheduling

Given **n** classes and their meeting times, are **k** rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph **G**

- a node **v**_i for each class **i**
- ullet an edge between $oldsymbol{v_i}$ and $oldsymbol{v_i}$ if classes i and j conflict

Exercise: **G** is **k**-colorable iff **k** rooms are sufficient

3-Coloring is NP-Complete

- 3-Coloring is in NP.
 - ► Certificate: for each node a color from {1, 2, 3}.
 - ightharpoonup Certifier: Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: We will show 3-SAT <_P 3-Coloring.

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies $[a_0, b_0], [a_1, b_1], \dots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given **k** bands and some region with **n** towers, is there a way to assign the bands to avoid interference?

Can reduce to **k**-coloring by creating intereference/conflict graph on towers.

Reduction Idea

Start with **3SAT** formula (i.e., **3**CNF formula) φ with **n** variables x_1, \ldots, x_n and **m** clauses C_1, \ldots, C_m . Create graph G_{ω} such that \mathbf{G}_{ω} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in \mathbf{G}_{ω} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph is 3-colored, either $\mathbf{v_i}$ or $\overline{\mathbf{v_i}}$ gets the same color as True. Interpret this as a truth assignment to $\mathbf{v_i}$
- Need to add constraints to ensure clauses are satisfied (next phase)

Figure T F Base v₁ v₂ v₂ Sariel, Alexandra (UIUC) CS473 29 Spring 2013 29 / 58

OR-Gadget Graph

Property: if **a**, **b**, **c** are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

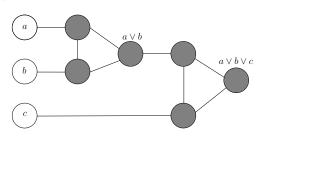
Property: if one of **a**, **b**, **c** is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Clause Satisfiability Gadget

For each clause $C_i = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

OR-gadget-graph:



Sariel, Alexandra (UIUC)

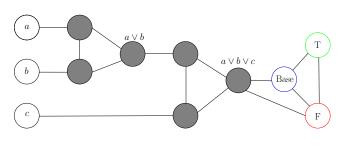
S/173

30

Spring 2013 30

Reduction

- create triangle with nodes True, False, Base
- for each variable x_i two nodes v_i and $\bar{v_i}$ connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base

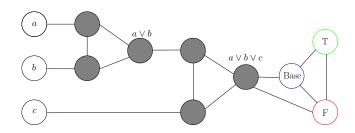


CS473

Spring 2013

ing 2013 32 / 5

Reduction



Claim

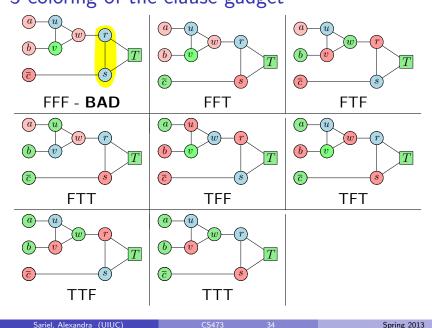
No legal **3**-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal **3**-coloring of above graph.

Sariel, Alexandra (UIUC)

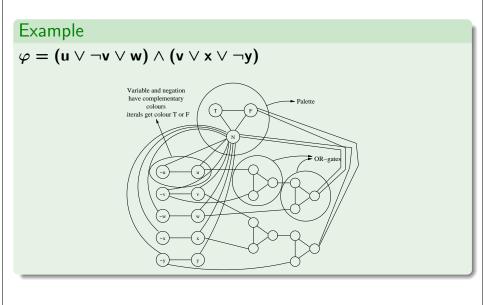
33

ing 2013

3 coloring of the clause gadget



Reduction Outline



Correctness of Reduction

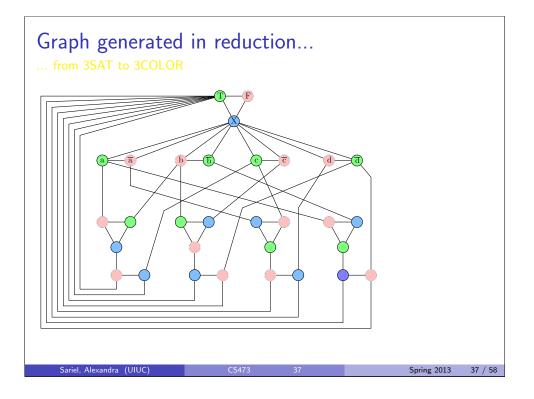
 φ is satisfiable implies \mathbf{G}_{φ} is 3-colorable

- \bullet if x_i is assigned True, color v_i True and \overline{v}_i False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

 \mathbf{G}_{φ} is 3-colorable implies φ is satisfiable

- ullet if $oldsymbol{v_i}$ is colored True then set $oldsymbol{x_i}$ to be True, this is a legal truth assignment
- consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

Sariel, Alexandra (UIUC) CS473 36 Spring 2013



Part III

Hardness of **Subset Sum**

Subset Sum

Problem: Subset Sum

 $\label{eq:second-control} \textbf{Instance:} \quad \textbf{S} \ - \ \text{set of positive integers,} \textbf{t} : \ - \ \text{an integer}$

number (Target)

Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x = 1$

t?

Claim

Subset Sum is NP-Complete.

Vec Subset Sum

We will prove following problem is NP-Complete...

Problem: Vec Subset Sum

Instance: S - set of n vectors of dimension k, each vector has non-negative numbers for its coordinates, and a target vector \overrightarrow{t} .

Question: Is there a subset $X \subseteq S$ such that $\sum_{\overrightarrow{x} \in X} \overrightarrow{x} = \overrightarrow{t}$?

Reduction from **3SAT**.

 Sariel, Alexandra (UIUC)
 CS473
 40
 Spring 2013
 40 / 58

Vec Subset Sum

Think about vectors as being lines in a table.

First gadget

Selecting between two lines.

Target	??	??	01	???
a ₁	??	??	01	??
a ₂	??	??	01	??

Two rows for every variable x: selecting either x = 0 or x = 1.

Handling a clause...

We will have a column for every clause...

numbers		$C \equiv a \vee b \vee \overline{c}$	
a		01	
ā		00	
b		01	
b		00	
С		00	
C		01	
C fix-up 1	000	07	000
C fix-up 2	000	08	000
C fix-up 3	000	09	000
TARGET		10	

numbers

3SAT to Vec Subset Sum

numbers	a∨ā	$b \vee \overline{b}$	c∨ē	d∨d	$D \equiv \bar{b} \vee c \vee \bar{d}$	$C \equiv a \vee b \vee \bar{c}$
a	1	0	0	0	00	01
ā	1	0	0	0	00	00
b	0	1	0	0	00	01
<u> </u>	0	1	0	0	01	00
С	0	0	1	0	01	00
Ē	0	0	1	0	00	01
d	0	0	0	1	00	00
d	0	0	0	1	01	01
C fix-up 1	0	0	0	0	00	07
C fix-up 2	0	0	0	0	00	08
C fix-up 3	0	0	0	0	00	09
D fix-up 1	0	0	0	0	07	00
D fix-up 2	0	0	0	0	08	00
D fix-up 3	0	0	0	0	09	00
TARGET	1	1	1	1	10	10

Vec Subset Sum to Subset Sum

numbers
010000000001
010000000000
000100000001
000100000100
000001000100
000001000001
00000010000
000000010101
000000000007
80000000000
000000000009
000000000700
00800000000
000000000900
Cotal Alexander (HILL)

Sariel, Alexandra (UIUC)

Other NP-Complete Problems

- 3-Dimensional Matching
- Subset Sum

Read book.

Need to Know NP-Complete Problems

- 3-SAT
- Circuit-SAT
- Independent Set
- Vertex Cover
- Clique
- Set Cover
- Hamiltonian Cycle in Directed/Undirected Graphs
- 3-Coloring
- 3-D Matching
- Subset Sum

Subset Sum and Knapsack

Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target **B**, is there a subset of **S** of $\{a_1, \ldots, a_n\}$ such that the numbers in **S** add up *precisely* to **B**?

Subset Sum is **NP-Complete**— see book.

Knapsack: Given \mathbf{n} items with item \mathbf{i} having size \mathbf{s}_i and profit \mathbf{p}_i , a knapsack of capacity B, and a target profit P, is there a subset S of items that can be packed in the knapsack and the profit of **S** is at least **P**?

Show Knapsack problem is NP-Complete via reduction from Subset Sum (exercise).

Subset Sum and Knapsack

Subset Sum can be solved in **O(nB)** time using dynamic programming (exercise).

Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to \mathbf{n} . That is, each \mathbf{a}_i requires polynomial in **n** bits.

Number problems of the above type are said to be weakly **NPComplete**.

Sariel, Alexandra (UIUC)

