NP Completeness and Cook-Levin Theorem

Lecture 22 April 17, 2013

- P: set of decision problems that have polynomial time algorithms.
- NP: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

- P: set of decision problems that have polynomial time algorithms.
- NP: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

- P: set of decision problems that have polynomial time algorithms.
- NP: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

- P: set of decision problems that have polynomial time algorithms.
- NP: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

- P: set of decision problems that have polynomial time algorithms.
- NP: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Turing Machines: Recap

- Infinite tape.
- Finite state control.
- Input at beginning of tape.
- Special tape letter "blank" □.
- Head can move only one cell to left or right.

Turing Machines: Formally

A TM M = $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$:

- Q is set of states in finite control
- \mathbf{Q} \mathbf{q}_0 start state, \mathbf{q}_{accept} is accept state, \mathbf{q}_{reject} is reject state
- **③** Σ is input alphabet, Γ is tape alphabet (includes \sqcup)
- \bullet $\delta: \mathbf{Q} \times \mathbf{\Gamma} \to \{\mathbf{L}, \mathbf{R}\} \times \mathbf{\Gamma} \times \mathbf{Q}$ is transition function
 - $\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{q}', \mathbf{b}, \mathbf{L})$ means that \mathbf{M} in state \mathbf{q} and head seeing \mathbf{a} on tape will move to state \mathbf{q}' while replacing \mathbf{a} on tape with \mathbf{b} and head moves left.

L(M): language accepted by M is set of all input strings s on which M accepts; that is:

- **1** TM is started in state \mathbf{q}_0 .
- Initially, the tape head is located at the first cell.
- The tape contain s on the tape followed by blanks.
- The TM halts in the state q_{accept}.

P via TMs

Definition

M is a polynomial time TM if there is some polynomial $p(\cdot)$ such that on all inputs w, M halts in p(|w|) steps.

Definition

L is a language in **P** iff there is a polynomial time TM **M** such that L = L(M).

NP via TMs

Definition

L is an **NP** language iff there is a *non-deterministic* polynomial time TM **M** such that L = L(M).

Non-deterministic TM: each step has a choice of moves

- - Example: $\delta(\mathbf{q}, \mathbf{a}) = \{(\mathbf{q}_1, \mathbf{b}, \mathbf{L}), (\mathbf{q}_2, \mathbf{c}, \mathbf{R}), (\mathbf{q}_3, \mathbf{a}, \mathbf{R})\}$ means that \mathbf{M} can non-deterministically choose one of the three possible moves from (\mathbf{q}, \mathbf{a}) .
- L(M): set of all strings s on which there exists some sequence
 of valid choices at each step that lead from q₀ to q_{accept}

NP via TMs

Definition

L is an **NP** language iff there is a *non-deterministic* polynomial time TM **M** such that L = L(M).

Non-deterministic TM: each step has a choice of moves

- - Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).
- L(M): set of all strings s on which there exists some sequence
 of valid choices at each step that lead from q₀ to q_{accept}

Non-deterministic TMs vs certifiers

Two definition of **NP**:

- **1** L is in NP iff L has a polynomial time certifier $C(\cdot, \cdot)$.
- L is in NP iff L is decided by a non-deterministic polynomial time TM M.

Claim

Two definitions are equivalent.

Why?

Informal proof idea: the certificate **t** for **C** corresponds to non-deterministic choices of **M** and vice-versa.

In other words L is in NP iff L is accepted by a NTM which first guesses a proof t of length poly in input |s| and then acts as a deterministic TM.

Non-determinism, guessing and verification

- A non-deterministic machine has choices at each step and accepts a string if there exists a set of choices which lead to a final state.
- Equivalently the choices can be thought of as guessing a solution and then verifying that solution. In this view all the choices are made a priori and hence the verification can be deterministic. The "guess" is the "proof" and the "verifier" is the "certifier".
- We reemphasize the asymmetry inherent in the definition of non-determinism. Strings in the language can be easily verified. No easy way to verify that a string is not in the language.

Algorithms: TMs vs RAM Model

Why do we use TMs some times and RAM Model other times?

- TMs are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.
 - Simplicity is useful in proofs.
 - The "right" formal bare-bones model when dealing with subtleties.
- RAM model is a closer approximation to the running time/space usage of realistic computers for reasonable problem sizes
 - Not appropriate for certain kinds of formal proofs when algorithms can take super-polynomial time and space

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- Hardest problem must be in NP.
- We Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem **X** is said to be **NP-Complete** if

- \bullet X \in NP, and
- **2** (Hardness) For any $Y \in NP$, $Y \leq_P X$.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- ⇒ Suppose X can be solved in polynomial time
 - **1** Let $Y \in NP$. We know $Y \leq_P X$.
 - **2** We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
 - **3** Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
 - **3** Since $P \subset NP$, we have P = NP.
- \Leftarrow Since P = NP, and $X \in NP$, we have a polynomial time algorithm for X.

NP-Hard Problems

Definition

A problem **X** is said to be **NP-Hard** if

1 (Hardness) For any $Y \in NP$, we have that $Y \leq_P X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

If X is NP-Complete

- Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for **X**.

(This is proof by mob opinion — take with a grain of salt.)

If X is NP-Complete

- Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for **X**.

(This is proof by mob opinion — take with a grain of salt.)

If X is NP-Complete

- Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for **X**.

(This is proof by mob opinion — take with a grain of salt.)

If X is NP-Complete

- Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for **X**.

(This is proof by mob opinion — take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are NP-Complete?

Answer

Yes! Many, many problems are NP-Complete.

Circuits

Definition

A circuit is a directed acyclic graph with

- Input vertices (without incoming edges) labelled with
 0, 1 or a distinct variable.
- ② Every other vertex is labelled ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed acyclic graph with

- Input vertices (without incoming edges) labelled with
 0, 1 or a distinct variable.
- ② Every other vertex is labelled ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed acyclic graph with

- Input vertices (without incoming edges) labelled with
 0, 1 or a distinct variable.
- ② Every other vertex is labelled ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem (Cook-Levin)

CSAT is NP-Complete.

Need to show

- CSAT is in NP.
- every NP problem X reduces to CSAT.

CSAT: Circuit Satisfaction

Claim

CSAT is in NP.

- Certificate: Assignment to input variables.
- 2 Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

CSAT: Circuit Satisfaction

Claim

CSAT is in NP.

- Certificate: Assignment to input variables.
- Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

CSAT is **NP**-hard: Idea

Need to show that *every* NP problem X reduces to CSAT.

What does it mean that $X \in NP$?

 $X \in NP$ implies that there are polynomials p() and q() and certifier/verifier program C such that for every string s the following is true:

- If s is a YES instance $(s \in X)$ then there is a *proof* t of length p(|s|) such that C(s,t) says YES.
- ② If s is a NO instance $(s \not\in X)$ then for every string t of length at p(|s|), C(s,t) says NO.
- **3** C(s,t) runs in time q(|s|+|t|) time (hence polynomial time).

X is in **NP** means we have access to $\mathbf{p}(), \mathbf{q}(), \mathbf{C}(\cdot, \cdot)$. What is $\mathbf{C}(\cdot, \cdot)$? It is a program or equivalently a Turing Machine! How are $\mathbf{p}()$ and $\mathbf{q}()$ given? As numbers. Example: if **3** is given then $\mathbf{p}(\mathbf{n}) = \mathbf{n}^3$.

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or a TM.

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof \mathbf{t} of length $\mathbf{p}(|\mathbf{s}|)$ such that $\mathbf{C}(\mathbf{s},\mathbf{t})$ says YES.

How do we reduce X to CSAT? Need an algorithm ${\mathcal A}$ that

- ① takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in |s| (note that $\langle p, q, C \rangle$ are fixed).
- G is satisfiable if and only if there is a proof t such that C(s, t) says YES.

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof \mathbf{t} of length $\mathbf{p}(|\mathbf{s}|)$ such that $\mathbf{C}(\mathbf{s},\mathbf{t})$ says YES.

How do we reduce X to CSAT? Need an algorithm $\mathcal A$ that

- takes **s** (and $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$) and creates a circuit **G** in polynomial time in $|\mathbf{s}|$ (note that $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$ are fixed).
- G is satisfiable if and only if there is a proof t such that C(s, t) says YES.

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof \mathbf{t} of length $\mathbf{p}(|\mathbf{s}|)$ such that $\mathbf{C}(\mathbf{s},\mathbf{t})$ says YES.

How do we reduce X to CSAT? Need an algorithm $\mathcal A$ that

- takes **s** (and $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$) and creates a circuit **G** in polynomial time in $|\mathbf{s}|$ (note that $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$ are fixed).
- G is satisfiable if and only if there is a proof t such that C(s, t) says YES.

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof \mathbf{t} of length $\mathbf{p}(|\mathbf{s}|)$ such that $\mathbf{C}(\mathbf{s},\mathbf{t})$ says YES.

How do we reduce X to CSAT? Need an algorithm ${\mathcal A}$ that

- takes **s** (and $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$) and creates a circuit **G** in polynomial time in $|\mathbf{s}|$ (note that $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$ are fixed).
- Q is satisfiable if and only if there is a proof t such that C(s, t) says YES.

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof \mathbf{t} of length $\mathbf{p}(|\mathbf{s}|)$ such that $\mathbf{C}(\mathbf{s},\mathbf{t})$ says YES.

How do we reduce X to CSAT? Need an algorithm $\mathcal A$ that

- takes **s** (and $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$) and creates a circuit **G** in polynomial time in $|\mathbf{s}|$ (note that $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$ are fixed).
- ${f Q}$ is satisfiable if and only if there is a proof ${f t}$ such that ${f C}({f s},{f t})$ says YES.

How do we reduce X to CSAT? Need an algorithm $\mathcal A$ that

- takes **s** (and $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$) and creates a circuit **G** in polynomial time in $|\mathbf{s}|$ (note that $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$ are fixed).
- ② G is satisfiable if and only if there is a proof t such that C(s,t) says YES

- Convert C(s,t) into a circuit G with t as unknown inputs (rest is known including s)
- ② We know that $|\mathbf{t}| = \mathbf{p}(|\mathbf{s}|)$ so express boolean string \mathbf{t} as $\mathbf{p}(|\mathbf{s}|)$ variables $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_k$ where $\mathbf{k} = \mathbf{p}(|\mathbf{s}|)$.
- ① Asking if there is a proof \mathbf{t} that makes $\mathbf{C}(\mathbf{s},\mathbf{t})$ say YES is same as whether there is an assignment of values to "unknown" variables $\mathbf{t}_1,\mathbf{t}_2,\ldots,\mathbf{t}_k$ that will make \mathbf{G} evaluate to true/YES.

How do we reduce X to CSAT? Need an algorithm $\mathcal A$ that

- takes **s** (and $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$) and creates a circuit **G** in polynomial time in $|\mathbf{s}|$ (note that $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$ are fixed).
- ② G is satisfiable if and only if there is a proof t such that C(s,t) says YES

- Convert C(s,t) into a circuit G with t as unknown inputs (rest is known including s)
- ② We know that $|\mathbf{t}| = \mathbf{p}(|\mathbf{s}|)$ so express boolean string \mathbf{t} as $\mathbf{p}(|\mathbf{s}|)$ variables $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_k$ where $\mathbf{k} = \mathbf{p}(|\mathbf{s}|)$.
- ① Asking if there is a proof ${\bf t}$ that makes ${\bf C}({\bf s},{\bf t})$ say YES is same as whether there is an assignment of values to "unknown" variables ${\bf t}_1,{\bf t}_2,\ldots,{\bf t}_k$ that will make ${\bf G}$ evaluate to true/YES.

How do we reduce X to CSAT? Need an algorithm ${\mathcal A}$ that

- takes **s** (and $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$) and creates a circuit **G** in polynomial time in $|\mathbf{s}|$ (note that $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$ are fixed).
- ② G is satisfiable if and only if there is a proof t such that C(s,t) says YES

- Convert C(s,t) into a circuit G with t as unknown inputs (rest is known including s)
- 2 We know that $|\mathbf{t}| = \mathbf{p}(|\mathbf{s}|)$ so express boolean string \mathbf{t} as $\mathbf{p}(|\mathbf{s}|)$ variables $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_k$ where $\mathbf{k} = \mathbf{p}(|\mathbf{s}|)$.
- 3 Asking if there is a proof t that makes C(s,t) say YES is same as whether there is an assignment of values to "unknown" variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.

How do we reduce X to CSAT? Need an algorithm ${\mathcal A}$ that

- takes **s** (and $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$) and creates a circuit **G** in polynomial time in $|\mathbf{s}|$ (note that $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$ are fixed).
- ② G is satisfiable if and only if there is a proof t such that C(s,t) says YES

- Convert C(s, t) into a circuit G with t as unknown inputs (rest is known including s)
- ② We know that $|\mathbf{t}| = \mathbf{p}(|\mathbf{s}|)$ so express boolean string \mathbf{t} as $\mathbf{p}(|\mathbf{s}|)$ variables $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_k$ where $\mathbf{k} = \mathbf{p}(|\mathbf{s}|)$.
- ① Asking if there is a proof t that makes C(s,t) say YES is same as whether there is an assignment of values to "unknown" variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.

How do we reduce X to CSAT? Need an algorithm ${\mathcal A}$ that

- takes **s** (and $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$) and creates a circuit **G** in polynomial time in $|\mathbf{s}|$ (note that $\langle \mathbf{p}, \mathbf{q}, \mathbf{C} \rangle$ are fixed).
- ② G is satisfiable if and only if there is a proof t such that C(s,t) says YES

- Convert C(s, t) into a circuit G with t as unknown inputs (rest is known including s)
- We know that $|\mathbf{t}| = \mathbf{p}(|\mathbf{s}|)$ so express boolean string \mathbf{t} as $\mathbf{p}(|\mathbf{s}|)$ variables $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_k$ where $\mathbf{k} = \mathbf{p}(|\mathbf{s}|)$.
- 3 Asking if there is a proof t that makes C(s,t) say YES is same as whether there is an assignment of values to "unknown" variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.

- Problem: Does G = (V, E) have an Independent Set of size ≥ k?
 - O Certificate: Set S ⊆ V.
 - **2** Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.

Formally, why is **Independent Set** in **NP**?

- Problem: Does G = (V, E) have an Independent Set of size > k?
 - Certificate: Set $S \subseteq V$.
 - **Q** Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.

Formally, why is **Independent Set** in **NP**?

Formally why is **Independent Set** in **NP**?

- Input:
 - < n, $y_{1,1}, y_{1,2}, \dots, y_{1,n}, y_{2,1}, \dots, y_{2,n}, \dots, y_{n,1}, \dots, y_{n,n}, k >$ encodes < G, k >.
 - n is number of vertices in G
 - y_{i,j} is a bit which is 1 if edge (i, j) is in G and 0 otherwise (adjacency matrix representation)
 - 3 k is size of independent set.
- ② Certificate: $\mathbf{t} = \mathbf{t_1} \mathbf{t_2} \dots \mathbf{t_n}$. Interpretation is that $\mathbf{t_i}$ is 1 if vertex i is in the independent set, 0 otherwise.

Certifier for Independent Set

Certifier **C**(**s**, **t**) for **Independent Set**:

```
\begin{array}{c} \text{if } (t_1+t_2+\ldots+t_n<\textbf{k}) \text{ then} \\ \text{ return } \texttt{NO} \\ \text{else} \\ \text{ for } \texttt{each } \textbf{(i,j) do} \\ \text{ if } (t_i \wedge t_j \wedge \textbf{y}_{\textbf{i,j}}) \text{ then} \\ \text{ return } \texttt{NO} \end{array}
```

return YES

A certifier circuit for Independent Set

Programs, Turing Machines and Circuits

Consider "program" A that takes f(|s|) steps on input string s.

Question: What computer is the program running on and what does *step* mean?

Real computers difficult to reason with mathematically because

- instruction set is too rich
- pointers and control flow jumps in one step
- assumption that pointer to code fits in one word

Turing Machines

- simpler model of computation to reason with
- 2 can simulate real computers with polynomial slow down
- all moves are local (head moves only one cell)

Programs, Turing Machines and Circuits

Consider "program" A that takes f(|s|) steps on input string s.

Question: What computer is the program running on and what does *step* mean?

Real computers difficult to reason with mathematically because

- 1 instruction set is too rich
- pointers and control flow jumps in one step
- assumption that pointer to code fits in one word

Turing Machines

- simpler model of computation to reason with
- 2 can simulate real computers with polynomial slow down
- 3 all moves are local (head moves only one cell)

Certifiers that at TMs

Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M

Problem: Given M, input s, p, q decide if there is a proof t of length p(|s|) such that M on s, t will halt in q(|s|) time and say YES.

There is an algorithm \mathcal{A} that can reduce above problem to **CSAT** mechanically as follows.

- **1** A first computes p(|s|) and q(|s|).
- **②** Knows that M can use at most q(|s|) memory/tape cells
- **3** Knows that **M** can run for at most q(|s|) time
- Simulates the evolution of the state of M and memory over time using a big circuit.

Simulation of Computation via Circuit

- ① Think of M's state at time ℓ as a string $x^{\ell} = x_1 x_2 \dots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.
- ② At time 0 the state of M consists of input string s a guess t (unknown variables) of length p(|s|) and rest q(|s|) blank symbols.
- **3** At time q(|s|) we wish to know if M stops in q_{accept} with say all blanks on the tape.
- **3** We write a circuit C_{ℓ} which captures the transition of M from time ℓ to time $\ell+1$.
- **Solution** Of the circuits for all times $\mathbf{0}$ to $\mathbf{q}(|\mathbf{s}|)$ gives a big (still poly) sized circuit \mathbf{C}
- **o** The final output of $\mathcal C$ should be true if and only if the entire state of $\mathbf M$ at the end leads to an accept state.

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

- Use TMs as the code for certifier for simplicity
- ② Since p() and q() are known to A, it can set up all required memory and time steps in advance
- Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to **SAT** as well. Reduction to **SAT** was the original proof of Steve Cook.

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

- Use TMs as the code for certifier for simplicity
- ② Since p() and q() are known to A, it can set up all required memory and time steps in advance
- \odot Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to **SAT** as well. Reduction to **SAT** was the original proof of Steve Cook.

SAT is NP-Complete

- We have seen that $SAT \in NP$
- To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT Instance of CSAT (we label each node):

Label the nodes

(A) Input circuit

(B) Label the nodes.

Introduce a variable for each node

(B) Label the nodes.

(C) Introduce var for each node.

Write a sub-formula for each variable that is true if the var is computed correctly.

(C) Introduce var for each node.

$$\begin{array}{l} x_k & \text{(Demand a sat' assignment!)} \\ x_k = x_i \wedge x_k \\ x_j = x_g \wedge x_h \\ x_i = \neg x_f \\ x_h = x_d \vee x_e \\ x_g = x_b \vee x_c \\ x_f = x_a \wedge x_b \\ x_d = 0 \\ x_a = 1 \end{array}$$

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Convert each sub-formula to an equivalent CNF formula

x _k	x _k
$x_k = x_i \wedge x_j$	$(\neg x_k \lor x_i) \land (\neg x_k \lor x_j) \land (x_k \lor \neg x_i \lor \neg x_j)$
$x_j = x_g \wedge x_h$	$ (\neg x_j \lor x_g) \land (\neg x_j \lor x_h) \land (x_j \lor \neg x_g \lor \neg x_h) $
$x_i = \neg x_f$	$(x_i \vee x_f) \wedge (\neg x_i \vee x_f)$
$x_h = x_d \vee x_e$	$(x_h \vee \neg x_d) \wedge (x_h \vee \neg x_e) \wedge (\neg x_h \vee x_d \vee x_e)$
$x_g = x_b \vee x_c$	$(x_g \vee \neg x_b) \wedge (x_g \vee \neg x_c) \wedge (\neg x_g \vee x_b \vee x_c)$
$x_f = x_a \wedge x_b$	$(\neg x_f \lor x_a) \land (\neg x_f \lor x_b) \land (x_f \lor \neg x_a \lor \neg x_b)$
$x_d = 0$	$\neg x_d$
$x_a = 1$	X _a

Take the conjunction of all the CNF sub-formulas

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Reduction: $CSAT \leq_P SAT$

- For each gate (vertex) \mathbf{v} in the circuit, create a variable $\mathbf{x}_{\mathbf{v}}$
- ② Case \neg : \mathbf{v} is labeled \neg and has one incoming edge from \mathbf{u} (so $\mathbf{x}_{\mathbf{v}} = \neg \mathbf{x}_{\mathbf{u}}$). In SAT formula generate, add clauses $(\mathbf{x}_{\mathbf{u}} \lor \mathbf{x}_{\mathbf{v}})$, $(\neg \mathbf{x}_{\mathbf{u}} \lor \neg \mathbf{x}_{\mathbf{v}})$. Observe that

$$x_v = \neg x_u$$
 is true \iff $(x_u \lor x_v)$ both true.

Reduction: $CSAT \leq_P SAT$

Continued...

1 Case \vee : So $\mathbf{x_v} = \mathbf{x_u} \vee \mathbf{x_w}$. In **SAT** formula generated, add clauses $(\mathbf{x_v} \vee \neg \mathbf{x_u})$, $(\mathbf{x_v} \vee \neg \mathbf{x_w})$, and $(\neg \mathbf{x_v} \vee \mathbf{x_u} \vee \mathbf{x_w})$. Again, observe that

$$\begin{pmatrix} x_v = x_u \vee x_w \end{pmatrix} \text{ is true } \iff \begin{matrix} (x_v \vee \neg x_u), \\ (x_v \vee \neg x_w), \\ (\neg x_v \vee x_u \vee x_w) \end{matrix} \text{ all true.}$$

Reduction: $CSAT \leq_P SAT$

Continued...

1 Case \wedge : So $\mathbf{x_v} = \mathbf{x_u} \wedge \mathbf{x_w}$. In **SAT** formula generated, add clauses $(\neg \mathbf{x_v} \vee \mathbf{x_u})$, $(\neg \mathbf{x_v} \vee \mathbf{x_w})$, and $(\mathbf{x_v} \vee \neg \mathbf{x_u} \vee \neg \mathbf{x_w})$. Again observe that

$$\begin{aligned} \textbf{x}_{\textbf{v}} &= \textbf{x}_{\textbf{u}} \wedge \textbf{x}_{\textbf{w}} \text{ is true} &\iff & (\neg \textbf{x}_{\textbf{v}} \vee \textbf{x}_{\textbf{u}}), \\ & (\neg \textbf{x}_{\textbf{v}} \vee \textbf{x}_{\textbf{w}}), \\ & (\textbf{x}_{\textbf{v}} \vee \neg \textbf{x}_{\textbf{u}} \vee \neg \textbf{x}_{\textbf{w}}) \end{aligned} \text{ all true}.$$

Reduction: **CSAT** < **P SAT**

Continued...

- ① If v is an input gate with a fixed value then we do the following. If $x_v=1$ add clause x_v . If $x_v=0$ add clause $\neg x_v$
- 2 Add the clause x_v where v is the variable for the output gate

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

- ⇒ Consider a satisfying assignment **a** for **C**
 - Find values of all gates in C under a
 - **2** Give value of gate \mathbf{v} to variable $\mathbf{x}_{\mathbf{v}}$; call this assignment \mathbf{a}'
 - \circ a' satisfies φ_{C} (exercise)
- \Leftarrow Consider a satisfying assignment **a** for φ_{C}
 - Let a' be the restriction of a to only the input variables
 - 2 Value of gate \mathbf{v} under \mathbf{a}' is the same as value of $\mathbf{x}_{\mathbf{v}}$ in \mathbf{a}
 - Thus, a' satisfies C

Theorem

SAT is NP-Complete.

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show X is in NP.
 - certificate/proof of polynomial size in input
 - polynomial time certifier C(s, t)
- Reduction from a known NP-Complete problem such as CSAT or SAT to X

SAT $\leq_{\mathbf{P}} X$ implies that every **NP** problem $\mathbf{Y} \leq_{\mathbf{P}} X$. Why? Transitivity of reductions:

 $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{SAT}$ and $\mathbf{SAT} \leq_{\mathbf{P}} \mathbf{X}$ and hence $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$.

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show X is in NP.
 - certificate/proof of polynomial size in input
 - polynomial time certifier C(s, t)
- Reduction from a known NP-Complete problem such as CSAT or SAT to X

SAT $\leq_P X$ implies that every NP problem $Y \leq_P X$. Why? Transitivity of reductions:

 $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{SAT}$ and $\mathbf{SAT} \leq_{\mathbf{P}} \mathbf{X}$ and hence $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$.

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show X is in NP.
 - certificate/proof of polynomial size in input
 - $oldsymbol{0}$ polynomial time certifier C(s,t)
- Reduction from a known NP-Complete problem such as CSAT or SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{SAT}$ and $\mathbf{SAT} \leq_{\mathbf{P}} \mathbf{X}$ and hence $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$.

NP-Completeness via Reductions

- **OCSAT** is NP-Complete.
- ② CSAT ≤_P SAT and SAT is in NP and hence SAT is NP-Complete.
- **SAT** \leq_{P} **3-SAT** and hence 3-SAT is **NP-Complete**.
- 3-SAT ≤_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
- **5** Vertex Cover is NP-Complete.
- Clique is NP-Complete.

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

NP-Completeness via Reductions

- **OCSAT** is NP-Complete.
- ② CSAT ≤_P SAT and SAT is in NP and hence SAT is NP-Complete.
- **SAT** \leq_P **3-SAT** and hence 3-SAT is **NP-Complete**.
- 3-SAT ≤_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
- **Vertex Cover** is NP-Complete.
- Clique is NP-Complete.

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!