CS 473: Fundamental Algorithms, Spring 2013

NP Completeness and Cook-Levin Theorem

Lecture 22
April 17, 2013

P and NP and Turing Machines

(1) P: set of decision problems that have polynomial time algorithms.
(2) NP: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of
computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

P and NP and Turing Machines

(1) P: set of decision problems that have polynomial time algorithms.
(2) NP: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

P and NP and Turing Machines

(1) P: set of decision problems that have polynomial time algorithms.
(2) NP: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

P and NP and Turing Machines

(1) P: set of decision problems that have polynomial time algorithms.
(2) NP: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

P and NP and Turing Machines

(1) P: set of decision problems that have polynomial time algorithms.
(2) NP: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

Turing Machines: Recap

(1) Infinite tape.
(2) Finite state control.
(3) Input at beginning of tape.
(9) Special tape letter "blank" \sqcup.
(5) Head can move only one cell to left or right.

Turing Machines: Formally

A TM $\mathbf{M}=\left(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \delta, \mathbf{q}_{0}, \mathbf{q}_{\text {accept }}, \mathbf{q}_{\text {reject }}\right)$:
(1) \mathbf{Q} is set of states in finite control
(2) \mathbf{q}_{0} start state, $\mathbf{q}_{\text {accept }}$ is accept state, $\mathbf{q}_{\text {reject }}$ is reject state
($\boldsymbol{\Sigma}$ is input alphabet, $\boldsymbol{\Gamma}$ is tape alphabet (includes \sqcup)
(1) $\delta: \mathbf{Q} \times \mathbf{\Gamma} \rightarrow\{\mathbf{L}, \mathbf{R}\} \times \mathbf{\Gamma} \times \mathbf{Q}$ is transition function

- $\delta(\mathbf{q}, \mathbf{a})=\left(\mathbf{q}^{\prime}, \mathbf{b}, \mathbf{L}\right)$ means that \mathbf{M} in state \mathbf{q} and head seeing \mathbf{a} on tape will move to state \mathbf{q}^{\prime} while replacing a on tape with \mathbf{b} and head moves left.
$\mathbf{L}(\mathbf{M})$: language accepted by \mathbf{M} is set of all input strings s on which M accepts; that is:
(1) TM is started in state \mathbf{q}_{0}.
(2) Initially, the tape head is located at the first cell.
(0) The tape contain \mathbf{s} on the tape followed by blanks.
(0) The TM halts in the state $\mathbf{q}_{\text {accept }}$.

P via TMs

Definition

\mathbf{M} is a polynomial time TM if there is some polynomial $\mathbf{p}(\cdot)$ such that on all inputs \mathbf{w}, \mathbf{M} halts in $\mathbf{p}(|\mathbf{w}|)$ steps.

Definition

\mathbf{L} is a language in \mathbf{P} iff there is a polynomial time TM \mathbf{M} such that
$L=L(M)$.

NP via TMs

Definition

\mathbf{L} is an NP language iff there is a non-deterministic polynomial time TM \mathbf{M} such that $\mathbf{L}=\mathbf{L}(\mathbf{M})$.

Non-deterministic TM: each step has a choice of moves
(a) $\delta: \mathbf{Q} \times \Gamma \rightarrow \mathcal{P}(\mathbf{Q} \times \Gamma \times\{\mathbb{L}, \mathbf{R}\})$.
(1) Example: $\delta(\mathbf{q}, \mathbf{a})=\left\{\left(\mathbf{q}_{1}, \mathbf{b}, \mathbf{L}\right),\left(\mathbf{q}_{2}, \mathbf{c}, \mathrm{R}\right),\left(\mathrm{q}_{3}, \mathrm{a}, \mathrm{R}\right)\right\}$ means that M can non-deterministically choose one of the three possible moves from (\mathbf{q}, a)
(2) $L(\mathbb{M})$: set of all strings s on which there exists some sequence of valid choices at each step that lead from q_{0} to $\mathrm{q}_{\text {accept }}$

NP via TMs

Definition

\mathbf{L} is an NP language iff there is a non-deterministic polynomial time TM \mathbf{M} such that $\mathbf{L}=\mathbf{L}(\mathbf{M})$.

Non-deterministic TM: each step has a choice of moves
(1) $\delta: \mathbf{Q} \times \Gamma \rightarrow \mathcal{P}(\mathbf{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})$.
(1) Example: $\delta(\mathbf{q}, \mathbf{a})=\left\{\left(\mathbf{q}_{1}, \mathbf{b}, \mathbf{L}\right),\left(\mathbf{q}_{2}, \mathbf{c}, \mathbf{R}\right),\left(\mathbf{q}_{3}, \mathbf{a}, \mathbf{R}\right)\right\}$ means that \mathbf{M} can non-deterministically choose one of the three possible moves from (\mathbf{q}, \mathbf{a}).
(2) L(M): set of all strings s on which there exists some sequence of valid choices at each step that lead from \mathbf{q}_{0} to $\mathbf{q}_{\text {accept }}$

Non-deterministic TMs vs certifiers

Two definition of NP:
(1) \mathbf{L} is in NP iff \mathbf{L} has a polynomial time certifier $\mathbf{C}(\cdot, \cdot)$.
(2) \mathbf{L} is in NP iff \mathbf{L} is decided by a non-deterministic polynomial time TM M.

Claim

Two definitions are equivalent.
Why?
Informal proof idea: the certificate \mathbf{t} for \mathbf{C} corresponds to non-deterministic choices of M and vice-versa.
In other words \mathbf{L} is in NP iff \mathbf{L} is accepted by a NTM which first guesses a proof \mathbf{t} of length poly in input $|\mathbf{s}|$ and then acts as a deterministic TM.

Non-determinism, guessing and verification

(1) A non-deterministic machine has choices at each step and accepts a string if there exists a set of choices which lead to a final state.
(2) Equivalently the choices can be thought of as guessing a solution and then verifying that solution. In this view all the choices are made a priori and hence the verification can be deterministic. The "guess" is the "proof" and the "verifier" is the "certifier".
(3) We reemphasize the asymmetry inherent in the definition of non-determinism. Strings in the language can be easily verified. No easy way to verify that a string is not in the language.

Algorithms: TMs vs RAM Model

Why do we use TMs some times and RAM Model other times?
(1) TMs are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.
(1) Simplicity is useful in proofs.
(2) The "right" formal bare-bones model when dealing with subtleties.
(2) RAM model is a closer approximation to the running time/space usage of realistic computers for reasonable problem sizes
(1) Not appropriate for certain kinds of formal proofs when algorithms can take super-polynomial time and space

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

(1) Hardest problem must be in NP.
(2) Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem \mathbf{X} is said to be NP-Complete if
(1) $X \in N P$, and
(2) (Hardness) For any $\mathbf{Y} \in \mathbf{N P}, \mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if $\mathrm{P}=\mathrm{NP}$.

Proof.

\Rightarrow Suppose \mathbf{X} can be solved in polynomial time
(1) Let $\mathbf{Y} \in \mathrm{NP}$. We know $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$.
(2) We showed that if $\mathbf{Y} \leq_{\boldsymbol{p}} \mathbf{X}$ and \mathbf{X} can be solved in polynomial time, then \mathbf{Y} can be solved in polynomial time.
(3) Thus, every problem $\mathbf{Y} \in \mathbf{N P}$ is such that $\mathbf{Y} \in \mathbf{P}$; $\mathbf{N P} \subseteq \mathbf{P}$.
(c) Since $P \subseteq N P$, we have $P=N P$.
\Leftarrow Since $\mathbf{P}=\mathbf{N P}$, and $\mathbf{X} \in \mathbf{N P}$, we have a polynomial time algorithm for \mathbf{X}.

NP-Hard Problems

Definition

A problem \mathbf{X} is said to be NP-Hard if
(1) (Hardness) For any $\mathbf{Y} \in N P$, we have that $Y \leq_{P} X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

Consequences of proving NP-Completeness

If \mathbf{X} is NP-Complete
(1) Since we believe $\mathrm{P} \neq \mathrm{NP}$,
(2) and solving \mathbf{X} implies $\mathrm{P}=\mathrm{NP}$.
\mathbf{X} is unlikely to be efficiently solvable.

> At the very least, many smart people before you have failed to find an efficient algorithm for \mathbf{X}.
> (This is proof by mob opinion - take with a grain of salt.)

Consequences of proving NP-Completeness

If \mathbf{X} is NP-Complete
(1) Since we believe $\mathrm{P} \neq \mathrm{NP}$,
(2) and solving \mathbf{X} implies $\mathrm{P}=\mathrm{NP}$.
\mathbf{X} is unlikely to be efficiently solvable.
At the very least, many smart people before you have failed to find an efficient algorithm for \mathbf{X}.
(This is proof by mob opinion - take with a grain of salt.)

Consequences of proving NP-Completeness

If \mathbf{X} is NP-Complete
(1) Since we believe $\mathrm{P} \neq \mathrm{NP}$,
(2) and solving \mathbf{X} implies $\mathrm{P}=\mathrm{NP}$.
\mathbf{X} is unlikely to be efficiently solvable.
At the very least, many smart people before you have failed to find an efficient algorithm for \mathbf{X}.
(This is proof by mob opinion - take with a grain of salt.)

Consequences of proving NP-Completeness

If \mathbf{X} is NP-Complete
(1) Since we believe $\mathrm{P} \neq \mathrm{NP}$,
(2) and solving \mathbf{X} implies $\mathrm{P}=\mathrm{NP}$.
\mathbf{X} is unlikely to be efficiently solvable.
At the very least, many smart people before you have failed to find an efficient algorithm for \mathbf{X}.
(This is proof by mob opinion - take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0,1 or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0,1 or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0,1 or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value $\mathbf{1}$?

Theorem (Cook-Levin)

CSAT is NP-Complete.

Need to show
(1) CSAT is in NP.
(2) every NP problem X reduces to CSAT.

CSAT: Circuit Satisfaction

Claim
 CSAT is in NP.

(1) Certificate: Assignment to input variables.
(2) Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

CSAT: Circuit Satisfaction

Claim

CSAT is in NP.

(1) Certificate: Assignment to input variables.
(2) Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

CSAT is NP-hard: Idea

Need to show that every NP problem \mathbf{X} reduces to CSAT.
What does it mean that $X \in N P$?
$\mathbf{X} \in N P$ implies that there are polynomials $\mathbf{p}()$ and $\mathbf{q}()$ and certifier/verifier program \mathbf{C} such that for every string \mathbf{s} the following is true:
(1) If \mathbf{s} is a YES instance $(\mathbf{s} \in \mathbf{X})$ then there is a proof \mathbf{t} of length $\mathbf{p}(|\mathbf{s}|)$ such that $\mathbf{C}(\mathbf{s}, \mathbf{t})$ says YES.
(2) If \mathbf{s} is a NO instance $(\mathbf{s} \notin \mathbf{X})$ then for every string \mathbf{t} of length at $\mathbf{p}(|\mathbf{s}|), \mathbf{C}(\mathbf{s}, \mathbf{t})$ says NO.
(3) $\mathbf{C}(\mathbf{s}, \mathbf{t})$ runs in time $\mathbf{q}(|\mathbf{s}|+|\mathbf{t}|)$ time (hence polynomial time).

Reducing X to CSAT

\mathbf{X} is in NP means we have access to $\mathbf{p}(), \mathbf{q}(), \mathbf{C}(\cdot, \cdot)$.
What is $\mathbf{C}(\cdot, \cdot)$? It is a program or equivalently a Turing Machine! How are $\mathbf{p}()$ and $\mathbf{q}()$ given? As numbers.
Example: if $\mathbf{3}$ is given then $\mathbf{p}(\mathbf{n})=\mathbf{n}^{\mathbf{3}}$.
Thus an NP problem is essentially a three tuple $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ where \mathbf{C} is either a program or a TM.

Reducing X to CSAT

Thus an NP problem is essentially a three tuple $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ where \mathbf{C} is either a program or TM.

Problem X: Given string \mathbf{s}, is $\mathbf{s} \in \mathbf{X}$?
Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says $Y E S$

How do we reduce X to CSAT? Need an algorithm \mathcal{A} that
O takes s (and $\langle\mathrm{p}, \mathrm{q}, \mathrm{C}\rangle$) and creates a circuit G in polynomial time in $|\mathbf{s}|$ (note that $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ are fixed)
(2) \mathbf{G} is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

Reducing X to CSAT

Thus an NP problem is essentially a three tuple $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ where \mathbf{C} is either a program or TM.

Problem X: Given string \mathbf{s}, is $\mathbf{s} \in \mathbf{X}$?
Same as the following: is there a proof \mathbf{t} of length $\mathbf{p}(|\mathbf{s}|)$ such that $\mathbf{C}(\mathbf{s}, \mathrm{t})$ says YES.

How do we reduce \mathbf{X} to CSAT? Need an algorithm \mathcal{A} that
© takes s (and $\langle\mathrm{p}, \mathrm{q}, \mathrm{C}\rangle$) and creates a circuit G in polynomial time in $|\mathbf{s}|$ (note that $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ are fixed).
(3) \mathbf{G} is satisfiable if and only if there is a proof \mathbf{t} such that $\mathrm{C}(\mathrm{s}, \mathrm{t})$ says YES

Reducing X to CSAT

Thus an NP problem is essentially a three tuple $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ where \mathbf{C} is either a program or TM.

Problem X: Given string \mathbf{s}, is $\mathbf{s} \in \mathbf{X}$?
Same as the following: is there a proof \mathbf{t} of length $\mathbf{p}(|\mathbf{s}|)$ such that $\mathbf{C}(\mathbf{s}, \mathrm{t})$ says YES.

How do we reduce \mathbf{X} to CSAT? Need an algorithm \mathcal{A} that
(O) takes $s($ and $\langle p, q, C\rangle)$ and creates a circuit G in polynomial
time in $|\mathrm{s}|$ (note that $\langle\mathrm{p}, \mathrm{q}, \mathrm{C}\rangle$ are fixed).
(3) G is satisfiable if and only if there is a proof t such that $\mathrm{C}(\mathrm{s}, \mathrm{t})$ says YES

Reducing X to CSAT

Thus an NP problem is essentially a three tuple $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ where \mathbf{C} is either a program or TM.

Problem X: Given string \mathbf{s}, is $\mathbf{s} \in \mathbf{X}$?
Same as the following: is there a proof \mathbf{t} of length $\mathbf{p}(|\mathbf{s}|)$ such that $\mathbf{C}(\mathbf{s}, \mathrm{t})$ says YES.

How do we reduce \mathbf{X} to CSAT? Need an algorithm \mathcal{A} that
(1) takes s (and $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$) and creates a circuit \mathbf{G} in polynomial time in $|\mathbf{s}|$ (note that $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ are fixed).
(3) G is satisfiable if and only if there is a proof t such that $\mathrm{C}(\mathrm{s}, \mathrm{t})$ says YES

Reducing X to CSAT

Thus an NP problem is essentially a three tuple $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ where \mathbf{C} is either a program or TM.

Problem X : Given string \mathbf{s}, is $\mathbf{s} \in \mathbf{X}$?
Same as the following: is there a proof \mathbf{t} of length $\mathbf{p}(|\mathbf{s}|)$ such that $\mathbf{C}(\mathbf{s}, \mathrm{t})$ says YES.

How do we reduce \mathbf{X} to CSAT? Need an algorithm \mathcal{A} that
(1) takes \mathbf{s} (and $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$) and creates a circuit \mathbf{G} in polynomial time in $|\mathbf{s}|$ (note that $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ are fixed).
(2) G is satisfiable if and only if there is a proof \mathbf{t} such that $\mathbf{C}(\mathbf{s}, \mathbf{t})$ says YES.

Reducing X to CSAT

How do we reduce \mathbf{X} to CSAT? Need an algorithm \mathcal{A} that
(1) takes s (and $\langle\mathrm{p}, \mathrm{q}, \mathrm{C}\rangle)$ and creates a circuit G in polynomial time in $|\mathbf{s}|$ (note that $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ are fixed).
(2) \mathbf{G} is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
(1) Convert $\mathbf{C}(\mathbf{s}, \mathbf{t})$ into a circuit \mathbf{G} with \mathbf{t} as unknown inputs (rest is known including s)
(2) We know that $|\mathbf{t}|=\mathbf{p}(|\mathbf{s}|)$ so express boolean string \mathbf{t} as $\mathbf{p}(|\mathbf{s}|)$ variables $\mathbf{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{k}}$ where $\mathbf{k}=\mathbf{p}(|\mathbf{s}|)$.
(3) Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to "unknown" variables $\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{\mathbf{k}}$ that will make \mathbf{G} evaluate to true/YE S.

Reducing X to CSAT

How do we reduce \mathbf{X} to CSAT? Need an algorithm \mathcal{A} that
© takes s (and $\langle\mathbf{p}, \mathbf{q}, \mathrm{C}\rangle$) and creates a circuit G in polynomial time in $|\mathbf{s}|$ (note that $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ are fixed).
(2) \mathbf{G} is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
(1) Convert $\mathbf{C}(\mathbf{s}, \mathbf{t})$ into a circuit \mathbf{G} with \mathbf{t} as unknown inputs (rest is known including s)
(2) We know that $|\mathbf{t}|=\mathbf{p}(|\mathbf{s}|)$ so express boolean string \mathbf{t} as $\mathbf{p}(|\mathbf{s}|)$ variables $\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{\mathbf{k}}$ where $\mathbf{k}=\mathbf{p}(|\mathbf{s}|)$
(3) Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to "unknown" variables $\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{\mathrm{k}}$ that will make \mathbf{G} evaluate to true/YE S.

Reducing X to CSAT

How do we reduce \mathbf{X} to CSAT? Need an algorithm \mathcal{A} that
(1) takes \mathbf{s} (and $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$) and creates a circuit \mathbf{G} in polynomial time in $|\mathbf{s}|$ (note that $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ are fixed).
(2) \mathbf{G} is satisfiable if and only if there is a proof \mathbf{t} such that $\mathbf{C}(\mathbf{s}, \mathbf{t})$ says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
(1) Convert $\mathbf{C}(\mathbf{s}, \mathbf{t})$ into a circuit \mathbf{G} with \mathbf{t} as unknown inputs (rest is known including s)
(2) We know that $|\mathbf{t}|=\mathbf{p}(|\mathbf{s}|)$ so express boolean string \mathbf{t} as $\mathbf{p}(|\mathbf{s}|)$ variables $\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{\mathbf{k}}$ where $\mathbf{k}=\mathbf{p}(|\mathbf{s}|)$
(3) Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to "unknown" variables $\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{\mathbf{k}}$ that will make \mathbf{G} evaluate to true/YES.

Reducing \mathbf{X} to CSAT

How do we reduce \mathbf{X} to CSAT? Need an algorithm \mathcal{A} that
(1) takes \mathbf{s} (and $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$) and creates a circuit \mathbf{G} in polynomial time in $|\mathbf{s}|$ (note that $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ are fixed).
(2) G is satisfiable if and only if there is a proof \mathbf{t} such that $\mathbf{C}(\mathbf{s}, \mathbf{t})$ says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
© Convert $\mathrm{C}(\mathrm{s}, \mathrm{t})$ into a circuit G with t as unknown inputs (rest is known including s)
(2) We know that $|\mathbf{t}|=\mathbf{p}(|\mathbf{s}|)$ so express boolean string t as $\mathrm{p}(|\mathrm{s}|)$ variables $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{k}}$ where $\mathrm{k}=\mathrm{p}(|\mathrm{s}|)$

- Asking if there is a proof \mathbf{t} that makes $\mathbf{C}(\mathbf{s}, \mathrm{t})$ say YES is same as whether there is an assignment of values to "unknown" variables $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{k}}$ that will make G evaluate to true $/ \mathrm{YES}$.

Reducing \mathbf{X} to CSAT

How do we reduce \mathbf{X} to CSAT? Need an algorithm \mathcal{A} that
(1) takes \mathbf{s} (and $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$) and creates a circuit \mathbf{G} in polynomial time in $|\mathbf{s}|$ (note that $\langle\mathbf{p}, \mathbf{q}, \mathbf{C}\rangle$ are fixed).
(2) G is satisfiable if and only if there is a proof \mathbf{t} such that $\mathbf{C}(\mathbf{s}, \mathbf{t})$ says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
(1) Convert $\mathbf{C}(\mathbf{s}, \mathbf{t})$ into a circuit \mathbf{G} with \mathbf{t} as unknown inputs (rest is known including s)
(2) We know that $|\mathbf{t}|=\mathbf{p}(|\mathbf{s}|)$ so express boolean string \mathbf{t} as $\mathbf{p}(|\mathbf{s}|)$ variables $\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{\mathrm{k}}$ where $\mathbf{k}=\mathbf{p}(|\mathbf{s}|)$.
(0) Asking if there is a proof \mathbf{t} that makes $\mathbf{C}(\mathbf{s}, \mathbf{t})$ say YES is same as whether there is an assignment of values to "unknown" variables $\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{\mathbf{k}}$ that will make \mathbf{G} evaluate to true/YES.

Example: Independent Set

(1) Problem: Does $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ have an Independent Set of size $\geq \mathbf{k}$?
(1) Certificate: Set $\mathbf{S} \subseteq \mathbf{V}$.
(2) Certifier: Check $|\mathbf{S}| \geq \mathbf{k}$ and no pair of vertices in \mathbf{S} is connected by an edge.

> Formally, why is Independent Set in NP?

Example: Independent Set

(1) Problem: Does $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ have an Independent Set of size $\geq \mathbf{k}$?
(1) Certificate: Set $\mathbf{S} \subseteq \mathbf{V}$.
(2) Certifier: Check $|\mathbf{S}| \geq \mathbf{k}$ and no pair of vertices in \mathbf{S} is connected by an edge.

Formally, why is Independent Set in NP?

Example: Independent Set

Formally why is Independent Set in NP?
(1) Input:
$<\mathbf{n}, \mathbf{y}_{1,1}, \mathrm{y}_{1,2}, \ldots, \mathrm{y}_{1, \mathrm{n}}, \mathrm{y}_{2,1}, \ldots, \mathrm{y}_{2, \mathrm{n}}, \ldots, \mathrm{y}_{\mathrm{n}, 1}, \ldots, \mathrm{y}_{\mathrm{n}, \mathrm{n}}, k>$ encodes $\langle\mathbf{G}, \mathbf{k}\rangle$.
(1) \mathbf{n} is number of vertices in \mathbf{G}
(2) $\mathbf{y}_{\mathbf{i}, \mathbf{j}}$ is a bit which is $\mathbf{1}$ if edge (\mathbf{i}, \mathbf{j}) is in \mathbf{G} and $\mathbf{0}$ otherwise (adjacency matrix representation)
(3) \mathbf{k} is size of independent set.
(2) Certificate: $\mathbf{t}=\mathbf{t}_{\mathbf{1}} \mathbf{t}_{\mathbf{2}} \ldots \mathbf{t}_{\mathbf{n}}$. Interpretation is that $\mathbf{t}_{\mathbf{i}}$ is $\mathbf{1}$ if vertex \mathbf{i} is in the independent set, $\mathbf{0}$ otherwise.

Certifier for Independent Set

Certifier C(s, t) for Independent Set:

```
if (t
    return NO
else
    for each (i,j) do
        if (ti
            return NO
```

return YES

Example: Independent Set

A certifier circuit for Independent Set

Programs, Turing Machines and Circuits

Consider "program" \mathbf{A} that takes $\mathbf{f}(|\mathbf{s}|)$ steps on input string s.
Question: What computer is the program running on and what does step mean?
Real computers difficult to reason with mathematically because
(1) instruction set is too rich
(3) pointers and control flow jumps in one step

O assumption that pointer to code fits in one word

Turing Machines
(1) simpler model of computation to reason with
(3) can simulate real computers with polynomial slow down
© all moves are local (head moves only one cell)

Programs, Turing Machines and Circuits

Consider "program" A that takes $\mathbf{f}(|\mathbf{s}|)$ steps on input string s.
Question: What computer is the program running on and what does step mean?
Real computers difficult to reason with mathematically because
(1) instruction set is too rich
(3) pointers and control flow jumps in one step
(0) assumption that pointer to code fits in one word

Turing Machines
(1) simpler model of computation to reason with
(2) can simulate real computers with polynomial slow down
(0) all moves are local (head moves only one cell)

Certifiers that at TMs

Assume $\mathbf{C}(\cdot, \cdot)$ is a (deterministic) Turing Machine \mathbf{M}
Problem: Given \mathbf{M}, input $\mathbf{s}, \mathbf{p}, \mathbf{q}$ decide if there is a proof \mathbf{t} of length $\mathbf{p}(|\mathbf{s}|)$ such that \mathbf{M} on \mathbf{s}, \mathbf{t} will halt in $\mathbf{q}(|\mathbf{s}|)$ time and say YES.

There is an algorithm \mathcal{A} that can reduce above problem to CSAT mechanically as follows.
(1) \mathcal{A} first computes $\mathbf{p}(|\mathbf{s}|)$ and $\mathbf{q}(|\mathbf{s}|)$.
(2) Knows that \mathbf{M} can use at most $\mathbf{q}(|\mathbf{s}|)$ memory/tape cells
(3) Knows that \mathbf{M} can run for at most $\mathbf{q}(|\mathbf{s}|)$ time
(- Simulates the evolution of the state of \mathbf{M} and memory over time using a big circuit.

Simulation of Computation via Circuit

(1) Think of M's state at time ℓ as a string $x^{\ell}=x_{1} \mathbf{x}_{2} \ldots \mathbf{x}_{\mathbf{k}}$ where each $x_{i} \in\{0,1, B\} \times \mathbf{Q} \cup\left\{q_{-1}\right\}$.
(2) At time $\mathbf{0}$ the state of \mathbf{M} consists of input string \mathbf{s} a guess \mathbf{t} (unknown variables) of length $\mathbf{p}(|\mathbf{s}|)$ and rest $\mathbf{q}(|\mathbf{s}|)$ blank symbols.
(3) At time $\mathbf{q}(|\mathbf{s}|)$ we wish to know if \mathbf{M} stops in $\mathbf{q}_{\text {accept }}$ with say all blanks on the tape.
(9) We write a circuit \mathbf{C}_{ℓ} which captures the transition of \mathbf{M} from time ℓ to time $\ell+1$.
(5) Composition of the circuits for all times $\mathbf{0}$ to $\mathbf{q}(|\mathbf{s}|)$ gives a big (still poly) sized circuit \mathcal{C}
(0) The final output of \mathcal{C} should be true if and only if the entire state of \mathbf{M} at the end leads to an accept state.

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:
(1) Use TMs as the code for certifier for simplicity
(2) Since $\mathbf{p}()$ and $\mathbf{q}()$ are known to \mathcal{A}, it can set up all required memory and time steps in advance

- Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time
Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:
(1) Use TMs as the code for certifier for simplicity
(2) Since $\mathbf{p}()$ and $\mathbf{q}()$ are known to \mathcal{A}, it can set up all required memory and time steps in advance

- Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time
Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.

SAT is NP-Complete

(1) We have seen that SAT \in NP
(2) To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT Instance of CSAT (we label each node):

Converting a circuit into a CNF formula

 Label the nodes
(A) Input circuit

Inputs
(B) Label the nodes.

Converting a circuit into a CNF formula

 Introduce a variable for each node
(B) Label the nodes.

(C) Introduce var for each node.

Converting a circuit into a CNF formula

 Write a sub-formula for each variable that is true if the var is computed correctly.$\mathbf{x}_{\mathbf{k}} \quad$ (Demand a sat' assignment!)

(C) Introduce var for each node. $x_{k}=x_{i} \wedge x_{k}$
$x_{j}=x_{g} \wedge x_{h}$
$x_{i}=\neg x_{f}$
$x_{h}=x_{d} \vee x_{e}$
$x_{g}=x_{b} \vee x_{c}$
$x_{f}=x_{a} \wedge x_{b}$
$x_{d}=0$
$x_{a}=1$
(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Converting a circuit into a CNF formula

 Convert each sub-formula to an equivalent CNF formula| X_{k} | x_{k} |
| :---: | :---: |
| $x_{k}=x_{i} \wedge x_{j}$ | $\left(\neg x_{k} \vee x_{i}\right) \wedge\left(\neg x_{k} \vee x_{j}\right) \wedge\left(x_{k} \vee \neg x_{i} \vee \neg x_{j}\right)$ |
| $x_{j}=x_{g} \wedge x_{h}$ | $\left(\neg x_{j} \vee x_{g}\right) \wedge\left(\neg x_{j} \vee x_{h}\right) \wedge\left(x_{j} \vee \neg x_{g} \vee \neg x^{\prime}\right)$ |
| $\mathrm{x}_{\mathrm{i}}=\neg \mathrm{x}_{\mathrm{f}}$ | $\left(\mathrm{x}_{\mathrm{i}} \vee \mathrm{x}_{\mathrm{f}}\right) \wedge\left(\neg \mathrm{x}_{\mathrm{i}} \vee \mathrm{x}_{\mathrm{f}}\right)$ |
| $\mathrm{x}_{\mathrm{h}}=\mathrm{x}_{\mathrm{d}} \vee \mathrm{x}_{\mathrm{e}}$ | $\left(x_{h} \vee \neg x_{d}\right) \wedge\left(x_{h} \vee \neg x_{e}\right) \wedge\left(\neg x_{h} \vee x_{d} \vee x_{e}\right)$ |
| $\mathrm{x}_{\mathrm{g}}=\mathrm{x}_{\mathrm{b}} \vee \mathrm{x}_{\mathrm{c}}$ | $\left(x_{g} \vee \neg x_{b}\right) \wedge\left(x_{g} \vee \neg x_{c}\right) \wedge\left(\neg x_{g} \vee x_{b} \vee x_{c}\right)$ |
| $\mathrm{x}_{\mathrm{f}}=\mathrm{x}_{\mathrm{a}} \wedge \mathrm{x}_{\mathrm{b}}$ | $\left(\neg x_{f} \vee x_{a}\right) \wedge\left(\neg x_{f} \vee x_{b}\right) \wedge\left(x_{f} \vee \neg x_{a} \vee \neg x_{b}\right)$ |
| $\mathrm{x}_{\mathrm{d}}=0$ | $\neg \mathrm{X}_{\mathrm{d}}$ |
| $\mathrm{x}_{\mathrm{a}}=1$ | x_{a} |

Converting a circuit into a CNF formula

Take the conjunction of all the CNF sub-formulas

$$
\begin{aligned}
& x_{k} \wedge\left(\neg x_{k} \vee x_{i}\right) \wedge\left(\neg x_{k} \vee x_{j}\right) \\
& \wedge\left(x_{k} \vee \neg x_{i} \vee \neg x_{j}\right) \wedge\left(\neg x_{j} \vee x_{g}\right) \\
& \wedge\left(\neg x_{j} \vee x_{h}\right) \wedge\left(x_{j} \vee \neg x_{g} \vee \neg x_{h}\right) \\
& \wedge\left(x_{i} \vee x_{f}\right) \wedge\left(\neg x_{i} \vee x_{f}\right) \\
& \wedge\left(x_{h} \vee \neg x_{d}\right) \wedge\left(x_{h} \vee \neg x_{e}\right) \\
& \wedge\left(\neg x_{h} \vee x_{d} \vee x_{e}\right) \wedge\left(x_{g} \vee \neg x_{b}\right) \\
& \wedge\left(x_{g} \vee \neg x_{c}\right) \wedge\left(\neg x_{g} \vee x_{b} \vee x_{c}\right) \\
& \wedge\left(\neg x_{f} \vee x_{a}\right) \wedge\left(\neg x_{f} \vee x_{b}\right) \\
& \wedge\left(x_{f} \vee \neg x_{a} \vee \neg x_{b}\right) \wedge\left(\neg x_{d}\right) \wedge x_{a}
\end{aligned}
$$

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Reduction: CSAT \leq_{p} SAT

(1) For each gate (vertex) \mathbf{v} in the circuit, create a variable $\mathbf{x}_{\mathbf{v}}$
(2) Case \neg : \mathbf{v} is labeled \neg and has one incoming edge from \mathbf{u} (so $\left.x_{v}=\neg x_{u}\right)$. In SAT formula generate, add clauses ($x_{u} \vee x_{v}$), $\left(\neg x_{u} \vee \neg x_{v}\right)$. Observe that

$$
x_{v}=\neg x_{u} \text { is true } \Longleftrightarrow \begin{aligned}
& \left(x_{u} \vee x_{v}\right) \\
& \left(\neg x_{u} \vee \neg x_{v}\right)
\end{aligned} \text { both true. }
$$

Reduction: CSAT \leq_{p} SAT

Continued...

(1) Case V : So $x_{v}=x_{u} \vee x_{w}$. In SAT formula generated, add clauses $\left(x_{v} \vee \neg \mathbf{x}_{\mathrm{u}}\right),\left(\mathbf{x}_{\mathrm{v}} \vee \neg \mathrm{x}_{\mathrm{w}}\right)$, and $\left(\neg \mathbf{x}_{\mathrm{v}} \vee \mathbf{x}_{\mathrm{u}} \vee \mathbf{x}_{\mathrm{w}}\right)$. Again, observe that

$$
\left(x_{v}=x_{u} \vee x_{w}\right) \text { is true } \Longleftrightarrow \begin{aligned}
& \left(x_{v} \vee \neg x_{u}\right), \\
& \left(x_{v} \vee \neg x_{w}\right), \\
& \left(\neg x_{v} \vee x_{u} \vee x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{p} SAT

Continued...

(1) Case \wedge : So $x_{v}=x_{u} \wedge x_{w}$. In SAT formula generated, add clauses $\left(\neg \mathbf{x}_{\mathrm{v}} \vee \mathrm{x}_{\mathrm{u}}\right)$, $\left(\neg \mathrm{x}_{\mathrm{v}} \vee \mathrm{x}_{\mathrm{w}}\right)$, and $\left(\mathrm{x}_{\mathrm{v}} \vee \neg \mathrm{x}_{\mathrm{u}} \vee \neg \mathrm{x}_{\mathrm{w}}\right)$. Again observe that

$$
x_{v}=x_{u} \wedge x_{w} \text { is true } \Longleftrightarrow \begin{aligned}
& \left(\neg x_{v} \vee x_{u}\right), \\
& \left(\neg x_{v} \vee x_{w}\right), \\
& \left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{p} SAT

Continued...

(1) If \mathbf{v} is an input gate with a fixed value then we do the following. If $\mathbf{x}_{\mathbf{v}}=\mathbf{1}$ add clause $\mathbf{x}_{\mathbf{v}}$. If $\mathbf{x}_{\mathbf{v}}=\mathbf{0}$ add clause $\neg \mathbf{x}_{\mathbf{v}}$
(2) Add the clause $\mathbf{x}_{\mathbf{v}}$ where \mathbf{v} is the variable for the output gate

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_{c} is satisfiable
\Rightarrow Consider a satisfying assignment a for \mathbf{C}
(1) Find values of all gates in \mathbf{C} under a
(2) Give value of gate \mathbf{v} to variable $\mathbf{x}_{\mathbf{v}}$; call this assignment \mathbf{a}^{\prime}
(3) \mathbf{a}^{\prime} satisfies $\varphi \mathrm{C}$ (exercise)
\Leftarrow Consider a satisfying assignment a for φ_{C}
(1) Let \mathbf{a}^{\prime} be the restriction of a to only the input variables
(2) Value of gate \mathbf{v} under \mathbf{a}^{\prime} is the same as value of $\mathbf{x}_{\mathbf{v}}$ in \mathbf{a}
(3) Thus, \mathbf{a}^{\prime} satisfies \mathbf{C}

Theorem

SAT is NP-Complete.

Proving that a problem X is NP-Complete

To prove \mathbf{X} is NP-Complete, show
(1) Show \mathbf{X} is in NP.
(1) certificate/proof of polynomial size in input
(2) polynomial time certifier $\mathbf{C}(\mathbf{s}, \mathbf{t})$
(2) Reduction from a known NP-Complete problem such as CSAT or SAT to \mathbf{X}

SAT $\leq_{p} X$ implies that every NP problem $\mathbf{Y} \leq_{p} \mathbf{X}$. Why?
 Transitivity of reductions:

Proving that a problem X is NP-Complete

To prove \mathbf{X} is NP-Complete, show
(1) Show X is in NP.
(1) certificate/proof of polynomial size in input
(2) polynomial time certifier $\mathbf{C}(\mathbf{s}, \mathbf{t})$
(2) Reduction from a known NP-Complete problem such as CSAT or SAT to X

SAT $\leq_{P} \mathbf{X}$ implies that every NP problem $\mathbf{Y} \leq_{P} \mathbf{X}$. Why?
Transitivity of reductions:
$\mathbf{Y} \leq_{P}$ SAT and $\mathbf{S A T} \leq_{P} \mathbf{X}$ and hence $\mathbf{Y} \leq_{P} \mathbf{X}$.

Proving that a problem X is NP-Complete

To prove \mathbf{X} is NP-Complete, show
(1) Show X is in NP.
(1) certificate/proof of polynomial size in input
(2) polynomial time certifier $\mathbf{C}(\mathbf{s}, \mathbf{t})$
(2) Reduction from a known NP-Complete problem such as CSAT or SAT to X

SAT $\leq_{\mathbf{P}} \mathbf{X}$ implies that every NP problem $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$. Why?
Transitivity of reductions:
$\mathbf{Y} \leq_{\mathbf{P}}$ SAT and $\mathbf{S A T} \leq_{P} \mathbf{X}$ and hence $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$.

NP-Completeness via Reductions

(1) CSAT is NP-Complete.
(2) CSAT \leq_{p} SAT and SAT is in NP and hence SAT is NP-Complete.
(0) SAT $\leq_{p} 3$-SAT and hence 3-SAT is NP-Complete.
(0) 3-SAT \leq_{p} Independent Set (which is in NP) and hence Independent Set is NP-Complete.
(0) Vertex Cover is NP-Complete.

- Clique is NP-Complete.

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

NP-Completeness via Reductions

(1) CSAT is NP-Complete.
(2) CSAT \leq_{p} SAT and SAT is in NP and hence SAT is NP-Complete.
(0) SAT $\leq_{p} 3$-SAT and hence 3-SAT is NP-Complete.
(0) 3-SAT \leq_{p} Independent Set (which is in NP) and hence Independent Set is NP-Complete.
(0) Vertex Cover is NP-Complete.

- Clique is NP-Complete.

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Notes

Notes

Notes

Notes

