CS 473: Fundamental Algorithms, Spring 2013

NP Completeness and
Cook-Levin Theorem

and and Turing Machines

@ P: set of decision problems that have polynomial time
algorithms.

© NP: set of decision problems that have polynomial time
non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of
computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2 /55

Lecture 22
April 17, 2013
Sariel, Alexandra (UIUC) CS473 1 Spring 2013 1 /55
Turing Machines: Recap
finite-state
control
head
el - Pa[uu]
tape
@ Infinite tape.
@ Finite state control.
© Input at beginning of tape.
@ Special tape letter “blank™ LJ.
© Head can move only one cell to left or right.
Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3/55

Turing Machines: Formally

ATM M = (Qa za ra 69 90, Jaccept s Qreject):

Q@ Q is set of states in finite control

@ (qp start state, Qaccept IS accept state, Qreject IS reject state

@ X is input alphabet, T is tape alphabet (includes LI)

Q 0:QxTI— {L,R} xT x Q is transition function

@ d(q,a) = (q’, b, L) means that M in state q and head seeing a

on tape will move to state q’ while replacing a on tape with b
and head moves left.

L(M): language accepted by M is set of all input strings s on which
M accepts; that is:

©@ TM is started in state qp.

@ Initially, the tape head is located at the first cell.
© The tape contain s on the tape followed by blanks.
@ The TM halts in the state qaccept-

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 /55

via S

Definition
M is a polynomial time TM if there is some polynomial p(+) such
that on all inputs w, M halts in p(|w|) steps.

Definition
L is a language in P iff there is a polynomial time TM M such that
L = L(M).

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 /55

Non-deterministic s vs certifiers

Two definition of NP:
© L isin NP iff L has a polynomial time certifier C(-, -).

@ Lisin NP iff L is decided by a non-deterministic polynomial
time TM M.

Claim J

Two definitions are equivalent.

Why?

Informal proof idea: the certificate t for C corresponds to
non-deterministic choices of M and vice-versa.

In other words L is in NP iff L is accepted by a N'T'M which first
guesses a proof t of length poly in input |s| and then acts as a
deterministic T M.

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 /55

via S

Definition
L is an NP language iff there is a non-deterministic polynomial time
TM M such that L = L(M).

Non-deterministic TM: each step has a choice of moves
Qi:QxTI—PQXxT x {L,R}).

© Example: 6((], a) = {(qla b, L)? (qz’ c R)’ (Q3, a, R)} means
that M can non-deterministically choose one of the three
possible moves from (q, a).

@ L(M): set of all strings s on which there exists some sequence
of valid choices at each step that lead from qg t0 Qaccept

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 /55

Non-determinism, guessing and verification

@ A non-deterministic machine has choices at each step and
accepts a string if there exists a set of choices which lead to a
final state.

@ Equivalently the choices can be thought of as guessing a solution
and then verifying that solution. In this view all the choices are
made a priori and hence the verification can be deterministic.
The “guess” is the “proof” and the “verifier” is the “certifier”.

© We reemphasize the asymmetry inherent in the definition of
non-determinism. Strings in the language can be easily verified.
No easy way to verify that a string is not in the language.

Sariel, Alexandra (UIUC) CS473 8 Spring 2013 8 /55

Algorithms: S VS Model

Why do we use T Ms some times and RAM Model other times?

@ T Ms are very simple: no complicated instruction set, no
jumps/pointers, no explicit loops etc.

@ Simplicity is useful in proofs.
@ The “right” formal bare-bones model when dealing with
subtleties.

@ RAM model is a closer approximation to the running
time/space usage of realistic computers for reasonable problem
sizes

@ Not appropriate for certain kinds of formal proofs when
algorithms can take super-polynomial time and space

“Hardest” Problems

Question
What is the hardest problem in NP7 How do we define it?

Towards a definition
© Hardest problem must be in NP.
© Hardest problem must be at least as “difficult” as every other

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 /55
Problems
Definition
A problem X is said to be NP-Complete if
Q@ X &€ NP, and

@ (Hardness) For any Y € NP, Y <p X.

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 55

problem in NP.
Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 55
Solving Problems
Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.

=> Suppose X can be solved in polynomial time
@ LetY € NP. We know Y <p X.
@ We showed that if Y <p X and X can be solved in polynomial
time, then Y can be solved in polynomial time.
© Thus, every problem Y € NP is such that Y € P; NP C P.
@ Since P C NP, we have P = NP.

<= Since P = NP, and X € NP, we have a polynomial time
algorithm for X. O]

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 / 55

NP-Hard Problems

Definition
A problem X is said to be NP-Hard if
© (Hardness) For any Y € NP, we have that Y <p X.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 / 55
Problems
Question
Are there any problems that are NP-Complete?
Answer
Yes! Many, many problems are NP-Complete.
Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 55

Consequences of proving ness

If X is NP-Complete

© Since we believe P # NP,

@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find

an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 55

Circuits

Definition
A circuit is a directed acyclic graph with

© Input vertices (without
incoming edges) labelled with
0, 1 or a distinct variable.

© Every other vertex is labelled
V, N\ or —.

© Single node output vertex
with no outgoing edges.

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 55

Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables
that causes the output to get value 17

Theorem (Cook-Levin)
CSAT is NP-Complete.

Need to show
Q@ CSAT isin NP.
@ every NP problem X reduces to CSAT.

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 55

is -hard: Idea
Need to show that every NP problem X reduces to CSAT.

What does it mean that X € NP?

X € NP implies that there are polynomials p() and q() and
certifier /verifier program C such that for every string s the following
is true:

Q If sis a YES instance (s € X) then there is a proof t of length
p(|s|) such that C(s, t) says YES.

@ If sis a NO instance (s € X) then for every string t of length at
p(|s]), C(s, t) says NO.
@ C(s,t) runsin time q(|s| + |t|) time (hence polynomial time).

Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 55

- Circuit Satisfaction

Claim
CSAT s in NP. J

@ Certificate: Assignment to input variables.

@ Certifier: Evaluate the value of each gate in a topological sort of
DAG and check the output gate value.

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 55

Reducing ~ to

Xis in NP means we have access to p(), q(), C(:,-).

What is C(+,+)? It is a program or equivalently a Turing Machine!
How are p() and q() given? As numbers.

Example: if 3 is given then p(n) = nd.

Thus an NP problem is essentially a three tuple (p, q, C) where C is
either a program or a TM.

Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20 / 55

Reducing ~ to

Thus an NP problem is essentially a three tuple (p, q, C) where C is
either a program or TM.

Problem X: Given string s, is s € X7

Same as the following: is there a proof t of length p(|s|) such that
C(s, t) says YES.

How do we reduce X to CSAT? Need an algorithm A that

© takes s (and (p,q, C)) and creates a circuit G in polynomial
time in |s| (note that (p, q, C) are fixed).

@ G is satisfiable if and only if there is a proof t such that C(s, t)
says YES.

Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 /55

Reducing ~ to

How do we reduce X to CSAT? Need an algorithm A that

Q takes s (and (p,q, C)) and creates a circuit G in polynomial
time in |s| (note that (p, q, C) are fixed).

@ G is satisfiable if and only if there is a proof t such that C(s, t)
says YES

Simple but Big |dea: Programs are essentially the same as Circuits!

© Convert C(s, t) into a circuit G with t as unknown inputs (rest
is known including s)

@ We know that |t| = p(|s|) so express boolean string t as p(|s|)
variables ty, ta, . .., tx where k = p(]s|).

© Asking if there is a proof t that makes C(s, t) say YES is same
as whether there is an assignment of values to “unknown”

Example:
@ Problem: Does G = (V, E) have an Independent Set of size
> k?
@ Certificate: Set S C V.

@ Certifier: Check |S| > k and no pair of vertices in S is
connected by an edge.

Formally, why is Independent Set in NP?

variables ty, ta, . .., tx that will make G evaluate to true/YES.

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 /55

Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 /55

Example:

Formally why is Independent Set in NP?
@ Input:

< N, ¥1,15¥1,29 - -9 Y1,n9 Y219+« -5 ¥Y2ns -« -5 ¥Yn1s- -5 ¥Yn,ny k >
encodes < G,k >.

@ n is number of vertices in G

@ i is a bit which is 1 if edge (i, j) is in G and 0 otherwise
(adjacency matrix representation)
© k is size of independent set.

@ Certificate: t = tity...t,. Interpretation is that t; is 1 if vertex
i is in the independent set, 0 otherwise.

Sariel, Alexandra (UIUC) CS473 24

Spring 2013 24 / 55

Certifier for
Certifier C(s, t) for Independent Set:

if 41 +t24...4t, <k) then
return NO
else
for each (i,j) do
if (A LA Yi,j) then
return NO

return YES

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 55

Programs, Turing Machines and Circuits

Consider “program” A that takes f(|s|) steps on input string s.

Question: What computer is the program running on and what does
step mean?

Real computers difficult to reason with mathematically because
@ instruction set is too rich
@ pointers and control flow jumps in one step

© assumption that pointer to code fits in one word

Turing Machines
© simpler model of computation to reason with
@ can simulate real computers with polynomial slow down
@ all moves are local (head moves only one cell)

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 55

Example: Independent Set

Figure: Graph
G with k =2

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 55

Certifiers that at S

Assume C(-, +) is a (deterministic) Turing Machine M

Problem: Given M, input s, p, q decide if there is a proof t of length
p(|s|) such that M on s, t will halt in q(|s|) time and say YES.

There is an algorithm A that can reduce above problem to CSAT
mechanically as follows.

Q A first computes p(|s|) and q(|s]|).
@ Knows that M can use at most q(|s|) memory/tape cells
@ Knows that M can run for at most q(|s|) time

@ Simulates the evolution of the state of M and memory over time
using a big circuit.

Sariel, Alexandra (UIUC) CS473 28 Spring 2013 28 / 55

Simulation of Computation via Circuit
@ Think of M's state at time £ as a string x = x;X . . . X, Where
each x; € {0,1,B} x QU {q_1}.
@ At time 0 the state of M consists of input string s a guess t
(unknown variables) of length p(|s|) and rest q(|s|) blank

symbols.

@ At time q(|s|) we wish to know if M stops in qaccept With say all
blanks on the tape.

© We write a circuit C, which captures the transition of M from
time £ to time £ + 1.

@ Composition of the circuits for all times 0 to q(|s|) gives a big
(still poly) sized circuit C

@ The final output of C should be true if and only if the entire

state of M at the end leads to an accept state.

Sariel, Alexandra (UIUC) CS473 29 Spring 2013 29 / 55

ness of Circuit Satisfaction

Key Ideas in reduction:
@ Use TMs as the code for certifier for simplicity

@ Since p() and q() are known to A, it can set up all required
memory and time steps in advance

© Simulate computation of the TM from one time to the next as
a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to SAT as well. Reduction to
SAT was the original proof of Steve Cook.

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 / 55

IS
@ We have seen that SAT € NP

@ To show NP-Hardness, we will reduce Circuit Satisfiability
(CSAT) to SAT
Instance of CSAT (we label each node):

Sariel, Alexandra (UIUC) CS473 31 Spring 2013 31/55

Converting a circuit into a formula

Output: Output:

Inputs Inputs

(A) Input circuit (B) Label the nodes.

Sariel, Alexandra (UIUC) CS473 32 Spring 2013 32 /55

Converting a circuit into a formula Converting a circuit into a formula

xx (Demand a sat’ assignment!)
Xk = X;j /\ Xk

Xj = Xg /\ Xp

Xj = X

Xp = Xq V Xe

Xg = Xp V Xc

Xf = Xa A\ Xp

X4 = 0

Inputs Xa = 1
(B) Label the nodes. (C) Introduce var for each node. (D) Write a sub-formula for
(C) Introduce var for each node. each variable that is true if the

var is computed correctly.

Sariel, Alexandra (UIUC) CS473 33 Spring 2013 33 /55 Sariel, Alexandra (UIUC) CS473 34 Spring 2013 34 /55

Converting a circuit into a formula Converting a circuit into a formula

Xk N (—IXk Vv Xi) VAN (—|Xk Vv Xj)

A (% V2% V =x) A (x5 V xg)
VAN (_lXj Vv Xh) VAN (Xj Vv —Xg Vv —th)
VAN (Xi Vv Xf) VAN (—|Xi Vv Xf)

VAN (Xh \Y _|Xd) N (Xh Vv —|xe)

A (7xh V Xg V Xe) A (Xg V —Xp)

Xk Xk
Xk = X; A\ Xj (—le A\ Xi) VAN (—|Xk Vv Xj) VAN (Xk V —x; V —|Xj)
X; = Xg A Xn || (5% V xg) A (7% V xp) A (X V —%Xg V Xp)
Xj = —X¢ (xi V x¢) A (5% V x¢)

Xph =Xd V Xe || (X0 V 7%Xg) A (Xn V %) A (5% V Xg V Xe)
Xg = Xp V Xc || (Xg V %) A (Xg V %) A (—%Xg V Xp V Xc) A (g V %) A (—Xg V Xp V Xc)
Xf = Xa A Xp || (7% V Xa) A (5% V Xp) A (X5 V X5 V —Xp) A (7x5 V Xa) A (x5 V Xp)

xg =0 —1Xg fuputs A (x¢V 2%, V 2xp) A (—5Xg) A X,

X =1 Xa

We got a CNF formula that is satisfiable if and only if the original
circuit is satisfiable.

Sariel, Alexandra (UIUC) CS473 35 Spring 2013 35 /55 Sariel, Alexandra (UIUC) CS473 36 Spring 2013 36 / 55

Reduction:

@ For each gate (vertex) v in the circuit, create a variable x,

@ Case —: v is labeled — and has one incoming edge from u (so
Xy = —X,). In SAT formula generate, add clauses (x, V x,),
(—xy V —x,). Observe that

. Xy V X
Xy, = —X, IS true < (xu V' %) both true.
(—|xu \Y —IXV)
Sariel, Alexandra (UIUC) CS473 37 Spring 2013 37 /55

Reduction:

@ Case A: So xy, = Xy A Xy. In SAT formula generated, add
clauses (=%, V xy), (4%, V xy), and (x, V =%, V =%,). Again
observe that

(—xv V x4),
Xy = X, A Xy IS true <= (—xv V xu), all true.
(xv V 7%y V —xy)

Sariel, Alexandra (UIUC) CS473 39 Spring 2013 39 /55

Reduction:

Q@ Case V: So xy = X4 V Xy. In SAT formula generated, add
clauses (x, V —x,), (xv V —xy), and (—x, V x, V xy). Again,
observe that

(xv V —xy),
(xv =x, V xw> is true <= (xv V —1xy), all true.
(—xv V x4 V xy)

Sariel, Alexandra (UIUC) CS473 38 Spring 2013 38 /55

Reduction:

@ If vis an input gate with a fixed value then we do the following.
If x, = 1 add clause x,. If x, = 0 add clause —x,

@ Add the clause x, where v is the variable for the output gate

Sariel, Alexandra (UIUC) CS473 40 Spring 2013 40 / 55

Correctness of Reduction

Need to show circuit C is satisfiable iff ¢¢ is satisfiable

=> Consider a satisfying assignment a for C
@ Find values of all gates in C under a
@ Give value of gate v to variable x,; call this assignment a’
© a’ satisfies ¢ (exercise)

<= Consider a satisfying assignment a for ¢

© Let @’ be the restriction of a to only the input variables
@ Value of gate v under @’ is the same as value of x, in a
© Thus, a’ satisfies C

Theorem
SAT is NP-Complete.

Sariel, Alexandra (UIUC) CS473 41 Spring 2013

41 /55

ness via Reductions

@ CSAT is NP-Complete.

@ CSAT <p SAT and SAT is in NP and hence SAT is
NP-Complete.

© SAT <p 3-SAT and hence 3-SAT is NP-Complete.

Q@ 3-SAT <p Independent Set (which is in NP) and hence
Independent Set is NP-Complete.

© Vertex Cover is NP-Complete.
O Clique is NP-Complete.

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Sariel, Alexandra (UIUC) CS473 43 Spring 2013

43 / 55

Proving that a problem is

To prove X is NP-Complete, show
© Show X isin NP.

@ certificate/proof of polynomial size in input
@ polynomial time certifier C(s, t)

@ Reduction from a known NP-Complete problem such as CSAT
or SAT to X

SAT <p X implies that every NP problem Y <p X. Why?
Transitivity of reductions:

Y <p SAT and SAT <p X and hence Y <p X.

Sariel, Alexandra (UIUC) CS473 42 Spring 2013 42 / 55

	NP Completeness and Cook-Levin Theorem
	NP
	Cook-Levin Theorem
	Completeness
	Preliminaries
	Cook-Levin Theorem
	Example: Independent Set
	Other NP Complete Problems
	Converting a circuit into a CNF formula
	Converting a circuit into a CNF formula
	Converting a circuit into a CNF formula
	Converting a circuit into a CNF formula
	Converting a circuit into a CNF formula
	Reduction: CSAT P SAT
	Reduction: CSAT P SAT
	Reduction: CSAT P SAT

