
CS 473: Fundamental Algorithms, Spring 2013

Reductions and NP
Lecture 21
April 11, 2013

Sariel, Alexandra (UIUC) CS473 1 Spring 2013 1 / 69

Part I

Reductions Continued

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2 / 69

Polynomial Time Reduction
Karp reduction

A polynomial time reduction from a decision problem X to a
decision problem Y is an algorithm A that has the following
properties:

1 given an instance IX of X, A produces an instance IY of Y
2 A runs in time polynomial in |IX|. This implies that |IY| (size of

IY) is polynomial in |IX|
3 Answer to IX YES iff answer to IY is YES.

Notation: X ≤P Y if X reduces to Y

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we
will need are Karp reductions.

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3 / 69

A More General Reduction
Turing Reduction

Definition (Turing reduction.)

Problem X polynomial time reduces to Y if there is an algorithm A
for X that has the following properties:

1 on any given instance IX of X, A uses polynomial in |IX| “steps”

2 a step is either a standard computation step, or

3 a sub-routine call to an algorithm that solves Y.

This is a Turing reduction.

Note: In making sub-routine call to algorithm to solve Y, A can only
ask questions of size polynomial in |IX|. Why?

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 / 69

Comparing reductions
1 Karp reduction:

Reduction
IX

Solver for Y

yes

no
Solver forX

IY

2 Turing reduction:

Algorithm
IX

Solver for Y

yes

no

Turing reduction

1 Algorithm to solve X can
call solver for Y many
times.

2 Conceptually, every call
to the solver of Y takes
constant time.

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 69

Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.
Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.
Goal: Compute the maximum number of non-overlapping intervals.

How? Used algorithm for interval problem multiple times.

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 / 69

Turing vs Karp Reductions
1 Turing reductions more general than Karp reductions.

2 Turing reduction useful in obtaining algorithms via reductions.

3 Karp reduction is simpler and easier to use to prove hardness of
problems.

4 Perhaps surprisingly, Karp reductions, although limited, suffice
for most known NP-Completeness proofs.

5 Karp reductions allow us to distinguish between NP and co-NP
(more on this later).

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 69

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi.

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Sariel, Alexandra (UIUC) CS473 8 Spring 2013 8 / 69

Satisfiability

Problem: SAT

Instance: A CNF formula ϕ.
Question: Is there a truth assignment to the variable of
ϕ such that ϕ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula ϕ.
Question: Is there a truth assignment to the variable of
ϕ such that ϕ evaluates to true?

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 69

Satisfiability
SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take

x1, x2, . . . x5 to be all true

2 (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not
satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

(More on 2SAT in a bit...)

Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 69

Importance of SAT and 3SAT
1 SAT and 3SAT are basic constraint satisfaction problems.

2 Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.

3 Arise naturally in many applications involving hardware and
software verification and correctness.

4 As we will see, it is a fundamental problem in theory of
NP-Completeness.

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 69

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 / 69

3SAT ≤P SAT
1 3SAT ≤P SAT.

2 Because...
A 3SAT instance is also an instance of SAT.

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 / 69

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 69

SAT ≤P 3SAT
A clause with a single literal

Reduction Ideas
Challenge: Some of the clauses in ϕ may have less or more than 3
literals. For each clause with < 3 or > 3 literals, we will construct a
set of logically equivalent clauses.

1 Case clause with one literal: Let c be a clause with a single
literal (i.e., c = `). Let u, v be new variables. Consider

c′ =
(
` ∨ u ∨ v

)
∧
(
` ∨ u ∨ ¬v

)
∧
(
` ∨ ¬u ∨ v

)
∧
(
` ∨ ¬u ∨ ¬v

)
.

Observe that c′ is satisfiable iff c is satisfiable

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 69

SAT ≤P 3SAT
A clause with two literals

Reduction Ideas: 2 and more literals
1 Case clause with 2 literals: Let c = `1 ∨ `2. Let u be a new

variable. Consider

c′ =
(
`1 ∨ `2 ∨ u

)
∧

(
`1 ∨ `2 ∨ ¬u

)
.

Again c is satisfiable iff c′ is satisfiable

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 69

Breaking a clause

Lemma
For any boolean formulas X and Y and z a new boolean variable.
Then

X ∨ Y is satisfiable

if and only if, z can be assigned a value such that(
X ∨ z

)
∧

(
Y ∨ ¬z

)
is satisfiable

(with the same assignment to the variables appearing in X and Y).

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 69

SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = `1 ∨ · · · ∨ `k. Let u1, . . . uk−3 be new variables. Consider

c′ =
(
`1 ∨ `2 ∨ u1

)
∧

(
`3 ∨ ¬u1 ∨ u2

)
∧

(
`4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
`k−2 ∨ ¬uk−4 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Claim
c is satisfiable iff c′ is satisfiable.

Another way to see it — reduce size of clause by one:

c′ =
(
`1 ∨ `2 . . . ∨ `k−2 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 69

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 69

Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(ϕ):
// ϕ: CNF formula.

for each clause c of ϕ do
if c does not have exactly 3 literals then

construct c′ as before

else
c′ = c

ψ is conjunction of all c′ constructed in loop

return Solver3SAT(ψ)

Correctness (informal)

ϕ is satisfiable iff ψ is satisfiable because for each clause c, the new
3CNF formula c′ is logically equivalent to c.

Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20 / 69

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x ∨ y ∨ z). We need to reduce it to a collection
of 2CNF clauses. Introduce a face variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)

Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 / 69

What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its
satisfying assignment...
(Hint: Create a graph with two vertices for each variable (for a
variable x there would be two vertices with labels x = 0 and x = 1).
For ever 2CNF clause add two directed edges in the graph. The
edges are implication edges: They state that if you decide to assign a
certain value to a variable, then you must assign a certain value to
some other variable.
Now compute the strong connected components in this graph, and
continue from there...)

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 / 69

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size k?

Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 / 69

3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work
for other kinds of boolean formulas.

Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 69

Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 69

The Reduction
1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 69

Correctness

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇒ Let a be the truth assignment satisfying ϕ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 69

Correctness (contd)

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇐ Let S be an independent set of size k

1 S must contain exactly one vertex from each clause
2 S cannot contain vertices labeled by conflicting clauses
3 Thus, it is possible to obtain a truth assignment that makes in

the literals in S true; such an assignment satisfies one literal in
every clause

Sariel, Alexandra (UIUC) CS473 28 Spring 2013 28 / 69

Transitivity of Reductions

Lemma
X ≤P Y and Y ≤P Z implies that X ≤P Z.

Note: X ≤P Y does not imply that Y ≤P X and hence it is very
important to know the FROM and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y
In other words show that an algorithm for Y implies an algorithm for
X.

Sariel, Alexandra (UIUC) CS473 29 Spring 2013 29 / 69

Part II

Definition of NP

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 / 69

Recap . . .

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

Relationship

3SAT ≤P Independent Set
≤P

≥P Vertex Cover ≤P Set Cover
3SAT ≤P SAT ≤P 3SAT

Sariel, Alexandra (UIUC) CS473 31 Spring 2013 31 / 69

Problems and Algorithms: Formal Approach

Decision Problems
1 Problem Instance: Binary string s, with size |s|
2 Problem: A set X of strings on which the answer should be

“yes”; we call these YES instances of X. Strings not in X are
NO instances of X.

Definition
1 A is an algorithm for problem X if A(s) = ”yes” iff s ∈ X.

2 A is said to have a polynomial running time if there is a
polynomial p(·) such that for every string s, A(s) terminates in
at most O(p(|s|)) steps.

Sariel, Alexandra (UIUC) CS473 32 Spring 2013 32 / 69

Polynomial Time

Definition
Polynomial time (denoted by P) is the class of all (decision)
problems that have an algorithm that solves it in polynomial time.

Example
Problems in P include

1 Is there a shortest path from s to t of length ≤ k in G?

2 Is there a flow of value ≥ k in network G?

3 Is there an assignment to variables to satisfy given linear
constraints?

Sariel, Alexandra (UIUC) CS473 33 Spring 2013 33 / 69

Efficiency Hypothesis

A problem X has an efficient algorithm iff X ∈ P, that is X has a
polynomial time algorithm.
Justifications:

1 Robustness of definition to variations in machines.

2 A sound theoretical definition.

3 Most known polynomial time algorithms for “natural” problems
have small polynomial running times.

Sariel, Alexandra (UIUC) CS473 34 Spring 2013 34 / 69

Problems with no known polynomial time

algorithms

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

There are of course undecidable problems (no algorithm at all!) but
many problems that we want to solve are of similar flavor to the
above.

Question: What is common to above problems?

Sariel, Alexandra (UIUC) CS473 35 Spring 2013 35 / 69

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX|) such that given a proof one can efficiently
check that IX is indeed a YES instance.

Examples:

1 SAT formula ϕ: proof is a satisfying assignment.

2 Independent Set in graph G and k: a subset S of vertices.

Sariel, Alexandra (UIUC) CS473 36 Spring 2013 36 / 69

Certifiers

Definition
An algorithm C(·, ·) is a certifier for problem X if for every s ∈ X
there is some string t such that C(s, t) = ”yes”, and conversely, if
for some s and t, C(s, t) = ”yes” then s ∈ X.
The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)

A certifier C is an efficient certifier for problem X if there is a
polynomial p(·) such that for every string s, we have that
? s ∈ X if and only if
? there is a string t:

1 |t| ≤ p(|s|),
2 C(s, t) = ”yes”,
3 and C runs in polynomial time.

Sariel, Alexandra (UIUC) CS473 37 Spring 2013 37 / 69

Example: Independent Set
1 Problem: Does G = (V,E) have an independent set of size
≥ k?

1 Certificate: Set S ⊆ V.
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.

Sariel, Alexandra (UIUC) CS473 38 Spring 2013 38 / 69

Example: Vertex Cover
1 Problem: Does G have a vertex cover of size ≤ k?

1 Certificate: S ⊆ V.
2 Certifier: Check |S| ≤ k and that for every edge at least one

endpoint is in S.

Sariel, Alexandra (UIUC) CS473 39 Spring 2013 39 / 69

Example: SAT
1 Problem: Does formula ϕ have a satisfying truth assignment?

1 Certificate: Assignment a of 0/1 values to each variable.
2 Certifier: Check each clause under a and say “yes” if all clauses

are true.

Sariel, Alexandra (UIUC) CS473 40 Spring 2013 40 / 69

Example:Composites

Problem: Composite

Instance: A number s.
Question: Is the number s a composite?

1 Problem: Composite.
1 Certificate: A factor t ≤ s such that t 6= 1 and t 6= s.
2 Certifier: Check that t divides s.

Sariel, Alexandra (UIUC) CS473 41 Spring 2013 41 / 69

Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Example
Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and
Composite are all examples of problems in NP.

Sariel, Alexandra (UIUC) CS473 42 Spring 2013 42 / 69

Why is it called...
Nondeterministic Polynomial Time

A certifier is an algorithm C(I, c) with two inputs:

1 I: instance.

2 c: proof/certificate that the instance is indeed a YES instance of
the given problem.

One can think about C as an algorithm for the original problem, if:

1 Given I, the algorithm guess (non-deterministically, and who
knows how) the certificate c.

2 The algorithm now verifies the certificate c for the instance I.

Usually NP is described using Turing machines (gag).

Sariel, Alexandra (UIUC) CS473 43 Spring 2013 43 / 69

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

Example
SAT formula ϕ. No easy way to prove that ϕ is NOT satisfiable!

More on this and co-NP later on.

Sariel, Alexandra (UIUC) CS473 44 Spring 2013 44 / 69

P versus NP

Proposition
P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm A. Need to demonstrate
that X has an efficient certifier:

1 Certifier C on input s, t, runs A(s) and returns the answer.

2 C runs in polynomial time.

3 If s ∈ X, then for every t, C(s, t) = ”yes”.

4 If s 6∈ X, then for every t, C(s, t) = ”no”.

Sariel, Alexandra (UIUC) CS473 45 Spring 2013 45 / 69

Exponential Time

Definition
Exponential Time (denoted EXP) is the collection of all problems
that have an algorithm which on input s runs in exponential time,
i.e., O(2poly(|s|)).

Example: O(2n), O(2n log n), O(2n3
), ...

Sariel, Alexandra (UIUC) CS473 46 Spring 2013 46 / 69

NP versus EXP

Proposition
NP ⊆ EXP.

Proof.
Let X ∈ NP with certifier C. Need to design an exponential time
algorithm for X.

1 For every t, with |t| ≤ p(|s|) run C(s, t); answer “yes” if any
one of these calls returns “yes”.

2 The above algorithm correctly solves X (exercise).

3 Algorithm runs in O(q(|s|+ |p(s)|)2p(|s|)), where q is the
running time of C.

Sariel, Alexandra (UIUC) CS473 47 Spring 2013 47 / 69

Examples
1 SAT: try all possible truth assignment to variables.

2 Independent Set: try all possible subsets of vertices.

3 Vertex Cover: try all possible subsets of vertices.

Sariel, Alexandra (UIUC) CS473 48 Spring 2013 48 / 69

Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

Sariel, Alexandra (UIUC) CS473 49 Spring 2013 49 / 69

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Sariel, Alexandra (UIUC) CS473 50 Spring 2013 50 / 69

P versus NP

Status
Relationship between P and NP remains one of the most important
open problems in mathematics/computer science.

Consensus: Most people feel/believe P 6= NP.

Resolving P versus NP is a Clay Millennium Prize Problem. You can
win a million dollars in addition to a Turing award and major fame!

Sariel, Alexandra (UIUC) CS473 51 Spring 2013 51 / 69

Part III

Not for lecture: Converting any
boolean formula into CNF

Sariel, Alexandra (UIUC) CS473 52 Spring 2013 52 / 69

The dark art of formula conversion into CNF

Consider an arbitrary boolean formula φ defined over k variables. To
keep the discussion concrete, consider the formula φ ≡ xk = xi ∧ xj.
We would like to convert this formula into an equivalent CNF
formula.

Sariel, Alexandra (UIUC) CS473 53 Spring 2013 53 / 69

Formula conversion into CNF
Step 1

Build a truth table for the boolean formula.

value of
xk xi xj xk = xi ∧ xj

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Sariel, Alexandra (UIUC) CS473 54 Spring 2013 54 / 69

Formula conversion into CNF
Step 1.5 - understand what a single CNF clause represents

Given an assignment, say, xk = 1, ki = 1 and kj = 0, consider the
CNF clause xk ∨ xi ∨ xj (you negate a variable if it is assigned zero).
Its truth table is

xk xi xj xk ∨ xi ∨ xj

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Observe that a single clause as-
signs zero to one row, and one
everywhere else. An conjunc-
tion of several such clauses, as
such, would result in a formula
that is 0 in all the rows that cor-
responds to these clauses, and
one everywhere else.

Sariel, Alexandra (UIUC) CS473 55 Spring 2013 55 / 69

Formula conversion into CNF
Step 2

Write down the CNF clause for every row in the table that is zero.
xk xi xj xk = xi ∧ xj CNF clause

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0 xk ∨ xi ∨ xj

1 0 0 0 xk ∨ xi ∨ xj

1 0 1 0 xk ∨ xi ∨ xj

1 1 0 0 xk ∨ xi ∨ xj

1 1 1 1

The conjunction (i.e., and) of all these clauses is clearly equivalent to
the original formula. In this case
ψ ≡(xk ∨ xi ∨ xj) ∧(xk ∨ xi ∨ xj) ∧(xk ∨ xi ∨ xj) ∧(xk ∨ xi ∨ xj)

Sariel, Alexandra (UIUC) CS473 56 Spring 2013 56 / 69

Formula conversion into CNF
Step 3 - simplify if you want to

Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1 (xk ∨ xi ∨ xj) ∧(xk ∨ xi ∨ xj) is equivalent to (xk ∨ xi).

2 (xk ∨ xi ∨ xj) ∧(xk ∨ xi ∨ xj) is equivalent to (xk ∨ xj).

Using the above two observation, we have that our formula
ψ ≡(xk ∨ xi ∨ xj) ∧(xk ∨ xi ∨ xj) ∧(xk ∨ xi ∨ xj) ∧(xk ∨ xi ∨ xj)
is equivalent to
ψ ≡(xk ∨ xi ∨ xj) ∧(xk ∨ xi) ∧(xk ∨ xj).
We conclude:

Lemma
The formula xk = xi ∧ xj is equivalent to the CNF formula
ψ ≡(xk ∨ xi ∨ xj) ∧(xk ∨ xi) ∧(xk ∨ xj).

Sariel, Alexandra (UIUC) CS473 57 Spring 2013 57 / 69

	Reductions and NP
	Reductions Continued
	Polynomial Time Reduction
	A More General Reduction
	The Satisfiability Problem (SAT)
	SAT and 3SAT
	SAT P 3SAT
	SAT P 3SAT
	SAT P 3SAT (contd)
	Overall Reduction Algorithm
	3SAT and Independent Set

	Definition of NP
	Preliminaries
	Problems and Algorithms
	Certifiers/Verifiers
	Examples

	NP
	Definition
	Why is it called...
	Intractability
	If P = NP â•¦

	Not for lecture: Converting any boolean formula into CNF
	Formula conversion into CNF
	Formula conversion into CNF
	Formula conversion into CNF
	Formula conversion into CNF

