CS 473: Fundamental Algorithms, Spring 2013

Reductions and NP

Lecture 21
April 11, 2013

A More General Reduction

Definition (Turing reduction.)

Problem \mathbf{X} polynomial time reduces to \mathbf{Y} if there is an algorithm \mathcal{A} for \mathbf{X} that has the following properties:
(1) on any given instance $\mathbf{I}_{\mathbf{X}}$ of \mathbf{X}, \mathcal{A} uses polynomial in $\left|\mathbf{I}_{\mathbf{x}}\right|^{\text {"steps" }}$
(2) a step is either a standard computation step, or
(3) a sub-routine call to an algorithm that solves \mathbf{Y}.

This is a Turing reduction.
Note: In making sub-routine call to algorithm to solve \mathbf{Y}, \mathcal{A} can only ask questions of size polynomial in $\left|\mathbf{I}_{\mathbf{x}}\right|$. Why?

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions.

Comparing reductions

(1) Karp reduction:

(2) Turing reduction:

Turing vs Karp Reductions

(1) Turing reductions more general than Karp reductions.
(2) Turing reduction useful in obtaining algorithms via reductions.
(3) Karp reduction is simpler and easier to use to prove hardness of problems.

- Perhaps surprisingly, Karp reductions, although limited, suffice for most known NP-Completeness proofs.
(0) Karp reductions allow us to distinguish between NP and co-NP (more on this later).

Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.
Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.
Goal: Compute the maximum number of non-overlapping intervals.
How? Used algorithm for interval problem multiple times.

Propositional Formulas

Definition

Consider a set of boolean variables $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \mathbf{x}_{\mathrm{n}}$.
(1) A literal is either a boolean variable x_{i} or its negation $\neg x_{i}$.
(2) A clause is a disjunction of literals.

For example, $\mathbf{x}_{1} \vee \mathrm{x}_{2} \vee \neg \mathrm{x}_{4}$ is a clause.
(3) A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses

$$
\text { (- }\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5} \text { is a CNF formula. }
$$

(1) A formula φ is a 3CNF:

A CNF formula such that every clause has exactly 3 literals.
(-) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{1}\right)$ is a 3CNF formula, but $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is not.

Satisfiability

Problem: SAT
Instance: A CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

Problem: 3SAT
Instance: A 3CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

Importance of SAT and 3SAT

(1) SAT and 3SAT are basic constraint satisfaction problems.
(2) Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
(0) Arise naturally in many applications involving hardware and software verification and correctness.
(1) As we will see, it is a fundamental problem in theory of NP-Completeness.

Satisfiability

Given a CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?

Example

(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is satisfiable; take $x_{1}, x_{2}, \ldots x_{5}$ to be all true
(2) $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is not satisfiable.

Given a 3CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?
(More on 2SAT in a bit...)

SAT \leq P 3SAT

How
 is different from

In SAT clauses might have arbitrary length: 1, 2, 3, ... variables:

$$
(\mathbf{x} \vee \mathbf{y} \vee \mathbf{z} \vee \mathbf{w} \vee \mathbf{u}) \wedge(\neg \mathbf{x} \vee \neg \mathbf{y} \vee \neg \mathbf{z} \vee \mathbf{w} \vee \mathbf{u}) \wedge(\neg \mathbf{x})
$$

In 3SAT every clause must have exactly 3 different literals.
To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses to have exactly $\mathbf{3}$ variables...

Basic idea

(1) Pad short clauses so they have 3 literals.
(2) Break long clauses into shorter clauses.
(Repeat the above till we have a 3CNF.

3SAT $\leq_{\text {p }}$ SAT

(1) 3 SAT $\leq \mathrm{P}$ SAT.
(2) Because...

A 3SAT instance is also an instance of SAT.

SAT \leq p 3 SAT

A clause with a single literal

Reduction Ideas

Challenge: Some of the clauses in φ may have less or more than $\mathbf{3}$ literals. For each clause with $<\mathbf{3}$ or $>\mathbf{3}$ literals, we will construct a set of logically equivalent clauses.
(1) Case clause with one literal: Let \mathbf{c} be a clause with a single literal (i.e., $\mathbf{c}=\ell$). Let \mathbf{u}, \mathbf{v} be new variables. Consider

$$
\begin{aligned}
\mathbf{c}^{\prime}= & (\ell \vee \mathbf{u} \vee \mathbf{v}) \wedge(\ell \vee \mathbf{u} \vee \neg \mathbf{v}) \\
& \wedge(\ell \vee \neg \mathbf{u} \vee \mathbf{v}) \wedge(\ell \vee \neg \mathbf{u} \vee \neg \mathbf{v}) .
\end{aligned}
$$

Observe that \mathbf{c}^{\prime} is satisfiable iff \mathbf{c} is satisfiable

SAT \leq_{p} 3SAT

Claim

SAT \leq_{p} 3SAT.
Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(1) φ is satisfiable iff φ^{\prime} is satisfiable.
(2) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length $\mathbf{3}$, replace it with several clauses of length exactly 3.

SAT \leq P 3 SAT

A clause with two literals

Reduction Ideas: 2 and more literals

(1) Case clause with 2 literals: Let $\mathbf{c}=\boldsymbol{\ell}_{\mathbf{1}} \vee \boldsymbol{\ell}_{\mathbf{2}}$. Let \mathbf{u} be a new variable. Consider

$$
\mathbf{c}^{\prime}=\left(\ell_{1} \vee \ell_{2} \vee \mathbf{u}\right) \wedge\left(\ell_{1} \vee \ell_{2} \vee \neg \mathbf{u}\right) .
$$

Again \mathbf{c} is satisfiable iff \mathbf{c}^{\prime} is satisfiable

Breaking a clause

Lemma

For any boolean formulas \mathbf{X} and \mathbf{Y} and \mathbf{z} a new boolean variable. Then

$$
\mathbf{X} \vee \mathbf{Y} \text { is satisfiable }
$$

if and only if, \mathbf{z} can be assigned a value such that

$$
(\mathbf{X} \vee \mathbf{z}) \wedge(\mathbf{Y} \vee \neg \mathbf{z}) \text { is satisfiable }
$$

(with the same assignment to the variables appearing in \mathbf{X} and \mathbf{Y}).

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg \mathrm{x}_{1} \vee \neg \mathrm{x}_{4}\right) \wedge\left(\mathrm{x}_{1} \vee \neg \mathrm{x}_{2} \vee \neg \mathrm{x}_{3}\right) \\
& \wedge\left(\neg \mathrm{x}_{2} \vee \neg \mathrm{x}_{3} \vee \mathrm{x}_{4} \vee \mathrm{x}_{1}\right) \wedge\left(\mathrm{x}_{1}\right) .
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\psi= & \left(\neg \mathrm{x}_{1} \vee \neg \mathrm{x}_{4} \vee \mathrm{z}\right) \wedge\left(\neg \mathrm{x}_{1} \vee \neg \mathrm{x}_{4} \vee \neg \mathrm{z}\right) \\
& \wedge\left(\mathrm{x}_{1} \vee \neg \mathrm{x}_{2} \vee \neg \mathrm{x}_{3}\right) \\
& \wedge\left(\neg \mathrm{x}_{2} \vee \neg \mathrm{x}_{3} \vee \mathrm{y}_{1}\right) \wedge\left(\mathrm{x}_{4} \vee \mathrm{x}_{1} \vee \neg \mathrm{y}_{1}\right) \\
& \wedge\left(\mathrm{x}_{1} \vee \mathbf{u} \vee \mathbf{v}\right) \wedge\left(\mathrm{x}_{1} \vee \mathbf{u} \vee \neg \mathbf{v}\right) \\
& \wedge\left(\mathrm{x}_{1} \vee \neg \mathbf{u} \vee \mathbf{v}\right) \wedge\left(\mathrm{x}_{1} \vee \neg \mathbf{u} \vee \neg \mathrm{v}\right)
\end{aligned}
$$

SAT \leq_{p} 3SAT (contd)

Let $\mathbf{c}=\ell_{1} \vee \cdots \vee \ell_{\mathrm{k}}$. Let $\mathbf{u}_{1}, \ldots \mathbf{u}_{\mathrm{k}-3}$ be new variables. Consider

$$
\begin{aligned}
\mathbf{c}^{\prime}= & \left(\ell_{1} \vee \ell_{2} \vee \mathbf{u}_{1}\right) \wedge\left(\ell_{3} \vee \neg \mathbf{u}_{1} \vee \mathbf{u}_{2}\right) \\
& \wedge\left(\ell_{4} \vee \neg \mathbf{u}_{2} \vee \mathbf{u}_{3}\right) \wedge \\
& \cdots \wedge\left(\ell_{\mathrm{k}-2} \vee \neg \mathbf{u}_{\mathrm{k}-4} \vee \mathbf{u}_{\mathrm{k}-3}\right) \wedge\left(\ell_{\mathrm{k}-1} \vee \ell_{\mathrm{k}} \vee \neg \mathbf{u}_{\mathrm{k}-3}\right)
\end{aligned}
$$

Claim

\mathbf{c} is satisfiable iff \mathbf{c}^{\prime} is satisfiable.
Another way to see it - reduce size of clause by one:

$$
\mathbf{c}^{\prime}=\left(\ell_{1} \vee \ell_{2} \ldots \vee \ell_{\mathrm{k}-2} \vee \mathbf{u}_{\mathrm{k}-3}\right) \wedge\left(\ell_{\mathrm{k}-1} \vee \ell_{\mathrm{k}} \vee \neg \mathbf{u}_{\mathrm{k}-3}\right)
$$

Overall Reduction Algorithm

ReduceSATTo3SAT (φ) :
// φ : CNF formula
for each clause cof φ do
if \mathbf{c} does not have exactly 3 literals then construct \mathbf{c}^{\prime} as before
else
$c^{\prime}=c$
ψ is conjunction of all \mathbf{c}^{\prime} constructed in loop return Solver3SAT (ψ)

Correctness (informal)

φ is satisfiable iff ψ is satisfiable because for each clause \mathbf{c}, the new 3 CNF formula \mathbf{c}^{\prime} is logically equivalent to \mathbf{c}.

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)
No known polynomial time reduction from SAT (or 3SAT) to 2SAT. If there was, then SAT and 3SAT would be solvable in polynomial time.

Why the reduction from to fails?

Consider a clause ($\mathbf{x} \vee \mathbf{y} \vee \mathbf{z}$). We need to reduce it to a collection of 2CNF clauses. Introduce a face variable $\boldsymbol{\alpha}$, and rewrite this as
$(\mathbf{x} \vee \mathbf{y} \vee \boldsymbol{\alpha}) \wedge(\neg \boldsymbol{\alpha} \vee \mathbf{z}) \quad$ (bad! clause with 3 vars)
or $(\mathbf{x} \vee \boldsymbol{\alpha}) \wedge(\neg \boldsymbol{\alpha} \vee \mathbf{y} \vee \mathbf{z}) \quad$ (bad! clause with 3 vars).
(In animal farm language: 2SAT good, 3SAT bad.)

Independent Set

Problem: Independent Set
Instance: A graph G, integer \mathbf{k}.
Question: Is there an independent set in G of size \mathbf{k} ?

What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its satisfying assignment...
(Hint: Create a graph with two vertices for each variable (for a variable \mathbf{x} there would be two vertices with labels $\mathbf{x}=\mathbf{0}$ and $\mathbf{x}=\mathbf{1}$). For ever $\mathbf{2 C N F}$ clause add two directed edges in the graph. The edges are implication edges: They state that if you decide to assign a certain value to a variable, then you must assign a certain value to some other variable.
Now compute the strong connected components in this graph, and continue from there...)

3 SAT $\leq_{\text {p }}$ Independent Set

The reduction

Input: Given a 3CNF formula φ
Goal: Construct a graph \mathbf{G}_{φ} and number \mathbf{k} such that \mathbf{G}_{φ} has an independent set of size \mathbf{k} if and only if φ is satisfiable.
\mathbf{G}_{φ} should be constructable in time polynomial in size of φ
Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas - reduction would not work for other kinds of boolean formulas.

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Find a way to assign $0 / 1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
(2) Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick $\mathbf{x}_{\mathbf{i}}$ and $\neg \mathbf{x}_{\mathbf{i}}$
We will take the second view of 3SAT to construct the reduction.

Correctness

Proposition

φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

\Rightarrow Let \mathbf{a} be the truth assignment satisfying φ
(1) Pick one of the vertices, corresponding to true literals under \mathbf{a}, from each triangle. This is an independent set of the appropriate size

The Reduction

(1) \mathbf{G}_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(3) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
(4) Take \mathbf{k} to be the number of clauses

Correctness (contd)

Proposition

φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

\Leftarrow Let \mathbf{S} be an independent set of size \mathbf{k}
(1) S must contain exactly one vertex from each clause
(2) S cannot contain vertices labeled by conflicting clauses
(3) Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

Transitivity of Reductions

Lemma

$\mathbf{X} \leq_{\mathbf{P}} \mathbf{Y}$ and $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{Z}$ implies that $\mathbf{X} \leq_{\mathbf{P}} \mathbf{Z}$.

Note: $\mathbf{X} \leq_{\mathbf{P}} \mathbf{Y}$ does not imply that $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$ and hence it is very important to know the FROM and TO in a reduction.

Definition of NP

To prove $\mathbf{X} \leq_{\mathbf{p}} \mathbf{Y}$ you need to show a reduction FROM \mathbf{X} TO \mathbf{Y} In other words show that an algorithm for \mathbf{Y} implies an algorithm for X.

Part II

Recap

Problems

(1) Independent Set
(2) Vertex Cover
(3) Set Cover

- SAT
- 3SAT

Relationship

3 SAT \leq_{p} Independent Set $\stackrel{x_{p}}{\geq_{p}}$ Vertex Cover \leq_{p} Set Cover $3 S A T \leq_{p}$ SAT \leq_{p} 3SAT

Problems and Algorithms: Formal Approach

Decision Problems

(1) Problem Instance: Binary string s, with size |s|
(2) Problem: A set \mathbf{X} of strings on which the answer should be "yes"; we call these YES instances of \mathbf{X}. Strings not in \mathbf{X} are NO instances of \mathbf{X}.

Definition

(1) A is an algorithm for problem \mathbf{X} if $\mathbf{A}(\mathbf{s})=$ "yes" iff $\mathbf{s} \in \mathbf{X}$.
(2) \mathbf{A} is said to have a polynomial running time if there is a polynomial $\mathbf{p}(\cdot)$ such that for every string $\mathbf{s}, \mathbf{A}(\mathbf{s})$ terminates in at most $\mathbf{O}(\mathbf{p}(|\mathbf{s}|))$ steps.

Polynomial Time

Definition

Polynomial time (denoted by P) is the class of all (decision) problems that have an algorithm that solves it in polynomial time.

Example

Problems in P include
(1) Is there a shortest path from \mathbf{s} to \mathbf{t} of length $\leq \mathbf{k}$ in \mathbf{G} ?
(2) Is there a flow of value $\geq \mathbf{k}$ in network \mathbf{G} ?
(0) Is there an assignment to variables to satisfy given linear constraints?

Efficiency Hypothesis

A problem \mathbf{X} has an efficient algorithm iff $\mathbf{X} \in \mathbf{P}$, that is \mathbf{X} has a polynomial time algorithm.
Justifications:
(1) Robustness of definition to variations in machines.
(2) A sound theoretical definition.
(3) Most known polynomial time algorithms for "natural" problems have small polynomial running times.

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance $\mathbf{I}_{\mathbf{X}}$ of \mathbf{X} there is a proof/certificate/solution that is of length poly $\left(\left|\mathbf{I}_{\mathbf{x}}\right|\right)$ such that given a proof one can efficiently check that $\mathbf{I}_{\mathbf{x}}$ is indeed a YES instance.

Examples:

(1) SAT formula φ : proof is a satisfying assignment.
(2) Independent Set in graph \mathbf{G} and \mathbf{k} : a subset \mathbf{S} of vertices.

Question: What is common to above problems?

Certifiers

Definition

An algorithm $\mathbf{C}(\cdot, \cdot)$ is a certifier for problem \mathbf{X} if for every $\mathbf{s} \in \mathbf{X}$ there is some string \mathbf{t} such that $\mathbf{C}(\mathbf{s}, \mathbf{t})=$ "yes", and conversely, if for some \mathbf{s} and $\mathbf{t}, \mathbf{C}(\mathbf{s}, \mathbf{t})=$ "yes" then $\mathbf{s} \in \mathbf{X}$.
The string \mathbf{t} is called a certificate or proof for \mathbf{s}.

Definition (Efficient Certifier.)

A certifier \mathbf{C} is an efficient certifier for problem \mathbf{X} if there is a polynomial $\mathbf{p}(\cdot)$ such that for every string \mathbf{s}, we have that
$\star \mathbf{s} \in \mathbf{X}$ if and only if
\star there is a string t :
(1) $|\mathbf{t}| \leq \mathbf{p}(|\mathbf{s}|)$,
(2) $\mathrm{C}(\mathrm{s}, \mathrm{t})=$ "yes",
(3) and \mathbf{C} runs in polynomial time.

Example: Vertex Cover

(1) Problem: Does \mathbf{G} have a vertex cover of size $\leq \mathbf{k}$?

- Certificate: $\mathbf{S} \subseteq \mathbf{V}$.
(0) Certifier: Check $|\mathbf{S}| \leq \mathbf{k}$ and that for every edge at least one endpoint is in \mathbf{S}.

Example: Independent Set

(1) Problem: Does $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ have an independent set of size $\geq \mathbf{k}$?

- Certificate: Set $\mathbf{S} \subseteq \mathbf{V}$.
(0) Certifier: Check $|\mathbf{S}| \geq \mathbf{k}$ and no pair of vertices in \mathbf{S} is connected by an edge.

Example: SAT

(1) Problem: Does formula φ have a satisfying truth assignment?
(1) Certificate: Assignment a of $\mathbf{0 / 1}$ values to each variable.
© Certifier: Check each clause under a and say "yes" if all clauses are true.

Example:Composites

Problem: Composite
Instance: A number s.
Question: Is the number s a composite?
(1) Problem: Composite.

- Certificate: A factor $\mathbf{t} \leq \mathbf{s}$ such that $\mathbf{t} \neq \mathbf{1}$ and $\mathbf{t} \neq \mathbf{s}$.
(2) Certifier: Check that \mathbf{t} divides \mathbf{s}.

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short certificate.

Example

SAT formula φ. No easy way to prove that φ is NOT satisfiable!
More on this and co-NP later on.

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and Composite are all examples of problems in NP.

Why is it called...

A certifier is an algorithm $\mathbf{C}(\mathbf{I}, \mathbf{c})$ with two inputs:
(1) I: instance.
(2) c: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about \mathbf{C} as an algorithm for the original problem, if:
(1) Given I, the algorithm guess (non-deterministically, and who knows how) the certificate \mathbf{c}.
(2) The algorithm now verifies the certificate \mathbf{c} for the instance \mathbf{I}. Usually NP is described using Turing machines (gag).

versus NP

Proposition

$P \subseteq N P$.
For a problem in P no need for a certificate!

Proof.

Consider problem $\mathbf{X} \in \mathbf{P}$ with algorithm \mathbf{A}. Need to demonstrate that \mathbf{X} has an efficient certifier:
(1) Certifier \mathbf{C} on input \mathbf{s}, \mathbf{t}, runs $\mathbf{A (s)}$ and returns the answer.
(2) C runs in polynomial time.
(3) If $\mathbf{s} \in \mathbf{X}$, then for every $\mathbf{t}, \mathbf{C}(\mathbf{s}, \mathbf{t})=$ "yes".
(1) If $\mathbf{s} \notin \mathbf{X}$, then for every $\mathbf{t}, \mathbf{C}(\mathbf{s}, \mathbf{t})=$ "no".

Examples

(1) SAT: try all possible truth assignment to variables.
(2) Independent Set: try all possible subsets of vertices.
(3) Vertex Cover: try all possible subsets of vertices.

Exponential Time

Definition

Exponential Time (denoted EXP) is the collection of all problems that have an algorithm which on input \mathbf{s} runs in exponential time,
i.e., $\mathbf{O}\left(2^{\text {poly }(|s|)}\right)$.

Example: $\mathbf{O}\left(2^{n}\right), \mathbf{O}\left(2^{\mathrm{n}} \log \mathrm{n}\right), \mathbf{O}\left(2^{\mathbf{n}^{3}}\right), \ldots$

NP versus EXP

Proposition

$N P \subseteq E X P$.

Proof.

Let $\mathbf{X} \in$ NP with certifier \mathbf{C}. Need to design an exponential time algorithm for \mathbf{X}.
(1) For every \mathbf{t}, with $|\mathbf{t}| \leq \mathbf{p}(|\mathbf{s}|)$ run $\mathbf{C}(\mathbf{s}, \mathbf{t})$; answer "yes" if any one of these calls returns "yes".
(2) The above algorithm correctly solves \mathbf{X} (exercise).
(3) Algorithm runs in $\mathbf{O}\left(\mathbf{q}(|\mathbf{s}|+|\mathbf{p}(\mathbf{s})|) 2^{\mathbf{p}(|s|)}\right)$, where \mathbf{q} is the running time of \mathbf{C}.

Is NP efficiently solvable?

We know $P \subseteq N P \subseteq E X P$.

Big Question

Is there are problem in NP that does not belong to \mathbf{P} ? Is $\mathbf{P}=N P$?

versus NP
 versus tio

Status

Relationship between P and NP remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $\mathbf{P} \neq \mathbf{N P}$.

Resolving P versus NP is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

```
If P = NP ...
```

Or: If pigs could fly then life would be sweet
(1) Many important optimization problems can be solved efficiently.
(2) The RSA cryptosystem can be broken.
(3) No security on the web.

- No e-commerce ...
(0) Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

Part III

Not for lecture: Converting any boolean formula into CNF

The dark art of formula conversion into CNF

Consider an arbitrary boolean formula ϕ defined over \mathbf{k} variables. To keep the discussion concrete, consider the formula $\phi \equiv \mathbf{x}_{\mathrm{k}}=\mathbf{x}_{\mathbf{i}} \wedge \mathbf{x}_{\mathbf{j}}$. We would like to convert this formula into an equivalent CNF formula.

Formula conversion into CNF

Build a truth table for the boolean formula.

			value of
$\mathbf{x}_{\mathbf{k}}$	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{j}}$	$\mathbf{x}_{\mathbf{k}}=\mathbf{x}_{\mathbf{i}} \wedge \mathbf{x}_{\mathbf{j}}$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Formula conversion into CNF

Write down the CNF clause for every row in the table that is zero.

$\mathbf{x}_{\mathbf{k}}$	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{j}}$	$\mathbf{x}_{\mathbf{k}}=\mathbf{x}_{\mathbf{i}} \wedge \mathbf{x}_{\mathbf{j}}$	CNF clause
00	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	$\overline{\mathbf{x}_{\mathbf{k}}} \vee \mathbf{x}_{\mathbf{i}} \vee \mathbf{x}_{\mathbf{j}}$
1	0	0	0	$\mathbf{x}_{\mathbf{k}} \vee \overline{\mathbf{x}_{\mathbf{i}}} \vee \overline{\mathbf{x}_{\mathbf{j}}}$
1	0	1	0	$\mathbf{x}_{\mathbf{k}} \vee \overline{\mathbf{x}_{\mathbf{i}}} \vee \mathbf{x}_{\mathbf{j}}$
1	1	0	0	$\mathbf{x}_{\mathbf{k}} \vee \mathbf{x}_{\mathbf{i}} \vee \overline{\mathbf{x}_{\mathbf{j}}}$
1	1	1	1	

The conjunction (i.e., and) of all these clauses is clearly equivalent to the original formula. In this case
$\psi \equiv\left(\overline{x_{k}} \vee x_{i} \vee x_{j}\right) \wedge\left(x_{k} \vee \overline{x_{i}} \vee \overline{x_{j}}\right) \wedge\left(x_{k} \vee \overline{x_{i}} \vee x_{j}\right) \wedge\left(x_{k} \vee x_{i} \vee \overline{x_{j}}\right)$

Formula conversion into CNF

Using that $(\mathbf{x} \vee \mathrm{y}) \wedge(\mathbf{x} \vee \overline{\mathrm{y}})=\mathrm{x}$, we have that:
(1) $\left(x_{k} \vee \overline{x_{i}} \vee \overline{x_{j}}\right) \wedge\left(x_{k} \vee \overline{x_{i}} \vee x_{j}\right)$ is equivalent to $\left(x_{k} \vee \overline{x_{i}}\right)$. (2) $\left(x_{k} \vee \overline{x_{i}} \vee \overline{x_{j}}\right) \wedge\left(x_{k} \vee x_{i} \vee \overline{x_{j}}\right)$ is equivalent to $\left(x_{k} \vee \overline{x_{j}}\right)$.

Using the above two observation, we have that our formula $\psi \equiv\left(\overline{x_{k}} \vee x_{i} \vee x_{j}\right) \wedge\left(x_{k} \vee \overline{x_{i}} \vee \overline{x_{j}}\right) \wedge\left(x_{k} \vee \overline{x_{i}} \vee x_{j}\right) \wedge\left(x_{k} \vee x_{i} \vee \overline{x_{j}}\right)$ is equivalent to $\psi \equiv\left(\overline{x_{k}} \vee \mathrm{x}_{\mathrm{i}} \vee \mathrm{x}_{\mathrm{j}}\right) \wedge\left(\mathrm{x}_{\mathrm{k}} \vee \overline{\mathrm{x}_{\mathrm{i}}}\right) \wedge\left(\mathrm{x}_{\mathrm{k}} \vee \overline{\mathrm{x}_{\mathrm{j}}}\right)$.
We conclude:

Lemma

The formula $\mathrm{x}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}} \wedge \mathrm{x}_{\mathrm{j}}$ is equivalent to the CNF formula $\psi \equiv\left(\overline{x_{k}} \vee \mathrm{x}_{\mathrm{i}} \vee \mathrm{x}_{\mathrm{j}}\right) \wedge\left(\mathrm{x}_{\mathrm{k}} \vee \overline{\mathrm{x}_{\mathrm{i}}}\right) \wedge\left(\mathrm{x}_{\mathrm{k}} \vee \overline{\mathrm{x}_{\mathrm{j}}}\right)$.
\square

