
Chapter 20

Polynomial Time Reductions

CS 473: Fundamental Algorithms, Spring 2013
April 9, 2013

20.1 Introduction to Reductions

20.2 Overview

20.2.0.1 Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an algorithm
for Problem Y , we can use it to find an algorithm for Problem X.

¡2-¿Using Reductions

(A) We use reductions to find algorithms to solve problems.
(B) We also use reductions to show that we can’t find algorithms for some problems. (We

say that these problems are hard.)

Also, the right reductions might win you a million dollars!

1

20.2.0.2 Example 1: Bipartite Matching and Flows

How do we solve the Bipartite Matching
Problem? Given a bipartite graph G =
(U ∪ V,E) and number k, does G have a
matching of size ≥ k?

=⇒

=⇒ =⇒
¡4-¿Solution Reduce it to Max-Flow. G has a matching of size ≥ k iff there is a flow

from s to t of value ≥ k.

20.3 Definitions
20.3.0.3 Types of Problems

Decision, Search, and Optimization
(A) Decision problem . Example: given n, is n prime?.
(B) Search problem . Example: given n, find a factor of n if it exists.
(C) Optimization problem . Example: find the smallest prime factor of n.

20.3.1 Optimization and Decision problems

20.3.1.1 For max flow...

Problem 20.3.1 (Max-Flow optimization version). Given an instance G of network flow,
find the maximum flow between s and t.

Problem 20.3.2 (Max-Flow decision version). Given an instance G of network flow and
a parameter K, is there a flow in G, from s to t, of value at least K?

2

While using reductions and comparing problems, we typically work with the decision
versions. Decision problems have Yes/No answers. This makes them easy to work with.

20.3.1.2 Problems vs Instances

(A) A problem Π consists of an infinite collection of inputs {I1, I2, . . . , }. Each input is
referred to as an instance.

(B) The size of an instance I is the number of bits in its representation.
(C) For an instance I, sol(I) is a set of feasible solutions to I.
(D) For optimization problems each solution s ∈ sol(I) has an associated value.

20.3.1.3 Examples

Example 20.3.3. An instance of Bipartite Matching is a bipartite graph, and an integer
k. The solution to this instance is “YES” if the graph has a matching of size ≥ k, and “NO”
otherwise.

Example 20.3.4. An instance of Max-Flow is a graph G with edge-capacities, two vertices
s, t, and an integer k. The solution to this instance is “YES” if there is a flow from s to t
of value ≥ k, else ‘NO”.

What is an algorithm for a decision Problem X? It takes as input an instance of
X, and outputs either “YES” or “NO”.

20.3.1.4 Encoding an instance into a string

(A) I; Instance of some problem.
(B) I can be fully and precisely described (say in a text file).
(C) Resulting text file is a binary string.
(D) =⇒ Any input can be interpreted as a binary string S.
(E) ... Running time of algorithm: Function of length of S (i.e., n).

20.3.1.5 Decision Problems and Languages

(A) A finite alphabet Σ. Σ∗ is set of all finite strings on Σ.
(B) A language L is simply a subset of Σ∗; a set of strings.
For every language L there is an associated decision problem ΠL and conversely, for every
decision problem Π there is an associated language LΠ.
(A) Given L, ΠL is the following decision problem: Given x ∈ Σ∗, is x ∈ L? Each string in

Σ∗ is an instance of ΠL and L is the set of instances for which the answer is YES.
(B) Given Π the associated language is

LΠ =
{
I
∣∣∣ I is an instance of Π for which answer is YES

}
.

Thus, decision problems and languages are used interchangeably.

3

20.3.1.6 Example

(A) The decision problem Primality, and the language

L =
{
#p

∣∣∣ p is a prime number
}
.

Here #p is the string in base 10 representing p.
(B) Bipartite (is given graph is bipartite. The language is

L =
{
S(G)

∣∣∣G is a bipartite graph
}
.

Here S(G) is the string encoding the graph G.

20.3.1.7 Reductions, revised.

For decision problems X,Y , a reduction from X to Y is:
(A) An algorithm . . .
(B) Input: IX , an instance of X.
(C) Output: IY an instance of Y .
(D) Such that:

IY is YES instance of Y ⇐⇒ IX is YES instance of X
(Actually, this is only one type of reduction, but this is the one we’ll use most often.)

20.3.1.8 Using reductions to solve problems

(A) R: Reduction X → Y
(B) AY : algorithm for Y :
(C) =⇒ New algorithm for X:

AX(IX):
// IX: instance of X.

IY ⇐ R(IX)
return AY (IY)

AY

IY
YES

NO

IX
R

AX

In particular, if R and AY are polynomial-time algorithms, AX is also polynomial-time.

20.3.1.9 Comparing Problems

(A) Reductions allow us to formalize the notion of “Problem X is no harder to solve than
Problem Y ”.

(B) If Problem X reduces to Problem Y (we write X ≤ Y), then X cannot be harder to
solve than Y .

4

(C) Bipartite Matching ≤ Max-Flow.
Therefore, Bipartite Matching cannot be harder than Max-Flow.

(D) Equivalently,
Max-Flow is at least as hard as Bipartite Matching.

(E) More generally, if X ≤ Y , we can say that X is no harder than Y , or Y is at least as
hard as X.

20.4 Examples of Reductions

20.5 Independent Set and Clique
20.5.0.10 Independent Sets and Cliques

Given a graph G, a set of vertices V ′ is:
(A) An independent set : if no two vertices of V ′ are connected by an edge of G.
(B) clique : every pair of vertices in V ′ is connected by an edge of G.

.............

20.5.0.11 The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k.
Question: Does G has a clique of size ≥ k?

20.5.0.12 Recall

For decision problems X,Y , a reduction from X to Y is:
(A) An algorithm . . .
(B) that takes IX , an instance of X as input . . .
(C) and returns IY , an instance of Y as output . . .
(D) such that the solution (YES/NO) to IY is the same as the solution to IX .

5

20.5.0.13 Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Convert G to G, in which (u, v) is an edge iff (u, v) is not an edge of G. (G is the
complement of G.)

We use G and k as the instance of Clique.

............

20.5.0.14 Independent Set and Clique

(A) Independent Set ≤ Clique.
What does this mean?

(B) If have an algorithm for Clique, then we have an algorithm for Independent Set.
(C) Clique is at least as hard as Independent Set.
(D) Also... Independent Set is at least as hard as Clique.

20.6 NFAs/DFAs and Universality
20.6.0.15 DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular languages. NFAs are the same,
except that they are non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same language using the subset
construction.

(How long does this take?)
The smallest DFA equivalent to an NFA with n states may have ≈ 2n states.

20.6.0.16 DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem 20.6.1 (DFA universality).

6

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.
Alternatively, minimize M to obtain M ′ and see if M ′ has a single state which is an

accepting state.

20.6.0.17 NFA Universality

An NFA N is said to be universal if it accepts every string. That is, L(N) = Σ∗, the set
of all strings.

Problem 20.6.2 (NFA universality).
Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N , convert it to an equivalent DFA M , and use the DFA Universality

Algorithm.

The reduction takes exponential time!

20.6.0.18 Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time
reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problemX to problem Y (we writeX ≤P Y),
and a poly-time algorithm AY for Y , we have a polynomial-time/efficient algorithm for X.

..
Ax.

R

.

AY

.

IX

.

IY

.

YES

.

NO

20.6.0.19 Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an
algorithm A that has the following properties:
(A) given an instance IX of X, A produces an instance IY of Y
(B) A runs in time polynomial in |IX |.
(C) Answer to IX YES iff answer to IY is YES.

7

Proposition 20.6.3. If X ≤P Y then a polynomial time algorithm for Y implies a polyno-
mial time algorithm for X.

Such a reduction is called a Karp reduction . Most reductions we will need are Karp
reductions.

20.6.0.20 Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X has an
efficient algorithm.

If you believe that Independent Set does not have an efficient algorithm, why should
you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an efficient algorithm,
so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot have an efficient
algorithm!

20.6.0.21 Polynomial-time reductions and instance sizes

Proposition 20.6.4. Let R be a polynomial-time reduction from X to Y . Then for any
instance IX of X, the size of the instance IY of Y produced from IX by R is polynomial in
the size of IX .

Proof : R is a polynomial-time algorithm and hence on input IX of size |IX | it runs in time
p(|IX |) for some polynomial p().

IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time even if output of
reduction is of size polynomial in its input.

20.6.0.22 Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an
algorithm A that has the following properties:
(A) Given an instance IX of X, A produces an instance IY of Y .
(B) A runs in time polynomial in |IX |. This implies that |IY | (size of IY) is polynomial in

|IX |.
(C) Answer to IX YES iff answer to IY is YES.

Proposition 20.6.5. If X ≤P Y then a polynomial time algorithm for Y implies a polyno-
mial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp
reductions

8

20.6.0.23 Transitivity of Reductions

Proposition 20.6.6. X ≤P Y and Y ≤P Z implies that X ≤P Z.

Note: X ≤P Y does not imply that Y ≤P X and hence it is very important to know the
FROM and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y
In other words show that an algorithm for Y implies an algorithm for X.

20.7 Independent Set and Vertex Cover
20.7.0.24 Vertex Cover

Given a graph G = (V,E), a set of vertices S is:
(A) A vertex cover if every e ∈ E has at least one endpoint in S.

.............

20.7.0.25 The Vertex Cover Problem

Problem 20.7.1 (Vertex Cover).
Input: A graph G and integer k.
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

20.7.1 Relationship between...

20.7.1.1 Vertex Cover and Independent Set

Proposition 20.7.2. Let G = (V,E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

Proof :
(⇒) Let S be an independent set

(A) Consider any edge uv ∈ E.
(B) Since S is an independent set, either u ̸∈ S or v ̸∈ S.
(C) Thus, either u ∈ V \ S or v ∈ V \ S.
(D) V \ S is a vertex cover.

9

(⇐) Let V \ S be some vertex cover:
(A) Consider u, v ∈ S
(B) uv is not an edge of G, as otherwise V \ S does not cover uv.
(C) =⇒ S is thus an independent set.

20.7.1.2 Independent Set ≤P Vertex Cover

(A) G: graph with n vertices, and an integer k be an instance of the Independent Set
problem.

(B) G has an independent set of size ≥ k iff G has a vertex cover of size ≤ n− k
(C) (G, k) is an instance of Independent Set , and (G,n − k) is an instance of Vertex

Cover with the same answer.
(D) Therefore, Independent Set ≤P Vertex Cover. Also Vertex Cover ≤P Independent

Set.

20.8 Vertex Cover and Set Cover
20.8.0.3 A problem of Languages

Suppose you work for the United Nations. Let U be the set of all languages spoken by
people across the world. The United Nations also has a set of translators, all of whom
speak English, and some other languages from U .

Due to budget cuts, you can only afford to keep k translators on your payroll. Can you
do this, while still ensuring that there is someone who speaks every language in U?

More General problem: Find/Hire a small group of people who can accomplish a large
number of tasks.

20.8.0.4 The Set Cover Problem

Problem 20.8.1 (Set Cover).
Input: Given a set U of n elements, a collection S1, S2, . . . Sm of subsets of U , and an

integer k.
Goal: Is there a collection of at most k of these sets Si whose union is equal to U?

Example 20.8.2. ¡2-¿Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} ¡3− > S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} ¡3− > S6 = {1, 2, 6, 7}

{S2, S6} is a set cover

10

20.8.0.5 Vertex Cover ≤P Set Cover

Given graph G = (V,E) and integer k as instance of Vertex Cover, construct an instance
of Set Cover as follows:
(A) Number k for the Set Cover instance is the same as the number k given for the Vertex

Cover instance.
(B) U = E.
(C) We will have one set corresponding to each vertex; Sv = {e | e is incident on v}.

Observe that G has vertex cover of size k if and only if U, {Sv}v∈V has a set cover of size
k. (Exercise: Prove this.)

20.8.0.6 Vertex Cover ≤P Set Cover: Example

..

1

.

2

.

3

.

4

. 5.6. a

.

g

.

c

.

f

.

e

.

b

.

d

.

3

.6

{3, 6} is a vertex cover

Let U = {a, b, c, d, e, f, g}, k = 2 with

S1 = {c, g} S2 = {b, d}
¡3− > S3 = {c, d, e} S4 = {e, f}
S5 = {a} ¡3− > S6 = {a, b, f, g}

{S3, S6} is a set cover

20.8.0.7 Proving Reductions

To prove that X ≤P Y you need to give an algorithm A that:

(A) Transforms an instance IX of X into an instance IY of Y .
(B) Satisfies the property that answer to IX is YES iff IY is YES.

(A) typical easy direction to prove: answer to IY is YES if answer to IX is YES
(B) typical difficult direction to prove: answer to IX is YES if answer to IY is

YES (equivalently answer to IX is NO if answer to IY is NO).
(C) Runs in polynomial time.

20.8.0.8 Example of incorrect reduction proof

Try proving Matching ≤P Bipartite Matching via following reduction:

(A) Given graph G = (V,E) obtain a bipartite graph G′ = (V ′, E ′) as follows.
(A) Let V1 = {u1 | u ∈ V } and V2 = {u2 | u ∈ V }. We set V ′ = V1 ∪ V2 (that is, we

make two copies of V)

(B) E ′ =
{
u1v2

∣∣∣u ≠ v and uv ∈ E
}

(B) Given G and integer k the reduction outputs G′ and k.

11

20.8.0.9 Example
20.8.0.10 “Proof”

Claim 20.8.3. Reduction is a poly-time algorithm. If G has a matching of size k then G′

has a matching of size k.

Proof : Exercise.

Claim 20.8.4. If G′ has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex u ∈ V has two copies u1 and u2 in G′. A matching in G′ may use
both copies!

20.8.0.11 Summary

We looked at polynomial-time reductions.
¡2-¿Using polynomial-time reductions

(A) If X ≤P Y , and we have an efficient algorithm for Y , we have an efficient algorithm for
X.

(B) If X ≤P Y , and there is no efficient algorithm for X, there is no efficient algorithm for
Y .

We looked at some examples of reductions between Independent Set, Clique, Vertex
Cover, and Set Cover.

12

	Introduction to Reductions
	Overview
	Definitions

	Examples of Reductions
	Independent Set and Clique
	NFAs/DFAs and Universality
	Independent Set and Vertex Cover
	Vertex Cover and Set Cover

