Polynomial Time Reductions

Lecture 20 April 9, 2013

Part I

Introduction to Reductions

A reduction from Problem \mathbf{X} to Problem \mathbf{Y} means (informally) that if we have an algorithm for Problem \mathbf{Y} , we can use it to find an algorithm for Problem \mathbf{X} .

Using Reductions

We use reductions to find algorithms to solve problems

A reduction from Problem \mathbf{X} to Problem \mathbf{Y} means (informally) that if we have an algorithm for Problem \mathbf{Y} , we can use it to find an algorithm for Problem \mathbf{X} .

Using Reductions

We use reductions to find algorithms to solve problems.

A reduction from Problem X to Problem Y means (informally) that if we have an algorithm for Problem Y, we can use it to find an algorithm for Problem X.

Using Reductions

- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)

A reduction from Problem X to Problem Y means (informally) that if we have an algorithm for Problem Y, we can use it to find an algorithm for Problem X.

Using Reductions

- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)

Also, the right reductions might win you a million dollars!

How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of size > k?

Solution

How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of size > k?

Solution

How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of size > k?

Solution

How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of size $\geq k$?

Solution

Types of Problems

Decision, Search, and Optimization

- **Decision problem**. Example: given **n**, is **n** prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- Optimization problem. Example: find the smallest prime factor of n.

Types of Problems

Decision, Search, and Optimization

- Decision problem. Example: given n, is n prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- Optimization problem. Example: find the smallest prime factor of n.

Types of Problems

Decision, Search, and Optimization

- Decision problem. Example: given n, is n prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- Optimization problem. Example: find the smallest prime factor of n.

Optimization and Decision problems

For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between \mathbf{s} and \mathbf{t} .

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a flow in G, from \mathbf{s} to \mathbf{t} , of value at least K?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

Optimization and Decision problems

For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between \mathbf{s} and \mathbf{t} .

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a flow in G, from S to S, of value at least S?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

Optimization and Decision problems

For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between \mathbf{s} and \mathbf{t} .

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a flow in G, from S to C, of value at least C?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

Problems vs Instances

- **1** A problem Π consists of an **infinite** collection of inputs $\{I_1, I_2, \ldots, \}$. Each input is referred to as an **instance**.
- The size of an instance I is the number of bits in its representation.
- For an instance I, sol(I) is a set of feasible solutions to I.
- For optimization problems each solution s ∈ sol(I) has an associated value.

Example

An instance of **Bipartite Matching** is a bipartite graph, and an integer k. The solution to this instance is "YES" if the graph has a matching of size $\geq k$, and "NO" otherwise.

Example

An instance of Max-Flow is a graph G with edge-capacities, two vertices s, t, and an integer k. The solution to this instance is "YES" if there is a flow from s to t of value $\geq k$, else 'NO".

What is an algorithm for a decision Problem X?

Example

An instance of **Bipartite Matching** is a bipartite graph, and an integer k. The solution to this instance is "YES" if the graph has a matching of size $\geq k$, and "NO" otherwise.

Example

An instance of Max-Flow is a graph G with edge-capacities, two vertices s, t, and an integer k. The solution to this instance is "YES" if there is a flow from s to t of value $\geq k$, else 'NO".

What is an algorithm for a decision Problem X?

Example

An instance of **Bipartite Matching** is a bipartite graph, and an integer k. The solution to this instance is "YES" if the graph has a matching of size $\geq k$, and "NO" otherwise.

Example

An instance of Max-Flow is a graph G with edge-capacities, two vertices s, t, and an integer k. The solution to this instance is "YES" if there is a flow from s to t of value $\geq k$, else 'NO".

What is an algorithm for a decision Problem X?

Example

An instance of **Bipartite Matching** is a bipartite graph, and an integer k. The solution to this instance is "YES" if the graph has a matching of size $\geq k$, and "NO" otherwise.

Example

An instance of Max-Flow is a graph G with edge-capacities, two vertices s, t, and an integer k. The solution to this instance is "YES" if there is a flow from s to t of value $\geq k$, else 'NO".

What is an algorithm for a decision Problem X?

Encoding an instance into a string

- 1; Instance of some problem.
- ② I can be fully and precisely described (say in a text file).
- Resulting text file is a binary string.
- Any input can be interpreted as a binary string S.
- Sunning time of algorithm: Function of length of S (i.e., n).

Decision Problems and Languages

- **1** A finite alphabet Σ . Σ^* is set of all finite strings on Σ .
- ② A language L is simply a subset of Σ^* ; a set of strings.

For every language L there is an associated decision problem Π_L and conversely, for every decision problem Π there is an associated language L_Π .

- ① Given L, Π_L is the following decision problem: Given $x \in \Sigma^*$, is $x \in L$? Each string in Σ^* is an instance of Π_L and L is the set of instances for which the answer is YES.

$$\mathbf{L}_{\Pi} = \left\{ \mathbf{I} \mid \mathbf{I} \text{ is an instance of } \mathbf{\Pi} \text{ for which answer is YES} \right\}.$$

10

Thus, decision problems and languages are used interchangeably.

Decision Problems and Languages

- **1** A finite alphabet Σ . Σ^* is set of all finite strings on Σ .
- ② A language L is simply a subset of Σ^* ; a set of strings.

For every language L there is an associated decision problem Π_L and conversely, for every decision problem Π there is an associated language L_{Π} .

- ① Given L, Π_L is the following decision problem: Given $x \in \Sigma^*$, is $x \in L$? Each string in Σ^* is an instance of Π_L and L is the set of instances for which the answer is YES.
- @ Given Π the associated language is

$$\mathbf{L}_{\Pi} = \left\{ \mathbf{I} \mid \mathbf{I} \text{ is an instance of } \mathbf{\Pi} \text{ for which answer is YES} \right\}.$$

10

Thus, decision problems and languages are used interchangeably.

Decision Problems and Languages

- **1** A finite alphabet Σ . Σ^* is set of all finite strings on Σ .
- ② A language L is simply a subset of Σ^* ; a set of strings.

For every language L there is an associated decision problem Π_L and conversely, for every decision problem Π there is an associated language L_{Π} .

- ① Given L, Π_L is the following decision problem: Given $x \in \Sigma^*$, is $x \in L$? Each string in Σ^* is an instance of Π_L and L is the set of instances for which the answer is YES.

$$\mathbf{L}_{\Pi} = \left\{ \mathbf{I} \mid \mathbf{I} \text{ is an instance of } \mathbf{\Pi} \text{ for which answer is YES} \right\}.$$

Thus, decision problems and languages are used interchangeably.

The decision problem Primality, and the language

$$\mathbf{L} = \big\{ \mathbf{\#p} \ \Big| \ \mathbf{p} \ \text{is a prime number} \big\}$$
 .

Here #p is the string in base 10 representing p.

Bipartite (is given graph is bipartite. The language is

$$L = \{S(G) \mid G \text{ is a bipartite graph}\}.$$

Here S(G) is the string encoding the graph G.

Reductions, revised.

For decision problems **X**, **Y**, a reduction from **X** to **Y** is:

- An algorithm . . .
- 2 Input: I_X , an instance of X.
- Output: I_Y an instance of Y.
- Such that:

 I_Y is YES instance of $Y \iff I_X$ is YES instance of X

There are other kinds of reductions.

Reductions, revised.

For decision problems X, Y, a reduction from X to Y is:

- An algorithm . . .
- 2 Input: I_X , an instance of X.
- Output: I_Y an instance of Y.
- Such that:

 I_Y is YES instance of $Y \iff I_X$ is YES instance of X

There are other kinds of reductions.

Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :
- \bigcirc New algorithm for **X**:

```
 \begin{array}{c} \mathcal{A}_X(I_X)\colon \\ \text{$//$ $I_X$: instance of $X$.} \\ I_Y \leftarrow \mathcal{R}(I_X) \\ \text{return $\mathcal{A}_Y(I_Y)$} \end{array}
```

If \mathcal{R} and \mathcal{A}_{Y} polynomial-time $\implies \mathcal{A}_{X}$ polynomial-time.

Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :
- New algorithm for X:

If \mathcal{R} and \mathcal{A}_{Y} polynomial-time $\implies \mathcal{A}_{X}$ polynomial-time.

Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :
- New algorithm for X:

If \mathcal{R} and \mathcal{A}_{Y} polynomial-time $\implies \mathcal{A}_{X}$ polynomial-time.

Comparing Problems

- "Problem X is no harder to solve than Problem Y".
- ② If Problem X reduces to Problem Y (we write $X \leq Y$), then X cannot be harder to solve than Y.
- Bipartite Matching ≤ Max-Flow. Bipartite Matching cannot be harder than Max-Flow.
- Equivalently,
 Max-Flow is at least as hard as Bipartite Matching.
- \bullet $X \leq Y$:
 - X is no harder than Y, or
 - Y is at least as hard as X.

Part II

Examples of Reductions

Independent Sets and Cliques

Given a graph G, a set of vertices V' is:

 \bigcirc independent set: no two vertices of V' connected by an edge.

Independent Sets and Cliques

Given a graph G, a set of vertices V' is:

 \bullet independent set: no two vertices of V' connected by an edge.

Independent Sets and Cliques

Given a graph G, a set of vertices V' is:

- lacktriangledown independent set: no two vertices of V' connected by an edge.
- $oldsymbol{\circ}$ clique: every pair of vertices in $oldsymbol{V}'$ is connected by an edge of $oldsymbol{G}$.

Given a graph G, a set of vertices V' is:

- lacktriangledown independent set: no two vertices of V' connected by an edge.
- $oldsymbol{\circ}$ clique: every pair of vertices in $oldsymbol{\mathsf{V}}'$ is connected by an edge of $oldsymbol{\mathsf{G}}$.

Given a graph G, a set of vertices V' is:

- lacktriangledown independent set: no two vertices of V' connected by an edge.
- $oldsymbol{\circ}$ clique: every pair of vertices in $oldsymbol{\mathsf{V}}'$ is connected by an edge of $oldsymbol{\mathsf{G}}$.

Given a graph G, a set of vertices V' is:

- lacktriangledown independent set: no two vertices of V' connected by an edge.
- $oldsymbol{\circ}$ clique: every pair of vertices in $oldsymbol{\mathsf{V}}'$ is connected by an edge of $oldsymbol{\mathsf{G}}$.

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer **k**.

Question: Does G has an independent set of size $\geq k$?

Problem: Clique

Instance: A graph G and an integer **k**.

Question: Does G has a clique of size > k?

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer **k**.

Question: Does G has an independent set of size $\geq k$?

Problem: Clique

Instance: A graph G and an integer **k**.

Question: Does G has a clique of size $\geq k$?

Recall

For decision problems X, Y, a reduction from X to Y is:

- An algorithm . . .
- that takes I_X, an instance of X as input . . .
- $oldsymbol{0}$ and returns $oldsymbol{I_Y}$, an instance of $oldsymbol{Y}$ as output \dots
- ullet such that the solution (YES/NO) to I_Y is the same as the solution to I_X .

An instance of **Independent Set** is a graph **G** and an integer **k**.

19

An instance of **Independent Set** is a graph **G** and an integer **k**.

An instance of **Independent Set** is a graph **G** and an integer **k**.

Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. $(\overline{G}$ is the *complement* of G.) We use \overline{G} and k as the instance of Clique.

An instance of **Independent Set** is a graph **G** and an integer **k**.

Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. $(\overline{G}$ is the *complement* of G.)

We use \overline{G} and k as the instance of Clique.

An instance of **Independent Set** is a graph **G** and an integer **k**.

Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. $(\overline{G}$ is the *complement* of G.)

We use \overline{G} and k as the instance of Clique.

An instance of **Independent Set** is a graph **G** and an integer **k**.

Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. $(\overline{G}$ is the *complement* of G.)

We use \overline{G} and k as the instance of Clique.

- Independent Set ≤ Clique.
 - What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- Also... Independent Set is at least as hard as Clique.

- Independent Set ≤ Clique.
 - What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- Also... Independent Set is at least as hard as Clique.

- Independent Set ≤ Clique.
 - What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- 4 Also... Independent Set is at least as hard as Clique.

- Independent Set ≤ Clique. What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- 4 Also... Independent Set is at least as hard as Clique.

DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular languages. NFAs are the same, except that they are non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same language using the subset construction.

(How long does this take?)

The smallest DFA equivalent to an NFA with **n** states may have $\approx 2^n$ states.

DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular languages. NFAs are the same, except that they are non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same language using the subset construction.

(How long does this take?)

The smallest DFA equivalent to an NFA with **n** states may have $\approx 2^n$ states.

DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular languages. NFAs are the same, except that they are non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same language using the subset construction.

(How long does this take?)

The smallest DFA equivalent to an NFA with n states may have $\approx 2^n$ states.

A DFA M is universal if it accepts every string. That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (**DFA universality**)

Input: A DFA M.

Goal: Is M universal?

How do we solve **DFA Universality**?

We check if M has any reachable non-final state.

Alternatively, minimize M to obtain M' and see if M' has a single state which is an accepting state.

A DFA M is universal if it accepts every string. That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (**DFA universality**)

Input: A DFA M. **Goal:** *Is* M *universal?*

How do we solve **DFA Universality**?

We check if M has any reachable non-final state.

Alternatively, minimize M to obtain M' and see if M' has a single state which is an accepting state.

A DFA M is universal if it accepts every string.

That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (**DFA universality**)

Input: A DFA M.

Goal: Is M universal?

How do we solve **DFA Universality**?

We check if M has any reachable non-final state.

Alternatively, minimize M to obtain M' and see if M' has a single

A DFA **M** is universal if it accepts every string.

That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (**DFA universality**)

Input: A DFA M.

Goal: Is M universal?

How do we solve **DFA Universality**?

We check if M has any reachable non-final state.

Alternatively, minimize M to obtain M' and see if M' has a single

state which is an accepting state.

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve **NFA Universality**?

Given an NFA N, convert it to an equivalent DFA M, and use the **DFA Universality** Algorithm.

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

Given an NFA N, convert it to an equivalent DFA M, and use the **DFA Universality** Algorithm.

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

Given an NFA N, convert it to an equivalent DFA M, and use the

DFA Universality Algorithm.

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

Given an NFA **N**, convert it to an equivalent DFA **M**, and use the **DFA Universality** Algorithm.

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:

- lacktriangle given an instance I_X of X, A produces an instance I_Y of Y
- ② \mathcal{A} runs in time polynomial in $|I_X|$.
- **3** Answer to I_X YES iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a **Karp reduction**. Most reductions we will need are Karp reductions.

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed Independent Set \leq_P Clique. If Clique had an efficient algorithm, so would Independent Set!

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed Independent Set \leq_P Clique. If Clique had an efficient algorithm, so would Independent Set!

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed Independent Set \leq_P Clique. If Clique had an efficient algorithm, so would Independent Set!

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed Independent Set \leq_P Clique. If Clique had an efficient algorithm, so would Independent Set!

Polynomial-time reductions and instance sizes

Proposition

Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of $\mathcal R$ on input I_X .

 \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time reductions and instance sizes

Proposition

Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X .

 \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time reductions and instance sizes

Proposition

Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X .

 \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time Reduction

A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:

- **1** Given an instance I_X of X, A produces an instance I_Y of Y.
- 2 \mathcal{A} runs in time polynomial in $|\mathbf{I}_{\mathbf{X}}|$. This implies that $|\mathbf{I}_{\mathbf{Y}}|$ (size of $|\mathbf{I}_{\mathbf{Y}}|$) is polynomial in $|\mathbf{I}_{\mathbf{X}}|$.
- **3** Answer to I_X YES iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions

Transitivity of Reductions

Proposition

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y In other words show that an algorithm for Y implies an algorithm for X.

Given a graph G = (V, E), a set of vertices S is:

① A vertex cover if every $e \in E$ has at least one endpoint in S.

Spring 2013

Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer **k**.

Goal: Is there a vertex cover of size < k in G?

Can we relate Independent Set and Vertex Cover?

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer **k**.

Goal: Is there a vertex cover of size < k in G?

Can we relate **Independent Set** and **Vertex Cover**?

Spring 2013

Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if $V \setminus S$ is a vertex cover.

Proof.

- (\Rightarrow) Let **S** be an independent set
 - Consider any edge $uv \in E$.
 - ② Since S is an independent set, either $\mathbf{u} \not\in \mathbf{S}$ or $\mathbf{v} \not\in \mathbf{S}$.
 - **3** Thus, either $\mathbf{u} \in \mathbf{V} \setminus \mathbf{S}$ or $\mathbf{v} \in \mathbf{V} \setminus \mathbf{S}$.
 - **◊ V** \ **S** is a vertex cover.
- (⇐) Let **V** \ **S** be some vertex cover:
 - Consider $\mathbf{u}, \mathbf{v} \in \mathbf{S}$
 - 2 uv is not an edge of G, as otherwise $V \setminus S$ does not cover uv.
 - \bullet **S** is thus an independent set.

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- ② **G** has an independent set of size \geq **k** iff **G** has a vertex cover of size \leq **n k**
- (G, k) is an instance of Independent Set, and (G, n k) is an instance of Vertex Cover with the same answer.
- Therefore, Independent Set ≤_P Vertex Cover. Also Vertex Cover ≤_P Independent Set.

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- ② **G** has an independent set of size \geq **k** iff **G** has a vertex cover of size \leq **n k**
- (G, k) is an instance of Independent Set, and (G, n k) is an instance of Vertex Cover with the same answer.
- Therefore, Independent Set ≤_P Vertex Cover. Also Vertex Cover ≤_P Independent Set.

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- ② **G** has an independent set of size \geq **k** iff **G** has a vertex cover of size \leq **n k**
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- Therefore, Independent Set ≤_P Vertex Cover. Also Vertex Cover ≤_P Independent Set.

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- ② **G** has an independent set of size \geq **k** iff **G** has a vertex cover of size \leq **n k**
- **3** (G, k) is an instance of Independent Set, and (G, n k) is an instance of Vertex Cover with the same answer.
- Therefore, Independent Set ≤_P Vertex Cover. Also Vertex Cover ≤_P Independent Set.

A problem of Languages

Suppose you work for the United Nations. Let ${\bf U}$ be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from ${\bf U}$.

Due to budget cuts, you can only afford to keep ${\bf k}$ translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in ${\bf U}$?

More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

A problem of Languages

Suppose you work for the United Nations. Let ${\bf U}$ be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from ${\bf U}$.

Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in U?

More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

A problem of Languages

Suppose you work for the United Nations. Let **U** be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from **U**.

Due to budget cuts, you can only afford to keep **k** translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in **U**?

More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

The **Set Cover** Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to U?

Example

Let
$$U = \{1, 2, 3, 4, 5, 6, 7\}$$
, $k = 2$ with
$$S_1 = \{3, 7\} \quad S_2 = \{3, 4, 5\}$$
$$S_3 = \{1\} \quad S_4 = \{2, 4\}$$
$$S_5 = \{5\} \quad S_6 = \{1, 2, 6, 7\}$$

$\{S_2, S_6\}$ is a set cover

The **Set Cover** Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to U?

Example

Let
$$U=\{1,2,3,4,5,6,7\}$$
, $k=2$ with
$$S_1=\{3,7\} \quad S_2=\{3,4,5\}$$

$$S_3=\{1\} \quad S_4=\{2,4\}$$

$$S_5=\{5\} \quad S_6=\{1,2,6,7\}$$

 $\{S_2, S_6\}$ is a set cover

The **Set Cover** Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to U?

Example

Let
$$U=\{1,2,3,4,5,6,7\}$$
, $k=2$ with
$$S_1=\{3,7\} \quad S_2=\{3,4,5\}$$

$$S_3=\{1\} \quad S_4=\{2,4\}$$

$$S_5=\{5\} \quad S_6=\{1,2,6,7\}$$

 $\{S_2, S_6\}$ is a set cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

• Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.

36

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- $\mathbf{Q} \ \mathbf{U} = \mathbf{E}$.

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- $\mathbf{0} \ \mathsf{U} = \mathsf{E}$.
- We will have one set corresponding to each vertex; $S_{\mathbf{v}} = \{ \mathbf{e} \mid \mathbf{e} \text{ is incident on } \mathbf{v} \}.$

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- $\mathbf{0} \ \mathsf{U} = \mathsf{E}$.
- We will have one set corresponding to each vertex; $S_{\mathbf{v}} = \{ \mathbf{e} \mid \mathbf{e} \text{ is incident on } \mathbf{v} \}.$

Observe that **G** has vertex cover of size **k** if and only if U, $\{S_v\}_{v \in V}$ has a set cover of size **k**. (Exercise: Prove this.)

Vertex Cover \leq_P Set Cover: Example

Let $U = \{a, b, c, d, e, f, g\}$, k = 2 with

$$\begin{aligned} S_1 &= \{c,g\} & S_2 &= \{b,d\} \\ S_3 &= \{c,d,e\} & S_4 &= \{e,f\} \\ S_5 &= \{a\} & S_6 &= \{a,b,f,g\} \end{aligned}$$

 $\{S_3, S_6\}$ is a set cover

{3,6} is a vertex cover

Vertex Cover \leq_P Set Cover: Example

Let
$$U = \{a, b, c, d, e, f, g\}$$
, $k = 2$ with

$$\begin{array}{ll} S_1 = \{c,g\} & S_2 = \{b,d\} \\ S_3 = \{c,d,e\} & S_4 = \{e,f\} \\ S_5 = \{a\} & S_6 = \{a,b,f,g\} \end{array}$$

 $\{S_3, S_6\}$ is a set cover

{3,6} is a vertex cover

Vertex Cover \leq_P Set Cover: Example

Let
$$U = \{a, b, c, d, e, f, g\}$$
, $k = 2$ with

$$\begin{aligned} S_1 &= \{c,g\} & S_2 &= \{b,d\} \\ S_3 &= \{c,d,e\} & S_4 &= \{e,f\} \\ S_5 &= \{a\} & S_6 &= \{a,b,f,g\} \end{aligned}$$

$$\{S_3, S_6\}$$
 is a set cover

 $\{3,6\}$ is a vertex cover

Proving Reductions

To prove that $X \leq_P Y$ you need to give an algorithm A that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- ② Satisfies the property that answer to I_X is YES iff I_Y is YES.
 - typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 - typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO).
- Runs in polynomial time.

Example of incorrect reduction proof

Try proving Matching \leq_P Bipartite Matching via following reduction:

- Given graph G = (V, E) obtain a bipartite graph G' = (V', E') as follows.
 - Let $V_1 = \{u_1 \mid u \in V\}$ and $V_2 = \{u_2 \mid u \in V\}$. We set $V' = V_1 \cup V_2$ (that is, we make two copies of V)
 - $\mathbf{e} \ \mathsf{E'} = \Big\{ \mathsf{u}_1 \mathsf{v}_2 \ \Big| \ \mathsf{u} \neq \mathsf{v} \ \mathsf{and} \ \mathsf{uv} \in \mathsf{E} \Big\}$
- Given G and integer k the reduction outputs G' and k.

Example

"Proof"

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $\mathbf{u} \in \mathbf{V}$ has two copies \mathbf{u}_1 and \mathbf{u}_2 in \mathbf{G}' . A matching in \mathbf{G}' may use both copies!

41

"Proof"

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $\mathbf{u} \in \mathbf{V}$ has two copies \mathbf{u}_1 and \mathbf{u}_2 in \mathbf{G}' . A matching in \mathbf{G}' may use both copies!

41

"Proof"

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $\mathbf{u} \in \mathbf{V}$ has two copies $\mathbf{u_1}$ and $\mathbf{u_2}$ in \mathbf{G}' . A matching in \mathbf{G}' may use both copies!

"Proof"

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $u \in V$ has two copies u_1 and u_2 in G'. A matching in G' may use both copies!

"Proof"

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $\mathbf{u} \in \mathbf{V}$ has two copies \mathbf{u}_1 and \mathbf{u}_2 in \mathbf{G}' . A matching in \mathbf{G}' may use both copies!

We looked at polynomial-time reductions.

Using polynomial-time reductions

① If $X \leq_P Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.

We looked at polynomial-time reductions.

Using polynomial-time reductions

• If $X \leq_P Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.

We looked at polynomial-time reductions.

Using polynomial-time reductions

- If $X \leq_P Y$, and we have an efficient algorithm for Y, we have an efficient algorithm for X.
- ② If $X \leq_P Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.

We looked at polynomial-time reductions.

Using polynomial-time reductions

- If $X \leq_P Y$, and we have an efficient algorithm for Y, we have an efficient algorithm for X.
- ② If $X \leq_P Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.

We looked at polynomial-time reductions.

Using polynomial-time reductions

• If $X \leq_P Y$, and we have an efficient algorithm for Y, we have an efficient algorithm for X.

We looked at some examples of reductions between **Independent Set**, **Clique**, **Vertex Cover**, and **Set Cover**.