Chapter 19
More Network Flow Applications

. . 13
CS 473: Fundamental Algorithms, Spring 20
April 4, 2013

19.1 Baseball Pennant Race
19.1.0.1 Pennant Race

Sanl Francisco le @

Sports Onlirie sp ORTING c

> hitps//wrww sfgate.com

49ers, Young Get Big Bre

i MR, ¥ Quarterback m

By Gary Swan
Chroniele Stagr Wrtter

TUEsDAY 5

The bye week has come at a perfect
Ume lor the dders and quarterback Steve
Young. If they had a game next Sunday,
there’s a good chance Young would not
ol

o T L

icially Leave the NI West Race

Te Stag Witter threerun homer the elghth Financing in Place be em’,f;i;s ‘;;azs: r;,g?:;’fr(g
bushed the Padres over the pieaer For Glanty’ N, Baker sald quletly. "But It gooey'y

With the smack of another g fnd otictally stoved the regy SEEPAGE B, et hat e
tlonal Leagye t bat 500 miles e Glants' seasop Into the back. pRgce—soessnbilS §g play
Glonard OB the heels of their to. gamas lett; they cannot wig g
dlous 62105 before an annoymery Bames. Coming oft a miserable
Park et 0207 al Condlestick mmark o’ threecity road trip ghat
Park, the Glants fell 1915 8amesoff saw thelr roqq rl‘cuyrd drop i‘n 2. fact of loving to Dy, o matter
the lead. . the Glants were hoplyg o get

5 o3 he worst the Padres: off on the right foot In theyy jop, JLUVe 0t 10 play e roe of
{8065 can tinish 15 g gy e Gl gest homestand of 1pg year (15 - spoller, 10 not make |y ggjqr on
ants have fallen to 593 with 20 games, 14 days) GIANTS; Page s 3

By Nancy Gayy
-

19.1.0.2 Pennant Race: Example

' t?
Boston win the pennan .
]ff/zn because Boston can win at most 91 game

19.1.0.3 Another Example

B %
a m the pennant. o |
]i 71? lo(;founnlquz we know what the remaining games are
ot cle

Team Won | Left
New York | 92 2
Example 19.1.1. | Baltimore | 91
Toronto 91
Boston 89

N W W

Team Won | Left
New York | 92 2
Example 19.1.2. | Baltimore | 91
Toronto 91
Boston 90

N W W

19.1.0.4 Refining the Example

Team Won | Left | NY | Bal | Tor | Bos
New York | 92 2 — 1 1 0
Example 19.1.3. | Baltimore | 91 3 1 — 1 1
Toronto 91 3 1 1 — 1
Boston 90 2 0 1 1 —

Can Boston win the pennant? Suppose Boston does
(A) Boston wins both its games to get 92 wins
(B) New York must lose both games; now both Baltimore and Toronto have at least 92
(C) Winner of Baltimore-Toronto game has 93 wins!

19.1.0.5 Abstracting the Problem

Given

(A) A set of teams S

(B) For each x € S, the current number of wins w,

(C) For any z,y € S, the number of remaining games g,, between = and y
(D) A team z

Can z win the pennant?

19.1.0.6 Towards a Reduction

7z can win the pennant if
(A) Z wins at least m games
(A) to maximize Z’s chances we make Z win all its remaining games and hence m =
wsz + ers 9z
(B) no other team wins more than m games
(A) for each z,y € S the g,, games between them have to be assigned to either x or y.
(B) each team z # Z can win at most m — w, — g,z remaining games

Is there an assignment of remaining games to teams such that no team x # Z wins more
than m — w, games?

19.1.0.7 Flow Network: The basic gadget

(A)
(B)
(©)
(D)

b

s: source
t: sink

T, y: two teams

Jzy: number of games remaining be-
tween x and y.

(E) w,: number of points z has.

(F) m: maximum number of points x can
win before team of interest is elimi-
nated.

19.1.1 Flow Network: An Example
19.1.1.1 Can Boston win?

Team Won | Left || NY | Bal | Tor || Bos
New York | 90 11 — 1 6 4
Baltimore | 88 6 1 — 1 4
Toronto 87 11 6 1 — 4
Boston [79 | 12 [4 | 4 | 4 || — |

(A) m =79+ 12 = 91: Boston can get at
most 91 points.

19.1.1.2 Constructing Flow Network

Notations Reduction Construct the flow network G as follows

(A) S: set of teams, (A) One vertex v, for each team = € ', one vertex

(B) w, wins for each team, and Uy for each pair of teams x and y in S’

(C) guy games left between z and y. (B) A new source vertex s and sink ¢

(D) m be the maximum number of (C) Edges (uyy, v,) and (ugy, v,) of capacity oo
wins for Z, (D) Edges (s, uy,) of capacity g,

(E) and S" = S\ {z}. (E) Edges (v,,t) of capacity equal m — w,

19.1.1.3 Correctness of reduction

Theorem 19.1.4. G’ has a maximum flow of value g* = Zx’yes, Gzy if and only if Z can
win the most number of games (including possibly tie with other teams).

19.1.1.4 Proof of Correctness

Proof: Existence of g* flow = Z wins pennant

(A) An integral flow saturating edges out of s, ensures that each remaining game between
x and y is added to win total of either x or y

(B) Capacity on (v,,t) edges ensures that no team wins more than m games

Conversely, z wins pennant = flow of value g*

(A) Scenario determines flow on edges; if x wins k of the games against y, then flow on
(Ugy, V) edge is k and on (uy,, v,) edge is gy — k

|

19.1.1.5 Proof that Z cannot with the pennant

(A) Suppose Z cannot win the pennant since g* < g. How do we prove to some one compactly
that Z cannot win the pennant?

(B) Show them the min-cut in the reduction flow network!

(C) See text book for a natural interpretation of the min-cut as a certificate.

19.2 An Application of Min-Cut to Project Scheduling
19.2.0.6 Project Scheduling

Problem:

(A) n projects/tasks 1,2,...,n

(B) dependencies between projects: i depends on j implies ¢ cannot be done unless j is done.
dependency graph is acyclic

(C) each project i has a cost/profit p;
(A) p; <0 implies i requires a cost of —p; units
(B) p; > 0 implies that ¢ generates p; profit

Goal: Find projects to do so as to mazimize profit.

19.2.0.7 Example

| =S

19.2.0.8 Notation

For a set A of projects:

(A) A is a wvalid solution if A is dependency closed, that is for every ¢ € A, all projects that
7 depends on are also in A.

(B) profit(A) =>,c4pi- Can be negative or positive.

Goal: find valid A to maximize profit(A).

19.2.0.9 Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets: those that are done and
those that are not done.

Can we express this is a minimum cut problem?

Several issues:

Need to ensure that chosen projects is a valid set.

)

) We need to convert negative profits into positive capacities.

)

) The cut value captures the profit of the chosen set of projects.

19.2.0.10 Reduction to Minimum-Cut

Note: We are reducing a mazimization problem to a minimization problem.

A) projects represented as nodes in a graph

if 7 depends on j then (i,7) is an edge
add source s and sink ¢

(A)

(B)

(C)

(D) for each i with p; > 0 add edge (s,4) with capacity p;

) for each @ with p; < 0 add edge (i,t) with capacity —p;

) for each dependency edge (i, j) put capacity oo (more on this later)

= o

(
(

5

19.2.0.11 Reduction: Flow Network Example

19.2.0.12 Reduction contd

Algorithm:

(A) form graph as in previous slide
(B) compute s-t minimum cut (A, B)
(C) output the projects in A — {s}

19.2.0.13 Understanding the Reduction
Let C' = Zi:p¢>0 p;: maximum possible profit.

Observation: The minimum s-¢ cut value is < C'. Why?

Lemma 19.2.1. Suppose (A, B) is an s-t cut of finite capacity (no o) edges. Then projects
in A — {s} are a valid solution.

Proof: 1f A — {s} is not a valid solution then there is a project i € A and a project j & A
such that ¢+ depends on j
Since (i, j) capacity is oo, implies (A, B) capacity is 0o, contradicting assumption. [

19.2.0.14 Example

19.2.0.15 Example

19.2.0.16 Correctness of Reduction
Recall that for a set of projects X, profit(X) = ..y pi-

Lemma 19.2.2. Suppose (A, B) is an s-t cut of finite capacity (no oo) edges. Then c(A, B) =
C —profit(A— {s}).

Proof: Edges in (A, B):
(A) (s,i) for i € B and p; > 0: capacity is p;

7

(B) (i,t) for i € A and p; < 0: capacity is —p;
(C) cannot have oo edges

u
19.2.0.17 Proof contd
For project set A let
(A) cost(A) = X\ co b
(B) benef@t(A) - ZieA:pi>0 Pi
(C) profit(A) = benefit(A) — cost(A).
Proof: Let A’ = AU {s}.
c(A',B) = cost(A)+ benefit(B)
= cost(A) — benefit(A) 4+ benefit(A) + benefit(B)
= —profit(A)+C
= C —profit(A)
u

19.2.0.18 Correctness of Reduction contd

We have shown that if (A, B) is an s-t cut in G with finite capacity then

(A) A—{s} is a valid set of projects

(B) ¢(A,B) =C —profit(A — {s})

Therefore a minimum s-t cut (A*, B*) gives a mazimum profit set of projects A* — {s} since
C' is fixed.

Question: How can we use co in a real algorithm?

Set capacity of oo arcs to C' + 1 instead. Why does this work?

19.3 Extensions to Maximum-Flow Problem
19.3.0.19 Lower Bounds and Costs

Two generalizations:

(A) flow satisfies f(e) < c¢(e) for all e. suppose we are given lower bounds {(e) for each e.
can we find a flow such that {(e) < f(e) < ¢(e) for all e?

(B) suppose we are given a cost w(e) for each edge. cost of routing flow f(e) on edge e is
w(e)f(e). can we (efficiently) find a flow (of at least some given quantity) at minimum
cost?

Many applications.

19.3.0.20 Flows with Lower Bounds

Definition 19.3.1. A flow in a network G = (V, E), is a function f: E — R=% such that
(A) Capacity Constraint: For each edge e, f(e) < c(e)

(B) Lower Bound Constraint: For each edge e, f(e) > {(e)

(C) Conservation Constraint: For each vertex v

S =3 fe

e into v e out of v

Question: Given G and c¢(e) and £(e) for each e, is there a flow?
As difficult as finding an s-t maximum-flow without lower bounds!

19.3.0.21 Regular flow via lower bounds

Given usual flow network G with source s and sink ¢, create lower-bound flow network G’ as
follows:

(A) set £(e) =0 for each e in G

(B) add new edge (t, s) with lower bound v and upper bound oo

Claim 19.3.2. There exists a flow of value v from s to t in G if and only if there exists a
feasible flow with lower bounds in G'.

Above reduction show that lower bounds on flows are naturally related to circulations.
With lower bounds, cannot guarantee acyclic flows from s to t.

19.3.0.22 Flows with Lower Bounds

(A) Flows with lower bounds can be reduced to standard maximum flow problem. See text
book. Reduction goes via circulations.
(B) If all bounds are integers then there is a flow that is integral. Useful in applications.

19.3.1 Survey Design
19.3.1.1 Application of Flows with Lower Bounds

(A) Design survey to find information about n; products from ny customers.

(B) Can ask customer questions only about products purchased in the past.

(C) Customer can only be asked about at most ¢, products and at least ¢; products.
(D) For each product need to ask at east p; consumers and at most p; consumers.

19.3.1.2 Reduction to Circulation

(A) include edge (i, 7) is customer ¢ has bought product j
(B) Add edge (t,s) with lower bound 0 and upper bound oc.
(A) Consumer i is asked about product j if the integral flow on edge (i, 7) is 1

9

ConsumerProducts
0,1

Ovﬁ
@

19.3.1.3 Minimum Cost Flows

(A) Input: Given a flow network G and also edge costs, w(e) for edge e, and a flow require-
ment F'.

(B) Goal; Find a minimum cost flow of value F from s to t
Given flow f: £ — R*, cost of flow = 3" __pw(e)f(e).

19.3.1.4 Minimum Cost Flow: Facts

(A) problem can be solved efficiently in polynomial time
(A) O(nmlogClog(nW)) time algorithm where C' is maximum edge capacity and W
is maximum edge cost
(B) O(mlogn(m + nlogn)) time strongly polynomial time algorithm
(B) for integer capacities there is always an optimum solutions in which flow is integral

19.3.1.5 How much damage can a single path cause?

Consider the following network. All the edges have capacity 1. Clearly the maximum flow

in this network has value 4.
The network

Why removing the shortest path might ruin

everything

(A) However... The shortest path between s
and t is the blue path.

(B) And if we remove the shortest path, s and
t become disconnected, and the maximum
flow drop to 0.

~

10

	Baseball Pennant Race
	An Application of Min-Cut to Project Scheduling
	Extensions to Maximum-Flow Problem

