More Network Flow Applications

Lecture 19 April 4, 2013

Part I

Baseball Pennant Race

Pennant Race

Pennant Race: Example

Example

Team	Won	Left
New York	92	2
Baltimore	91	3
Toronto	91	3
Boston	89	2

Can Boston win the pennant?

No, because Boston can win at most 91 games.

Pennant Race: Example

Example

Team	Won	Left	
New York	92	2	
Baltimore	91	3	
Toronto	91	3	
Boston	89	2	

Can Boston win the pennant?

No, because Boston can win at most 91 games.

Another Example

Example

Team	Won	Left	
New York	92	2	
Baltimore	91	3	
Toronto	91	3	
Boston	90	2	

Can Boston win the pennant?

Not clear unless we know what the remaining games are!

Another Example

Example

Team	Won	Left	
New York	92	2	
Baltimore	91	3	
Toronto	91	3	
Boston	90	2	

Can Boston win the pennant?

Not clear unless we know what the remaining games are!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	_	1	1
Toronto	91	3	1	1	_	1
Boston	90	2	0	1	1	_

- Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92
- Winner of Baltimore-Toronto game has 93 wins!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	_	1	1
Toronto	91	3	1	1	_	1
Boston	90	2	0	1	1	_

- Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92
- Winner of Baltimore-Toronto game has 93 wins!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	_	1	1
Toronto	91	3	1	1	_	1
Boston	90	2	0	1	1	_

- Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92
- Winner of Baltimore-Toronto game has 93 wins!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	_	1	1
Toronto	91	3	1	1	_	1
Boston	90	2	0	1	1	_

- O Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92
- Winner of Baltimore-Toronto game has 93 wins!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	_	1	1
Toronto	91	3	1	1	_	1
Boston	90	2	0	1	1	_

- O Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92
- Winner of Baltimore-Toronto game has 93 wins!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	_	1	1
Toronto	91	3	1	1	_	1
Boston	90	2	0	1	1	_

- Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92
- Winner of Baltimore-Toronto game has 93 wins!

Abstracting the Problem

Given

- A set of teams S
- ② For each $x \in S$, the current number of wins w_x
- $\textbf{ § For any } \textbf{x}, \textbf{y} \in \textbf{S}, \text{ the number of remaining games } \textbf{g}_{\textbf{xy}} \text{ between } \textbf{x} \\ \text{and } \textbf{y}$
- A team z

Can **z** win the pennant?

Towards a Reduction

- z can win the pennant if
 - ① **z** wins at least **m** games
 - on other team wins more than m games

Towards a Reduction

- z can win the pennant if
 - vins at least m games
 - ① to maximize \overline{z} 's chances we make \overline{z} win all its remaining games and hence $\mathbf{m} = \mathbf{w}_{\overline{z}} + \sum_{\mathbf{x} \in S} \mathbf{g}_{\mathbf{x}\overline{z}}$
 - no other team wins more than m games

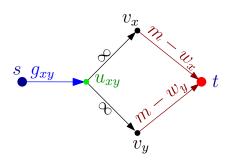
Towards a Reduction

- z can win the pennant if
 - vins at least m games
 - to maximize \overline{z} 's chances we make \overline{z} win all its remaining games and hence $\mathbf{m} = \mathbf{w}_{\overline{z}} + \sum_{\mathbf{x} \in S} \mathbf{g}_{\mathbf{x}\overline{z}}$
 - no other team wins more than m games
 - for each $x, y \in S$ the g_{xy} games between them have to be assigned to either x or y.
 - each team $\mathbf{x} \neq \overline{\mathbf{z}}$ can win at most $\mathbf{m} \mathbf{w}_{\mathbf{x}} \mathbf{g}_{\mathbf{x}\overline{\mathbf{z}}}$ remaining games

Is there an assignment of remaining games to teams such that no team $\mathbf{x} \neq \overline{\mathbf{z}}$ wins more than $\mathbf{m} - \mathbf{w}_{\mathbf{x}}$ games?

Flow Network: The basic gadget

- s: source
- 2 t: sink
- 3 x, y: two teams
- g_{xy}: number of games remaining between x and y.
- w_x: number of points x has.
- m: maximum number of points x can win before team of interest is eliminated.



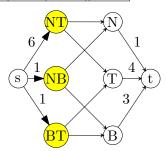
9

Flow Network: An Example

Can Boston win?

Team	Won	Left	NY	Bal	Tor	Bos
New York	90	11	_	1	6	4
Baltimore	88	6	1	_	1	4
Toronto	87	11	6	1	_	4
Boston	79	12	4	4	4	_

m = 79 + 12 = 91:
 Boston can get at most
 91 points.



Constructing Flow Network

Notations

- S: set of teams,
- w_x wins for each team, and
- g_{xy} games left between x and y.
- m be the maximum number of wins for z̄,

Reduction

Construct the flow network **G** as follows

- One vertex $\mathbf{v}_{\mathbf{x}}$ for each team $\mathbf{x} \in \mathbf{S}'$, one vertex $\mathbf{u}_{\mathbf{x}\mathbf{y}}$ for each pair of teams \mathbf{x} and \mathbf{y} in \mathbf{S}'
- A new source vertex s and sink t
- **③** Edges (u_{xy}, v_x) and (u_{xy}, v_y) of capacity ∞
- Edges (s, u_{xy}) of capacity g_{xy}
- Edges (v_x, t) of capacity equal m w_x

Correctness of reduction

Theorem

G' has a maximum flow of value $\mathbf{g}^* = \sum_{x,y \in S'} \mathbf{g}_{xy}$ if and only if $\overline{\mathbf{z}}$ can win the most number of games (including possibly tie with other teams).

Proof of Correctness

Proof.

Existence of \mathbf{g}^* flow $\Rightarrow \overline{\mathbf{z}}$ wins pennant

- An integral flow saturating edges out of s, ensures that each remaining game between x and y is added to win total of either x or y
- 2 Capacity on (v_x, t) edges ensures that no team wins more than m games

Conversely, $\overline{\mathbf{z}}$ wins pennant \Rightarrow flow of value \mathbf{g}^*

• Scenario determines flow on edges; if x wins k of the games against y, then flow on (u_{xy}, v_x) edge is k and on (u_{xy}, v_y) edge is $g_{xy} - k$

Proof that **z** cannot with the pennant

- Suppose \overline{z} cannot win the pennant since $g^* < g$. How do we prove to some one compactly that \overline{z} cannot win the pennant?
- Show them the min-cut in the reduction flow network
- See text book for a natural interpretation of the min-cut as a certificate.

14

Spring 2013

Proof that **z** cannot with the pennant

- ① Suppose \overline{z} cannot win the pennant since $g^* < g$. How do we prove to some one compactly that \overline{z} cannot win the pennant?
- Show them the min-cut in the reduction flow network!
- See text book for a natural interpretation of the min-cut as a certificate.

14

Spring 2013

Proof that **z** cannot with the pennant

- ① Suppose \overline{z} cannot win the pennant since $g^* < g$. How do we prove to some one compactly that \overline{z} cannot win the pennant?
- Show them the min-cut in the reduction flow network!
- See text book for a natural interpretation of the min-cut as a certificate.

14

Part II

An Application of Min-Cut to Project Scheduling

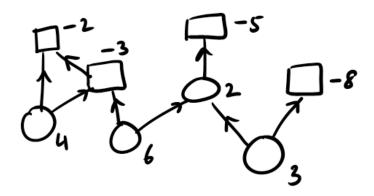
Project Scheduling

Problem:

- n projects/tasks 1, 2, ..., n
- dependencies between projects: i depends on j implies i cannot be done unless j is done. dependency graph is acyclic
- each project i has a cost/profit p_i
 - $\mathbf{0} \ \mathbf{p_i} < \mathbf{0} \ \text{implies} \ \mathbf{i} \ \text{requires} \ \mathbf{a} \ \text{cost} \ \mathbf{of} \ -\mathbf{p_i} \ \text{units}$
 - $\mathbf{0}$ $\mathbf{p_i} > \mathbf{0}$ implies that \mathbf{i} generates $\mathbf{p_i}$ profit

Goal: Find projects to do so as to maximize profit.

Example



Notation

For a set **A** of projects:

- A is a valid solution if A is dependency closed, that is for every
 i ∈ A, all projects that i depends on are also in A.
- ② $profit(A) = \sum_{i \in A} p_i$. Can be negative or positive.

Goal: find valid A to maximize profit(A).

Notation

For a set **A** of projects:

- A is a valid solution if A is dependency closed, that is for every
 i ∈ A, all projects that i depends on are also in A.
- **2** $profit(A) = \sum_{i \in A} p_i$. Can be negative or positive.

Goal: find valid A to maximize profit(A).

Notation

For a set **A** of projects:

- A is a valid solution if A is dependency closed, that is for every
 i ∈ A, all projects that i depends on are also in A.
- **2** profit(A) = $\sum_{i \in A} p_i$. Can be negative or positive.

Goal: find valid A to maximize profit(A).

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets: those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

- We are interested in maximizing profit but we can solve minimum cuts.
- We need to convert negative profits into positive capacities.
- Need to ensure that chosen projects is a valid set.
- The cut value captures the profit of the chosen set of projects.

19

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets: those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

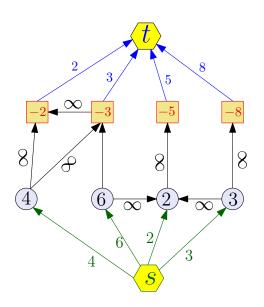
- We are interested in maximizing profit but we can solve minimum cuts.
- We need to convert negative profits into positive capacities.
- Need to ensure that chosen projects is a valid set.
- The cut value captures the profit of the chosen set of projects.

Reduction to Minimum-Cut

Note: We are reducing a *maximization* problem to a *minimization* problem.

- projects represented as nodes in a graph
- \circ if i depends on j then (i, j) is an edge
- 3 add source s and sink t
- $oldsymbol{0}$ for each i with $p_i>0$ add edge (s,i) with capacity p_i
- $oldsymbol{0}$ for each i with $p_i < 0$ add edge (i,t) with capacity $-p_i$
- lacktriangledown for each dependency edge (i,j) put capacity ∞ (more on this later)

Reduction: Flow Network Example



Reduction contd

Algorithm:

- 1 form graph as in previous slide
- compute s-t minimum cut (A, B)
- **3** output the projects in $A \{s\}$

Let $C = \sum_{i:p_i>0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is \leq C. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in A - {s} are a valid solution.

Proof.

If $A-\{s\}$ is not a valid solution then there is a project $i\in A$ and a project $j\not\in A$ such that i depends on j

Let $C = \sum_{i:p_i>0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is \leq C. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in A - {s} are a valid solution.

Proof.

If $A - \{s\}$ is not a valid solution then there is a project $i \in A$ and a project $j \notin A$ such that i depends on j

Let $C = \sum_{i:p_i>0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is \leq C. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in A - {s} are a valid solution.

Proof

If $A - \{s\}$ is not a valid solution then there is a project $i \in A$ and a project $j \notin A$ such that i depends on j

Let $C = \sum_{i:p_i>0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is \leq C. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in A - {s} are a valid solution.

Proof.

If $A-\{s\}$ is not a valid solution then there is a project $i\in A$ and a project $j\not\in A$ such that i depends on j

Let $C = \sum_{i:p_i>0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is \leq C. Why?

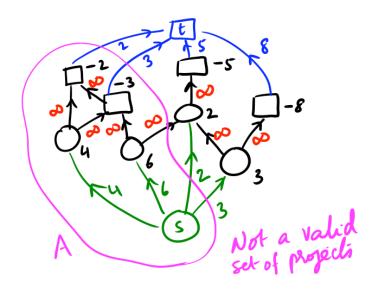
Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in A - {s} are a valid solution.

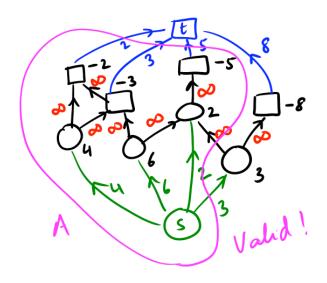
Proof.

If $A-\{s\}$ is not a valid solution then there is a project $i\in A$ and a project $j\not\in A$ such that i depends on j

Example



Example



Correctness of Reduction

Recall that for a set of projects X, $profit(X) = \sum_{i \in X} p_i$.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then $c(A, B) = C - profit(A - \{s\})$.

Proof.

Edges in (A, B):

- (s, i) for $i \in B$ and $p_i > 0$: capacity is p_i
- 2 (i, t) for $i \in A$ and $p_i < 0$: capacity is $-p_i$

Correctness of Reduction

Recall that for a set of projects X, $profit(X) = \sum_{i \in X} p_i$.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then $c(A, B) = C - profit(A - \{s\})$.

Proof.

Edges in (A, B):

- (**s**, **i**) for $i \in B$ and $p_i > 0$: capacity is p_i
- ② (i,t) for $i \in A$ and $p_i < 0$: capacity is $-p_i$

Correctness of Reduction

Recall that for a set of projects X, $profit(X) = \sum_{i \in X} p_i$.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then $c(A, B) = C - profit(A - \{s\})$.

Proof.

Edges in (A, B):

- **1** (s, i) for $i \in B$ and $p_i > 0$: capacity is p_i
- ② (i,t) for $i \in A$ and $p_i < 0$: capacity is $-p_i$
- \odot cannot have ∞ edges

Proof contd

For project set A let

Proof.

Let
$$A' = A \cup \{s\}$$
.

$$c(A', B) = cost(A) + benefit(B)$$

= $cost(A) - benefit(A) + benefit(A) + benefit(B)$
= $-profit(A) + C$
= $C - profit(A)$

We have shown that if (A, B) is an s-t cut in G with finite capacity then

- **1** $A \{s\}$ is a valid set of projects

Therefore a minimum s-t cut (A^*, B^*) gives a maximum profit set of projects $A^* - \{s\}$ since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to C+1 instead. Why does this work?

We have shown that if (A, B) is an s-t cut in G with finite capacity then

- **1** $A \{s\}$ is a valid set of projects

Therefore a minimum s-t cut (A^*, B^*) gives a maximum profit set of projects $A^* - \{s\}$ since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to C+1 instead. Why does this work?

We have shown that if (A, B) is an s-t cut in G with finite capacity then

- **4** $\mathbf{A} \{\mathbf{s}\}$ is a valid set of projects

Therefore a minimum s-t cut (A^*, B^*) gives a maximum profit set of projects $A^* - \{s\}$ since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to C+1 instead. Why does this work?

We have shown that if (A, B) is an s-t cut in G with finite capacity then

- **1** $A \{s\}$ is a valid set of projects

Therefore a minimum s-t cut (A^*, B^*) gives a maximum profit set of projects $A^* - \{s\}$ since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to C + 1 instead. Why does this work?

Part III

Extensions to Maximum-Flow Problem

Lower Bounds and Costs

Two generalizations:

- flow satisfies $f(e) \le c(e)$ for all e. suppose we are given *lower bounds* $\ell(e)$ for each e. can we find a flow such that $\ell(e) \le f(e) \le c(e)$ for all e?
- suppose we are given a cost w(e) for each edge. cost of routing flow f(e) on edge e is w(e)f(e). can we (efficiently) find a flow (of at least some given quantity) at minimum cost?

Many applications

Lower Bounds and Costs

Two generalizations:

- flow satisfies f(e) ≤ c(e) for all e. suppose we are given lower bounds ℓ(e) for each e. can we find a flow such that ℓ(e) ≤ f(e) ≤ c(e) for all e?
- suppose we are given a cost w(e) for each edge. cost of routing flow f(e) on edge e is w(e)f(e). can we (efficiently) find a flow (of at least some given quantity) at minimum cost?

Many applications

Lower Bounds and Costs

Two generalizations:

- flow satisfies $f(e) \le c(e)$ for all e. suppose we are given *lower bounds* $\ell(e)$ for each e. can we find a flow such that $\ell(e) \le f(e) \le c(e)$ for all e?
- suppose we are given a cost w(e) for each edge. cost of routing flow f(e) on edge e is w(e)f(e). can we (efficiently) find a flow (of at least some given quantity) at minimum cost?

Many applications.

Definition

A flow in a network G = (V, E), is a function $f : E \to \mathbb{R}^{\geq 0}$ such that

- **1** Capacity Constraint: For each edge **e**, $f(e) \le c(e)$
- ② Lower Bound Constraint: For each edge e, $f(e) \ge \ell(e)$
- Conservation Constraint: For each vertex v

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

Question: Given **G** and c(e) and $\ell(e)$ for each **e**, is there a flow? As difficult as finding an **s-t** maximum-flow without lower bounds!

Definition

A flow in a network G = (V, E), is a function $f : E \to \mathbb{R}^{\geq 0}$ such that

- **1** Capacity Constraint: For each edge **e**, $f(e) \le c(e)$
- ② Lower Bound Constraint: For each edge e, $f(e) \ge \ell(e)$
- Conservation Constraint: For each vertex v

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

Question: Given G and c(e) and $\ell(e)$ for each e, is there a flow? As difficult as finding an s-t maximum-flow without lower bounds!

Definition

A flow in a network G = (V, E), is a function $f : E \to \mathbb{R}^{\geq 0}$ such that

- **1** Capacity Constraint: For each edge **e**, $f(e) \le c(e)$
- ② Lower Bound Constraint: For each edge e, $f(e) \ge \ell(e)$
- Conservation Constraint: For each vertex v

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

Question: Given **G** and c(e) and $\ell(e)$ for each **e**, is there a flow? As difficult as finding an **s-t** maximum-flow without lower bounds!

Regular flow via lower bounds

Given usual flow network G with source S and sink S, create lower-bound flow network S as follows:

- set $\ell(e) = 0$ for each e in G
- 2 add new edge (t, s) with lower bound v and upper bound ∞

Claim

There exists a flow of value \mathbf{v} from \mathbf{s} to \mathbf{t} in \mathbf{G} if and only if there exists a feasible flow with lower bounds in \mathbf{G}' .

Above reduction show that lower bounds on flows are naturally related to circulations. With lower bounds, cannot guarantee acyclic flows from ${\bf s}$ to ${\bf t}$.

Regular flow via lower bounds

Given usual flow network G with source S and sink S, create lower-bound flow network S as follows:

- set $\ell(e) = 0$ for each e in G
- 2 add new edge (t, s) with lower bound v and upper bound ∞

Claim

There exists a flow of value \mathbf{v} from \mathbf{s} to \mathbf{t} in \mathbf{G} if and only if there exists a feasible flow with lower bounds in \mathbf{G}' .

Above reduction show that lower bounds on flows are naturally related to circulations. With lower bounds, cannot guarantee acyclic flows from ${\bf s}$ to ${\bf t}$.

Regular flow via lower bounds

Given usual flow network G with source S and sink S, create lower-bound flow network G' as follows:

- set $\ell(e) = 0$ for each e in G
- 2 add new edge (t, s) with lower bound v and upper bound ∞

Claim

There exists a flow of value \mathbf{v} from \mathbf{s} to \mathbf{t} in \mathbf{G} if and only if there exists a feasible flow with lower bounds in \mathbf{G}' .

Above reduction show that lower bounds on flows are naturally related to circulations. With lower bounds, cannot guarantee acyclic flows from ${\bf s}$ to ${\bf t}$.

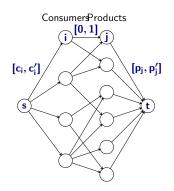
- Flows with lower bounds can be reduced to standard maximum flow problem. See text book. Reduction goes via circulations.
- ② If all bounds are integers then there is a flow that is integral. Useful in applications.

Survey Design

Application of Flows with Lower Bounds

- Design survey to find information about n₁ products from n₂ customers.
- Can ask customer questions only about products purchased in the past.
- $\ \ \, \ \,$ Customer can only be asked about at most c_i' products and at least c_i products.
- For each product need to ask at east p_i consumers and at most p'_i consumers.

Reduction to Circulation



- include edge (i, j) is customer i has bought product j
- ② Add edge (t, s) with lower bound 0 and upper bound ∞ .
 - Consumer i is asked about product j if the integral flow on edge (i, j) is 1

Minimum Cost Flows

- Input: Given a flow network G and also edge costs, w(e) for edge e, and a flow requirement F.
- ② Goal; Find a minimum cost flow of value F from s to t

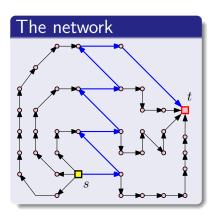
Given flow $f : E \to R^+$, cost of flow $= \sum_{e \in E} w(e)f(e)$.

Minimum Cost Flow: Facts

- problem can be solved efficiently in polynomial time
 - O(nm log C log(nW)) time algorithm where C is maximum edge capacity and W is maximum edge cost
 - **O** $(m \log n(m + n \log n))$ time strongly polynomial time algorithm
- for integer capacities there is always an optimum solutions in which flow is integral

How much damage can a single path cause?

Consider the following network. All the edges have capacity 1. Clearly the maximum flow in this network has value 4.



Why removing the shortest path might ruin everything

- However... The shortest path between s and t is the blue path.
- And if we remove the shortest path, s and t become disconnected, and the maximum flow drop to 0.