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Pennant Race: Example

Team Won | Left

New York | 92 2
Baltimore | 91 3
Toronto 91 3
Boston 89 2

Can Boston win the pennant?
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Pennant Race: Example

Team Won | Left

New York | 92 2
Baltimore | 91 3
Toronto 91 3
Boston 89 2

Can Boston win the pennant?
No, because Boston can win at most 91 games.
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Another Example

Team Won | Left

New York | 92 2
Baltimore | 91 3
Toronto 91 3
Boston 90 2

Can Boston win the pennant?
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Another Example

Team Won | Left

New York | 92 2
Baltimore | 91 3
Toronto 91 3
Boston 90 2

Can Boston win the pennant?
Not clear unless we know what the remaining games are!
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Refining the Example

Team Won | Left | NY | Bal | Tor | Bos

New York | 92 2 — 1 1 0
Baltimore | 91 3 1 — 1 1
Toronto 91 3 1 1 — 1
Boston 90 2 0 1 1 —

Can Boston win the pennant?
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Refining the Example

Team Won | Left | NY | Bal | Tor | Bos

New York | 92 2 — 1 1 0

Baltimore | 91 3 1 — 1 1

Toronto 91 3 1 1 — 1
2 0

Boston 90

Can Boston win the pennant? Suppose Boston does

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 /38



Refining the Example

Team Won | Left | NY | Bal | Tor | Bos
New York | 92 2 — 1 1 0
Baltimore | 91 3 1 — 1 1
Toronto 91 3 1 1 — 1
Boston 90 2 0 1 1 —

Can Boston win the pennant? Suppose Boston does
@ Boston wins both its games to get 92 wins
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Refining the Example

Team Won | Left | NY | Bal | Tor | Bos
New York | 92 2 — 1 1 0
Baltimore | 91 3 1 — 1 1
Toronto 91 3 1 1 — 1
Boston 90 2 0 1 1 —

Can Boston win the pennant? Suppose Boston does
@ Boston wins both its games to get 92 wins
© New York must lose both games
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Refining the Example

Team Won | Left | NY | Bal | Tor | Bos
New York | 92 2 — 1 1 0
Baltimore | 91 3 1 — 1 1
Toronto 91 3 1 1 — 1
Boston 90 2 0 1 1 —

Can Boston win the pennant? Suppose Boston does
@ Boston wins both its games to get 92 wins

© New York must lose both games; now both Baltimore and
Toronto have at least 92
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Refining the Example

Team Won | Left | NY | Bal | Tor | Bos
New York | 92 2 — 1 1 0
Baltimore | 91 3 1 — 1 1
Toronto 91 3 1 1 — 1
Boston 90 2 0 1 1 —

Can Boston win the pennant? Suppose Boston does
@ Boston wins both its games to get 92 wins

© New York must lose both games; now both Baltimore and
Toronto have at least 92

© Winner of Baltimore-Toronto game has 93 wins!
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Abstracting the Problem

Given
@ A set of teams S
@ For each x € S, the current number of wins wy

@ For any x,y € S, the number of remaining games g,, between x
and y

Q Ateamz
Can z win the pennant?
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Towards a Reduction

Z can win the pennant if
© Z wins at least m games

© no other team wins more than m games
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Towards a Reduction

Z can win the pennant if
© Z wins at least m games
@ to maximize Z's chances we make Z win all its remaining games
and hence m = w; + s 8x

© no other team wins more than m games
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Towards a Reduction

Z can win the pennant if
© Z wins at least m games
@ to maximize Z's chances we make Z win all its remaining games
and hence m = w3 + ers gxz
© no other team wins more than m games

@ for each x,y € S the g,y games between them have to be
assigned to either x or y.

@ each team x # Z can win at most m — wy — g,z remaining
games

Is there an assignment of remaining games to teams such that no
team x #% Z wins more than m — w, games?
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Flow Network: The basic gadget

@ s: source
Q t: sink
© x, y: two teams

@ g,,: number of games <
remaining between x and &
y. S_ Gy
Q@ w,: number of points x
has.

@ m: maximum number of Vy
points x can win before
team of interest is
eliminated.
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Flow Network: An Example
Can Boston win?

Team Won | Left || NY | Bal | Tor || Bos
New York | 90 11
Baltimore | 88 6
Toronto 87 11

| Boston [ 79 | 12 |

Q@ m=79+12 =091:
Boston can get at most
91 points.
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Constructing Flow Network

Notations Construct the flow network G as
follows

@ S: set of teams,

@ w, wins for each team,
and

@ One vertex v, for each team
x € §’, one vertex uy, for each

pair of teams x and y in S’
@ g, games left between

@ A new source vertex s and sink t
x and y.

© m be the maximum Q Edges (uyy, vx) and (uyy, vy) of

. _ capacity oo
number of wins for z, .
Q@ and S’ = S\ {z}. @ Edges (s, uyy) of capacity gyy
) © Edges (v, t) of capacity equal
m — wy
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Correctness of reduction

G’ has a maximum flow of value g* = >
can win the most number of games (including possibly tie with other
teams).

xyes 8xy if and only if z
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Proof of Correctness

Existence of g* flow => Z wins pennant

@ An integral flow saturating edges out of s, ensures that each
remaining game between x and y is added to win total of either
X ory

@ Capacity on (v, t) edges ensures that no team wins more than
m games
Conversely, Z wins pennant = flow of value g*
@ Scenario determines flow on edges; if x wins k of the games
against y, then flow on (uyy, vx) edge is k and on (u,y, vy) edge
IS Bxy — k O]

4
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Proof that cannot with the pennant

@ Suppose Z cannot win the pennant since g* < g. How do we
prove to some one compactly that Z cannot win the pennant?

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 38



Proof that cannot with the pennant

@ Suppose Z cannot win the pennant since g* < g. How do we
prove to some one compactly that Z cannot win the pennant?

@ Show them the min-cut in the reduction flow network!
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Proof that cannot with the pennant

@ Suppose Z cannot win the pennant since g* < g. How do we
prove to some one compactly that Z cannot win the pennant?

@ Show them the min-cut in the reduction flow network!

© See text book for a natural interpretation of the min-cut as a
certificate.
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Part 1l

An Application of Min-Cut to Project

Scheduling
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Project Scheduling

Problem:
@ n projects/tasks 1,2,...,n

© dependencies between projects: i depends on j implies i cannot
be done unless j is done. dependency graph is acyclic

@ each project i has a cost/profit p;

@ p; < 0 implies i requires a cost of —p; units
@ p; > 0 implies that i generates p; profit

Goal: Find projects to do so as to maximize profit.
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For a set A of projects:

@ A is a valid solution if A is dependency closed, that is for every
i € A, all projects that i depends on are also in A.
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For a set A of projects:

@ A is a valid solution if A is dependency closed, that is for every
i € A, all projects that i depends on are also in A.

Q profit(A) = > ;A Pi- Can be negative or positive.
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For a set A of projects:

@ A is a valid solution if A is dependency closed, that is for every
i € A, all projects that i depends on are also in A.

Q profit(A) = > ;A Pi- Can be negative or positive.

Goal: find valid A to maximize profit(A).

Sariel, Alexandra (UIUC) Spring 2013 18 / 38



|ldea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets:
those that are done and those that are not done.

Can we express this is a minimum cut problem?
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|ldea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets:
those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

@ We are interested in maximizing profit but we can solve
minimum cuts.

@ We need to convert negative profits into positive capacities.
© Need to ensure that chosen projects is a valid set.

© The cut value captures the profit of the chosen set of projects.
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Reduction to Minimum-Cut

Note: We are reducing a maximization problem to a minimization
problem.

© projects represented as nodes in a graph

@ if i depends on j then (i, j) is an edge

© add source s and sink t

@ for each i with p; > 0 add edge (s, i) with capacity p;

@ for each i with p; < 0 add edge (i, t) with capacity —p;

@ for each dependency edge (i, j) put capacity oo (more on this

later)
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Reduction: Flow Network Example
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Reduction contd

Algorithm:
@ form graph as in previous slide
@ compute s-t minimum cut (A, B)
@ output the projects in A — {s}
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Understanding the Reduction

Let C = Zi:pi>0 pi: maximum possible profit.
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Understanding the Reduction

Let C = Zi:pi>0 pi: maximum possible profit.

Observation: The minimum s-t cut value is < C. Why?
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Understanding the Reduction

Let C = Zi:pi>0 pi: maximum possible profit.

Observation: The minimum s-t cut value is < C. Why?

Suppose (A, B) is an s-t cut of finite capacity (no oo ) edges. Then
projects in A — {s} are a valid solution.
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Understanding the Reduction

Let C = Zi:pi>0 pi: maximum possible profit.

Observation: The minimum s-t cut value is < C. Why?

Suppose (A, B) is an s-t cut of finite capacity (no oo ) edges. Then
projects in A — {s} are a valid solution.

Proof.

If A — {s} is not a valid solution then there is a project i € A and a
project j & A such that i depends on j

v
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Understanding the Reduction

Let C = Zi:pi>0 pi: maximum possible profit.

Observation: The minimum s-t cut value is < C. Why?

Suppose (A, B) is an s-t cut of finite capacity (no oo ) edges. Then
projects in A — {s} are a valid solution.

Proof.

If A — {s} is not a valid solution then there is a project i € A and a
project j & A such that i depends on j

Since (i, j) capacity is oo, implies (A, B) capacity is oo,
contradicting assumption. ]

v
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Example
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Correctness of Reduction

Recall that for a set of projects X, profit(X) = > ..y pi.
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Correctness of Reduction

Recall that for a set of projects X, profit(X) = > ..y pi.

Suppose (A, B) is an s-t cut of finite capacity (no oo ) edges. Then
c(A,B) = C — profit(A — {s}).
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Correctness of Reduction

Recall that for a set of projects X, profit(X) = > ..y pi.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no oo ) edges. Then
c(A,B) = C — profit(A — {s}).

| A

Proof.

Edges in (A, B):
Q (s,i) fori € B and p; > 0: capacity is p;
Q (i,t) fori € A and p; < 0: capacity is —p;
© cannot have co edges
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For project set A let
Q cost(A) = D icap<o —Pi
@ benefit(A) = ) icpp, 50 Pi
@ profit(A) = benefit(A) — cost(A).

Proof.
Let A’ = AU {s}.

c(A’,B) = cost(A) + benefit(B)

cost(A) — benefit(A) + benefit(A) + benefit(B)
—profit(A) + C

C — profit(A)

U
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Correctness of Reduction contd

We have shown that if (A, B) is an s-t cut in G with finite capacity
then

Q@ A — {s} is a valid set of projects
@ c(A,B) = C — profit(A — {s})
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Correctness of Reduction contd

We have shown that if (A, B) is an s-t cut in G with finite capacity
then

Q@ A — {s} is a valid set of projects

@ c(A,B) = C — profit(A — {s})
Therefore a minimum s-t cut (A*, B*) gives a maximum profit set of
projects A* — {s} since C is fixed.
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Correctness of Reduction contd

We have shown that if (A, B) is an s-t cut in G with finite capacity
then

Q@ A — {s} is a valid set of projects
@ c(A,B) = C — profit(A — {s})

Therefore a minimum s-t cut (A*, B*) gives a maximum profit set of
projects A* — {s} since C is fixed.

Question: How can we use oo in a real algorithm?
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Correctness of Reduction contd

We have shown that if (A, B) is an s-t cut in G with finite capacity
then

Q@ A — {s} is a valid set of projects

@ c(A,B) = C — profit(A — {s})
Therefore a minimum s-t cut (A*, B*) gives a maximum profit set of
projects A* — {s} since C is fixed.

Question: How can we use oo in a real algorithm?

Set capacity of oo arcs to C 4+ 1 instead. Why does this work?
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Part |lI

Extensions to Maximum-Flow Problem
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Lower Bounds and Costs

Two generalizations:

Q flow satisfies f(e) < c(e) for all e. suppose we are given lower

bounds £(e) for each e. can we find a flow such that
£(e) < f(e) < c(e) for all e?
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Lower Bounds and Costs

Two generalizations:

Q flow satisfies f(e) < c(e) for all e. suppose we are given lower
bounds £(e) for each e. can we find a flow such that
£(e) < f(e) < c(e) for all e?

@ suppose we are given a cost w(e) for each edge. cost of routing
flow f(e) on edge e is w(e)f(e). can we (efficiently) find a flow
(of at least some given quantity) at minimum cost?
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Lower Bounds and Costs

Two generalizations:

Q flow satisfies f(e) < c(e) for all e. suppose we are given lower
bounds £(e) for each e. can we find a flow such that
£(e) < f(e) < c(e) for all e?

@ suppose we are given a cost w(e) for each edge. cost of routing
flow f(e) on edge e is w(e)f(e). can we (efficiently) find a flow
(of at least some given quantity) at minimum cost?

Many applications.
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Flows with Lower Bounds

A flow in a network G = (V, E), is a function f : E — R=2% such
that

@ Capacity Constraint: For each edge e, f(e) < c(e)
@ Lower Bound Constraint: For each edge e, f(e) > £(e)

© Conservation Constraint: For each vertex v

Yo ofe)= D> f(e)

e into v e out of v
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Flows with Lower Bounds

A flow in a network G = (V, E), is a function f : E — R=2% such
that

@ Capacity Constraint: For each edge e, f(e) < c(e)
@ Lower Bound Constraint: For each edge e, f(e) > £(e)

© Conservation Constraint: For each vertex v

Yo ofe)= D> f(e)

e into v e out of v

Question: Given G and c(e) and £(e) for each e, is there a flow?
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Flows with Lower Bounds

A flow in a network G = (V, E), is a function f : E — R=2% such
that

@ Capacity Constraint: For each edge e, f(e) < c(e)
@ Lower Bound Constraint: For each edge e, f(e) > £(e)

© Conservation Constraint: For each vertex v

Yo ofe)= D> f(e)

e into v e out of v

Question: Given G and c(e) and £(e) for each e, is there a flow?
As difficult as finding an s-t maximum-flow without lower bounds!
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Regular flow via lower bounds

Given usual flow network G with source s and sink t, create
lower-bound flow network G’ as follows:

Q set £(e) = 0 for each e in G
@ add new edge (t,s) with lower bound v and upper bound co
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Regular flow via lower bounds

Given usual flow network G with source s and sink t, create
lower-bound flow network G’ as follows:

Q set £(e) = 0 for each e in G
@ add new edge (t,s) with lower bound v and upper bound co

There exists a flow of value v from s to t in G if and only if there
exists a feasible flow with lower bounds in G’'.
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Regular flow via lower bounds

Given usual flow network G with source s and sink t, create
lower-bound flow network G’ as follows:

Q set £(e) = 0 for each e in G
@ add new edge (t,s) with lower bound v and upper bound co

There exists a flow of value v from s to t in G if and only if there
exists a feasible flow with lower bounds in G’'.

Above reduction show that lower bounds on flows are naturally
related to circulations. With lower bounds, cannot guarantee acyclic
flows from s to t.
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Flows with Lower Bounds

© Flows with lower bounds can be reduced to standard maximum
flow problem. See text book. Reduction goes via circulations.

@ If all bounds are integers then there is a flow that is integral.
Useful in applications.
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Survey Design

Application of Flows with Lower Bounds

Design survey to find information about ny products from n,
customers.

Can ask customer questions only about products purchased in
the past.

Customer can only be asked about at most ¢/ products and at
least c; products.

For each product need to ask at east p; consumers and at most
p; consumers.

Sariel, Alexandra (UIUC) CS473 34 Spring 2013 34 /38



Reduction to Circulation

Consumerdroducts

@ include edge (i, j) is customer i has bought product j
@ Add edge (t,s) with lower bound 0 and upper bound oo.
@ Consumer i is asked about product j if the integral flow on edge
(i,j) is 1
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Minimum Cost Flows

Q Input: Given a flow network G and also edge costs, w(e) for
edge e, and a flow requirement F.

@ Goal; Find a minimum cost flow of value F from s to t

Given flow f : E — R*, cost of flow = 3~ ¢ w(e)f(e).
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Minimum Cost Flow: Facts

© problem can be solved efficiently in polynomial time
©® O(nmlog Clog(nW)) time algorithm where C is maximum
edge capacity and W is maximum edge cost
® O(mlogn(m + nlogn)) time strongly polynomial time
algorithm

© for integer capacities there is always an optimum solutions in
which flow is integral
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How much damage can a single path cause?

Consider the following network. All the edges have capacity 1.
Clearly the maximum flow in this network has value 4.

path might ruin everything
© However... The shortest path
. between s and t is the blue
path.

@ And if we remove the shortest
path, s and t become
disconnected, and the

5 maximum flow drop to 0.
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