CS 473: Fundamental Algorithm	ns, Spring 2013	
More Network Flow Applications	V	
Lecture 19 April 4, 2013		
Sariel, Alexandra (UIUC) CS473 1	Spring 2013 1	. / 47

Pennant Race: I	Example			
Example				
	Team	Won	Left	
	New York	92	2	
	Baltimore	91	3	
	Toronto	91	3	
	Boston	89	2	
Can Boston win the p No, because Boston c	ennant? an win at m	ost 91	games.	

Another Example

Example

Team	Won	Left
New York	92	2
Baltimore	91	3
Toronto	91	3
Boston	90	2

Can Boston win the pennant? Not clear unless we know what the remaining games are!

Abstracting the Problem

Given

A set of teams S

Sariel, Alexandra (UIUC

- **2** For each $\mathbf{x} \in \mathbf{S}$, the current number of wins $\mathbf{w}_{\mathbf{x}}$
- (a) For any $x,y\in S,$ the number of remaining games g_{xy} between x and y
- A team z
- Can \boldsymbol{z} win the pennant?

Refining the Example

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	—

Can Boston win the pennant? Suppose Boston does

- Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92
- S Winner of Baltimore-Toronto game has 93 wins!

Towards a Reduction

 \overline{z} can win the pennant if

Sariel, Alexandra (UIUC

- **1** \overline{z} wins at least **m** games
 - to maximize \overline{z} 's chances we make \overline{z} win all its remaining games and hence $\mathbf{m} = \mathbf{w}_{\overline{z}} + \sum_{x \in S} \mathbf{g}_{x\overline{z}}$
- on other team wins more than m games
 - for each x, y ∈ S the g_{xy} games between them have to be assigned to either x or y.
 - @ each team $x \neq \overline{z}$ can win at most $m w_x g_{x\overline{z}}$ remaining games

Is there an assignment of remaining games to teams such that no team $x \neq \overline{z}$ wins more than $m - w_x$ games?

Spring 2013

CS473

Spring 2013

Flow Network: An Example Can Boston win?

Correctness of reduction

Theorem

G' has a maximum flow of value $\mathbf{g}^* = \sum_{\mathbf{x}, \mathbf{y} \in \mathbf{S}'} \mathbf{g}_{\mathbf{x}\mathbf{y}}$ if and only if $\overline{\mathbf{z}}$ can win the most number of games (including possibly tie with other teams).

CS473

Proof of Correctness

Proof.

Existence of \mathbf{g}^* flow $\Rightarrow \overline{\mathbf{z}}$ wins pennant

- An integral flow saturating edges out of s, ensures that each remaining game between x and y is added to win total of either x or y
- Capacity on (v_x, t) edges ensures that no team wins more than m games

Conversely, $\overline{\mathbf{z}}$ wins pennant \Rightarrow flow of value \mathbf{g}^*

Scenario determines flow on edges; if x wins k of the games against y, then flow on (u_{xy}, v_x) edge is k and on (u_{xy}, v_y) edge is g_{xy} − k

Part II

An Application of Min-Cut to Project Scheduling

Proof that $\overline{\mathbf{z}}$ cannot with the pennant

- Suppose z cannot win the pennant since g* < g. How do we prove to some one compactly that z cannot win the pennant?</p>
- Show them the min-cut in the reduction flow network!
- See text book for a natural interpretation of the min-cut as a certificate.

Sariel, Alexandra, (UIUC)	CS473	14

Project Scheduling

Problem:

- **0** n projects/tasks $1, 2, \ldots, n$
- *dependencies* between projects: i depends on j implies i cannot be done unless j is done. dependency graph is *acyclic*
- $\textcircled{O} \text{ each project } i \text{ has a cost/profit } p_i$
 - ${\small \textbf{0}} \ \ p_i < 0 \ \ \text{implies} \ \ i \ \ \text{requires a cost of} \ \ -p_i \ \ \text{units}$
 - ${\it @} \ p_i > 0 \ \text{implies that} \ i \ \text{generates} \ p_i \ \text{profit}$

Goal: Find projects to do so as to *maximize* profit.

Sariel, Alexandra (UIUC

Spring 2013

Spring 2013

14 / 47

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets: those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

- We are interested in maximizing profit but we can solve minimum cuts.
- **2** We need to convert negative profits into positive capacities.
- **③** Need to ensure that chosen projects is a valid set.
- The cut value captures the profit of the chosen set of projects.

Notation

For a set **A** of projects:

- A is a valid solution if A is dependency closed, that is for every i ∈ A, all projects that i depends on are also in A.
- **2** profit(A) = $\sum_{i \in A} p_i$. Can be negative or positive.

Goal: find valid **A** to maximize **profit(A)**.

Reduction to Minimum-Cut

Note: We are reducing a *maximization* problem to a *minimization* problem.

- projects represented as nodes in a graph
- **2** if **i** depends on **j** then **(i, j)** is an edge
- add source s and sink t
- () for each i with $p_i > 0$ add edge (s,i) with capacity p_i
- § for each i with $p_i < 0$ add edge (i,t) with capacity $-p_i$
- for each dependency edge (i, j) put capacity ∞ (more on this later)

19

Understanding the Reduction

Let $C = \sum_{i:p_i > 0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is \leq C. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in $A - \{s\}$ are a valid solution.

Proof.

If $A - \{s\}$ is not a valid solution then there is a project $i \in A$ and a project $j \notin A$ such that i depends on j

Since (i, j) capacity is ∞ , implies (A, B) capacity is ∞ , contradicting assumption.

Reduction contd

Algorithm:

- form graph as in previous slide
- compute s-t minimum cut (A, B)
- (a) output the projects in $A-\{s\}$

Spring 2013

Proof contd

For project set A let

- $one \text{ cost}(A) = \sum_{i \in A: p_i < 0} -p_i$
- **2** benefit(A) = $\sum_{i \in A: p_i > 0} p_i$
- **3** profit(A) = benefit(A) cost(A).

Proof.

Correctness of Reduction

Recall that for a set of projects X, $profit(X) = \sum_{i \in X} p_i$.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then $c(A, B) = C - profit(A - \{s\})$.

Proof.

Correctness of Reduction contd

We have shown that if (A, B) is an s-t cut in G with finite capacity then

- **1** $A \{s\}$ is a valid set of projects
- ② c(A, B) = C profit(A {s})

Therefore a minimum s-t cut (A^*, B^*) gives a maximum profit set of projects $A^* - \{s\}$ since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to ${\sf C}+1$ instead. Why does this work?

Sariel, Alexandra (UIUC

CS47<u>3</u>____

Spring 2013 28 / 47

Flows with Lower Bounds

Definition

A flow in a network $\mathsf{G}=(\mathsf{V},\mathsf{E}),$ is a function $f:\mathsf{E}\to\mathbb{R}^{\geq0}$ such that

- Capacity Constraint: For each edge $e, f(e) \leq c(e)$
- **Q** Lower Bound Constraint: For each edge $e, f(e) \ge \ell(e)$
- **③** Conservation Constraint: For each vertex \mathbf{v}

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

Question: Given **G** and c(e) and $\ell(e)$ for each **e**, is there a flow? As difficult as finding an **s**-**t** maximum-flow without lower bounds!

Lower Bounds and Costs

Two generalizations:

- If low satisfies f(e) ≤ c(e) for all e. suppose we are given *lower* bounds ℓ(e) for each e. can we find a flow such that ℓ(e) ≤ f(e) ≤ c(e) for all e?
- suppose we are given a cost w(e) for each edge. cost of routing flow f(e) on edge e is w(e)f(e). can we (efficiently) find a flow (of at least some given quantity) at minimum cost?

Many applications.

Regular flow via lower bounds

Given usual flow network ${\bm G}$ with source ${\bm s}$ and sink ${\bm t},$ create lower-bound flow network ${\bm G}'$ as follows:

- set $\ell(\mathbf{e}) = \mathbf{0}$ for each \mathbf{e} in \mathbf{G}
- 2 add new edge (t,s) with lower bound v and upper bound ∞

Claim

There exists a flow of value v from s to t in G if and only if there exists a feasible flow with lower bounds in G'.

Above reduction show that lower bounds on flows are naturally related to circulations. With lower bounds, cannot guarantee acyclic flows from \mathbf{s} to \mathbf{t} .

Spring 2013

Flows with Lower Bounds

- Flows with lower bounds can be reduced to standard maximum flow problem. See text book. Reduction goes via circulations.
- If all bounds are integers then there is a flow that is integral. Useful in applications.

Sariel, Alexandra (UIUC)	CS473	33	Spring 2013	33 / 47
			1.0	1

Survey Design

Application of Flows with Lower Bounds

- Design survey to find information about \mathbf{n}_1 products from \mathbf{n}_2 customers.
- Can ask customer questions only about products purchased in the past.
- Customer can only be asked about at most c'_i products and at least c_i products.
- For each product need to ask at east \mathbf{p}_i consumers and at most \mathbf{p}'_i consumers.

Minimum Cost Flows

Sariel, Alexandra (UIUC

- Input: Given a flow network G and also edge costs, w(e) for edge e, and a flow requirement F.
- **Q** Goal; Find a *minimum cost* flow of value **F** from **s** to **t**

```
Given flow f : E \to R^+, cost of flow = \sum_{e \in E} w(e)f(e).
```

Sariel, Alexandra (UIUC)

CS473_____

Spring 2013

34 / 47

Minimum Cost Flow: Facts

- **9** problem can be solved efficiently in polynomial time
 - O(nm log C log(nW)) time algorithm where C is maximum edge capacity and W is maximum edge cost
 - O(m log n(m + n log n)) time strongly polynomial time algorithm
- If or integer capacities there is always an optimum solutions in which flow is integral

CS473	37	Spring 2013	37 / 47
	C5473	CS473 37	C5473 37 Spring 2013

How much damage can a single path cause?

Consider the following network. All the edges have capacity 1. Clearly the maximum flow in this network has value 4.

