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Part I

Baseball Pennant Race
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Pennant Race
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Pennant Race: Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 89 2

Can Boston win the pennant?
No, because Boston can win at most 91 games.
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Another Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 90 2

Can Boston win the pennant?
Not clear unless we know what the remaining games are!

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 47

Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!
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Abstracting the Problem

Given

1 A set of teams S

2 For each x ∈ S, the current number of wins wx

3 For any x, y ∈ S, the number of remaining games gxy between x
and y

4 A team z

Can z win the pennant?
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Towards a Reduction

z can win the pennant if
1 z wins at least m games

1 to maximize z’s chances we make z win all its remaining games
and hence m = wz +

∑
x∈S gxz

2 no other team wins more than m games
1 for each x, y ∈ S the gxy games between them have to be

assigned to either x or y.
2 each team x 6= z can win at most m− wx − gxz remaining

games

Is there an assignment of remaining games to teams such that no
team x 6= z wins more than m− wx games?
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Flow Network: The basic gadget
1 s: source

2 t: sink

3 x, y: two teams

4 gxy: number of games
remaining between x and
y.

5 wx: number of points x
has.

6 m: maximum number of
points x can win before
team of interest is
eliminated.
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Flow Network: An Example
Can Boston win?

Team Won Left NY Bal Tor Bos
New York 90 11 − 1 6 4
Baltimore 88 6 1 − 1 4
Toronto 87 11 6 1 − 4

Boston 79 12 4 4 4 −

1 m = 79 + 12 = 91:
Boston can get at most
91 points.
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Constructing Flow Network

Notations
1 S: set of teams,

2 wx wins for each team,
and

3 gxy games left between
x and y.

4 m be the maximum
number of wins for z,

5 and S′ = S \ {z}.

Reduction
Construct the flow network G as
follows

1 One vertex vx for each team
x ∈ S′, one vertex uxy for each
pair of teams x and y in S′

2 A new source vertex s and sink t

3 Edges (uxy, vx) and (uxy, vy) of
capacity∞

4 Edges (s, uxy) of capacity gxy

5 Edges (vx, t) of capacity equal
m− wx
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Correctness of reduction

Theorem
G′ has a maximum flow of value g∗ =

∑
x,y∈S′ gxy if and only if z

can win the most number of games (including possibly tie with other
teams).
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Proof of Correctness

Proof.
Existence of g∗ flow⇒ z wins pennant

1 An integral flow saturating edges out of s, ensures that each
remaining game between x and y is added to win total of either
x or y

2 Capacity on (vx, t) edges ensures that no team wins more than
m games

Conversely, z wins pennant⇒ flow of value g∗

1 Scenario determines flow on edges; if x wins k of the games
against y, then flow on (uxy, vx) edge is k and on (uxy, vy) edge
is gxy − k
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Proof that z cannot with the pennant
1 Suppose z cannot win the pennant since g∗ < g. How do we

prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See text book for a natural interpretation of the min-cut as a
certificate.
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Part II

An Application of Min-Cut to Project
Scheduling

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 47

Project Scheduling

Problem:

1 n projects/tasks 1, 2, . . . , n

2 dependencies between projects: i depends on j implies i cannot
be done unless j is done. dependency graph is acyclic

3 each project i has a cost/profit pi

1 pi < 0 implies i requires a cost of −pi units
2 pi > 0 implies that i generates pi profit

Goal: Find projects to do so as to maximize profit.
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Example
Example

Chekuri CS473ug
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Notation

For a set A of projects:

1 A is a valid solution if A is dependency closed, that is for every
i ∈ A, all projects that i depends on are also in A.

2 profit(A) =
∑

i∈A pi. Can be negative or positive.

Goal: find valid A to maximize profit(A).
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Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets:
those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

1 We are interested in maximizing profit but we can solve
minimum cuts.

2 We need to convert negative profits into positive capacities.

3 Need to ensure that chosen projects is a valid set.

4 The cut value captures the profit of the chosen set of projects.
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Reduction to Minimum-Cut

Note: We are reducing a maximization problem to a minimization
problem.

1 projects represented as nodes in a graph

2 if i depends on j then (i, j) is an edge

3 add source s and sink t

4 for each i with pi > 0 add edge (s, i) with capacity pi

5 for each i with pi < 0 add edge (i, t) with capacity −pi

6 for each dependency edge (i, j) put capacity∞ (more on this
later)
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Reduction: Flow Network Example
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Reduction contd

Algorithm:

1 form graph as in previous slide

2 compute s-t minimum cut (A, B)

3 output the projects in A− {s}
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Understanding the Reduction

Let C =
∑

i:pi>0 pi: maximum possible profit.

Observation: The minimum s-t cut value is ≤ C. Why?

Lemma
Suppose (A, B) is an s-t cut of finite capacity (no∞) edges. Then
projects in A− {s} are a valid solution.

Proof.
If A− {s} is not a valid solution then there is a project i ∈ A and a
project j 6∈ A such that i depends on j

Since (i, j) capacity is∞, implies (A, B) capacity is∞,
contradicting assumption.
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Example
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Example

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 47

Correctness of Reduction

Recall that for a set of projects X, profit(X) =
∑

i∈X pi.

Lemma
Suppose (A, B) is an s-t cut of finite capacity (no∞) edges. Then
c(A, B) = C− profit(A− {s}).

Proof.
Edges in (A, B):

1 (s, i) for i ∈ B and pi > 0: capacity is pi

2 (i, t) for i ∈ A and pi < 0: capacity is −pi

3 cannot have∞ edges
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Proof contd

For project set A let

1 cost(A) =
∑

i∈A:pi<0−pi

2 benefit(A) =
∑

i∈A:pi>0 pi

3 profit(A) = benefit(A)− cost(A).

Proof.
Let A′ = A ∪ {s}.

c(A′, B) = cost(A) + benefit(B)

= cost(A)− benefit(A) + benefit(A) + benefit(B)

= −profit(A) + C

= C− profit(A)

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 47

Correctness of Reduction contd

We have shown that if (A, B) is an s-t cut in G with finite capacity
then

1 A− {s} is a valid set of projects

2 c(A, B) = C− profit(A− {s})
Therefore a minimum s-t cut (A∗, B∗) gives a maximum profit set of
projects A∗ − {s} since C is fixed.

Question: How can we use∞ in a real algorithm?

Set capacity of∞ arcs to C + 1 instead. Why does this work?
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Part III

Extensions to Maximum-Flow
Problem
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Lower Bounds and Costs

Two generalizations:

1 flow satisfies f(e) ≤ c(e) for all e. suppose we are given lower
bounds `(e) for each e. can we find a flow such that
`(e) ≤ f(e) ≤ c(e) for all e?

2 suppose we are given a cost w(e) for each edge. cost of routing
flow f(e) on edge e is w(e)f(e). can we (efficiently) find a flow
(of at least some given quantity) at minimum cost?

Many applications.
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Flows with Lower Bounds

Definition

A flow in a network G = (V, E), is a function f : E→ R≥0 such
that

1 Capacity Constraint: For each edge e, f(e) ≤ c(e)

2 Lower Bound Constraint: For each edge e, f(e) ≥ `(e)

3 Conservation Constraint: For each vertex v∑
e into v

f(e) =
∑

e out of v

f(e)

Question: Given G and c(e) and `(e) for each e, is there a flow?
As difficult as finding an s-t maximum-flow without lower bounds!
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Regular flow via lower bounds

Given usual flow network G with source s and sink t, create
lower-bound flow network G′ as follows:

1 set `(e) = 0 for each e in G

2 add new edge (t, s) with lower bound v and upper bound∞

Claim
There exists a flow of value v from s to t in G if and only if there
exists a feasible flow with lower bounds in G′.

Above reduction show that lower bounds on flows are naturally
related to circulations. With lower bounds, cannot guarantee acyclic
flows from s to t.
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Flows with Lower Bounds
1 Flows with lower bounds can be reduced to standard maximum

flow problem. See text book. Reduction goes via circulations.

2 If all bounds are integers then there is a flow that is integral.
Useful in applications.

Sariel, Alexandra (UIUC) CS473 33 Spring 2013 33 / 47

Survey Design
Application of Flows with Lower Bounds

1 Design survey to find information about n1 products from n2

customers.

2 Can ask customer questions only about products purchased in
the past.

3 Customer can only be asked about at most c′i products and at
least ci products.

4 For each product need to ask at east pi consumers and at most
p′i consumers.
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Reduction to Circulation

s

i j

t

ConsumersProducts

[ci, c′i ] [pj, p′j]

[0, 1]

1 include edge (i, j) is customer i has bought product j
2 Add edge (t, s) with lower bound 0 and upper bound∞.

1 Consumer i is asked about product j if the integral flow on edge
(i, j) is 1
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Minimum Cost Flows
1 Input: Given a flow network G and also edge costs, w(e) for

edge e, and a flow requirement F.

2 Goal; Find a minimum cost flow of value F from s to t

Given flow f : E→ R+, cost of flow =
∑

e∈E w(e)f(e).
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Minimum Cost Flow: Facts
1 problem can be solved efficiently in polynomial time

1 O(nm log C log(nW)) time algorithm where C is maximum
edge capacity and W is maximum edge cost

2 O(m log n(m + n log n)) time strongly polynomial time
algorithm

2 for integer capacities there is always an optimum solutions in
which flow is integral
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How much damage can a single path cause?

Consider the following network. All the edges have capacity 1.
Clearly the maximum flow in this network has value 4.

The network

s

t

Why removing the shortest
path might ruin everything

1 However... The shortest path
between s and t is the blue
path.

2 And if we remove the shortest
path, s and t become
disconnected, and the
maximum flow drop to 0.
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