
Chapter 17

Network Flow Algorithms

CS 473: Fundamental Algorithms, Spring 2013
March 27, 2013

17.1 Algorithm(s) for Maximum Flow

17.1.0.1 Greedy Approach

1
0

20

10

20

10

s

v

u

t10

/
3
0

/2
0/10

/2
0 /10 (A) Begin with f(e) = 0 for each edge.

(B) Find a s-t path P with f(e) < c(e) for every edge e ∈ P .
(C) Augment flow along this path.
(D) Repeat augmentation for as long as possible.

1



17.1.1 Greedy Approach: Issues

17.1.1.1 Issues = What is this nonsense?

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

s

v

u

t

/
3
0

/2
0/10

/2
0 /1020 2

0

20

20 s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

2
0

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

1010

2
0

2
0

s

v

u

t

/
3
0

/2
0/10

/2
0 /10=

1
0

︷︸︸︷
2
0
−

1
0

1010

20

20

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

1010

20

20

10

1
0

(A) Begin with f(e) = 0 for each edge
(B) Find a s-t path P with f(e) < c(e) for every edge e ∈ P
(C) Augment flow along this path
(D) Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to “push-back” flow along edge (u, v).

17.2 Ford-Fulkerson Algorithm

17.2.1 Residual Graph

17.2.1.1 The “leftover” graph

Definition 17.2.1. For a network G = (V,E) and flow f , the residual graph Gf =
(V ′, E ′) of G with respect to f is

(A) V ′ = V ,
(B) Forward Edges: For each edge e ∈ E with f(e) < c(e), we add e ∈ E ′ with capacity

c(e)− f(e).
(C) Backward Edges: For each edge e = (u, v) ∈ E with f(e) > 0, we add (v, u) ∈ E ′

with capacity f(e).

2



17.2.1.2 Residual Graph Example

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

2
0

Figure 17.1: Flow on edges is indicated in red

s

v

u

t

/2
0

/
2
0

/
1
0

/10

/10

/2
0

Figure 17.2: Residual Graph

17.2.1.3 Residual Graph Property

Observation: Residual graph captures the “residual” problem exactly.

Lemma 17.2.2. Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in Gf

then f+f ′ is a flow in G of value v(f) + v(f ′).

Lemma 17.2.3. Let f and f ′ be two flows in G with v(f ′) ≥ v(f). Then there is a flow f ′′

of value v(f ′)-v(f) in Gf .

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense
but a bit messy to formally prove.

17.2.1.4 Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

MaxFlow(G, s, t):
if the flow from s to t is 0 then

return 0
Find any flow f with v(f) > 0 in G
Recursively compute a maximum flow f ′ in Gf

Output the flow f+f ′

Iterative algorithm for finding a maximum flow:

MaxFlow(G, s, t):
Start with flow f that is 0 on all edges

while there is a flow f ′ in Gf with v(f ′) > 0 do
f = f+f ′

Update Gf

Output f

3



17.2.1.5 Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f(e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

let P be simple s-t path in Gf

f = augment(f, P )
Construct new residual graph Gf.

augment(f,P)
let b be bottleneck capacity,

i.e., min capacity of edges in P (in Gf)

for each edge (u, v) in P do
if e = (u, v) is a forward edge then

f(e) = f(e) + b
else (* (u, v) is a backward edge *)

let e = (v, u) (* (v, u) is in G *)

f(e) = f(e)− b
return f

17.3 Correctness and Analysis

17.3.1 Termination

17.3.1.1 Properties about Augmentation: Flow

Lemma 17.3.1. If f is a flow and P is a simple s-t path in Gf , then f ′ = augment(f, P )
is also a flow.

Proof : Verify that f ′ is a flow. Let b be augmentation amount.

(A) Capacity constraint: If (u, v) ∈ P is a forward edge then f ′(e) = f(e) + b and
b ≤ c(e)−f(e). If (u, v) ∈ P is a backward edge, then letting e = (v, u), f ′(e) = f(e)−b
and b ≤ f(e). Both cases 0 ≤ f ′(e) ≤ c(e).

(B) Conservation constraint: Let v be an internal node. Let e1, e2 be edges of P incident
to v. Four cases based on whether e1, e2 are forward or backward edges. Check cases
(see fig next slide).

4



17.3.2 Properties of Augmentation

17.3.2.1 Conservation Constraint

s t

Gf

G

s t

−

+ + + + +

−

+

+ − + +

+

+

Figure 17.3: Augmenting path P in Gf and corresponding change of flow in G. Red edges
are backward edges.

17.3.3 Properties of Augmentation

17.3.3.1 Integer Flow

Lemma 17.3.2. At every stage of the Ford-Fulkerson algorithm, the flow values on the edges
(i.e., f(e), for all edges e) and the residual capacities in Gf are integers.

Proof : Initial flow and residual capacities are integers. Suppose lemma holds for j itera-
tions. Then in (j + 1)st iteration, minimum capacity edge b is an integer, and so flow after
augmentation is an integer.

17.3.3.2 Progress in Ford-Fulkerson

Proposition 17.3.3. Let f be a flow and f ′ be flow after one augmentation. Then v(f) <
v(f ′).

Proof : Let P be an augmenting path, i.e., P is a simple s-t path in residual graph. We have
the following.
(A) First edge e in P must leave s.
(B) Original network G has no incoming edges to s; hence e is a forward edge.
(C) P is simple and so never returns to s.
(D) Thus, value of flow increases by the flow on edge e.

17.3.3.3 Termination proof for integral flow

Theorem 17.3.4. Let C be the minimum cut value; in particular C ≤
∑

e out of s c(e).

Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof : The value of the flow increases by at least 1 after each augmentation. Maximum
value of flow is at most C.

5



Running time
(A) Number of iterations ≤ C.
(B) Number of edges in Gf ≤ 2m.
(C) Time to find augmenting path is O(n+m).
(D) Running time is O(C(n+m)) (or O(mC)).

17.3.3.4 Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be as Ω(mC) or is our
analysis weak?

.

.s

.v

.u

.t

.C

.C

.C

.C

.1

.

.s

.v

.u

.t

.C

.C

.1

.C − 1

.1

.C − 1

.1

Ford-Fulkerson can take Ω(C) iterations.

17.3.4 Correctness

17.3.5 Correctness of Ford-Fulkerson

17.3.5.1 Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the maximum s-t flow?
Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal

to minimum cut!

17.3.5.2 Recalling Cuts

Definition 17.3.5. Given a flow network an s-t cut is a set of edges E ′ ⊂ E such that
removing E ′ disconnects s from t: in other words there is no directed s → t path in E −E ′.
Capacity of cut E ′ is

∑
e∈E′ c(e).

Let A ⊂ V such that
(A) s ∈ A, t ̸∈ A, and
(B) B = V \ −A and hence t ∈ B.

Define (A,B) = {(u, v) ∈ E | u ∈ A, v ∈ B}

Claim 17.3.6. (A,B) is an s-t cut.

Recall: Every minimal s-t cut E ′ is a cut of the form (A,B).

17.3.5.3 Ford-Fulkerson Correctness

Lemma 17.3.7. If there is no s-t path in Gf then there is some cut (A,B) such that v(f) =
c(A,B)

6



Proof : LetA be all vertices reachable from s inGf ; B = V \A.
.

.s

.u

.v′

.u′

.v

.t

(A) s ∈ A and t ∈ B. So (A,B) is an s-t cut in G.
(B) If e = (u, v) ∈ G with u ∈ A and v ∈ B, then f(e) =

c(e) (saturated edge) because otherwise v is reachable
from s in Gf .

17.3.5.4 Lemma Proof Continued

Proof :

.

.s

.u

.v′

.u′

.v

.t

(A) If e = (u′, v′) ∈ G with u′ ∈ B and v′ ∈ A, then
f(e) = 0 because otherwise u′ is reachable from s in Gf

(B) Thus,

v(f) = f out(A)− f in(A)

= f out(A)− 0

= c(A,B)− 0

= c(A,B).

17.3.5.5 Example

ts

10/20

5/10

5/5

5/10

10/10

5/20

10/15

5/10

ts

0/15

10

10

5

10

5

10

15

5

5

5

5

15

5

Flow f

Residual graph Gf : no s-t path

5

5 ts

0/15

10

10

5

10

5

10

15

5

5

5

5

15

5

Flow f

A is reachable set from s in Gf

A B

A B

ts

10/20

5/10

5/5

5/10

10/10

5/20

10/15

5/10

5

5

17.3.5.6 Ford-Fulkerson Correctness

Theorem 17.3.8. The flow returned by the algorithm is the maximum flow.

Proof :

(A) For any flow f and s-t cut (A,B), v(f) ≤ c(A,B).
(B) For flow f ∗ returned by algorithm, v(f ∗) = c(A∗, B∗) for some s-t cut (A∗, B∗).
(C) Hence, f ∗ is maximum.

7



17.3.5.7 Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem 17.3.9. For any network G, the value of a maximum s-t flow is equal to the
capacity of the minimum s-t cut.

Proof : Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the
capacity of a (minimum) cut.

17.3.5.8 Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem 17.3.10. For any network G with integer capacities, there is a maximum s-t flow
that is integer valued.

Proof : Ford-Fulkerson algorithm produces an integer valued flow when capacities are inte-
gers.

17.4 Polynomial Time Algorithms
17.4.0.9 Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound be achieved?

.

.s

.v

.u

.t

.C

.C

.C

.C

.1

.

.s

.v

.u

.t

.C

.C

.1

.C − 1

.1

.C − 1

.1

17.4.0.10 Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?
Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm?
Can we choose an augmenting path in some clever way? Yes! Two variants.
(A) Choose the augmenting path with largest bottleneck capacity.
(B) Choose the shortest augmenting path.

17.4.1 Capacity Scaling Algorithm
17.4.1.1 Augmenting Paths with Large Bottleneck Capacity

(A) Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-
Fulkerson.

(B) How do we find path with largest bottleneck capacity?
(A) Assume we know ∆ the bottleneck capacity

8



(B) Remove all edges with residual capacity ≤ ∆
(C) Check if there is a path from s to t
(D) Do binary search to find largest ∆
(E) Running time: O(m logC)

(C) Can we bound the number of augmentations? Can show that in O(m logC) augmenta-
tions the algorithm reaches a max flow. This leads to an O(m2 log2C) time algorithm.

17.4.1.2 Augmenting Paths with Large Bottleneck Capacity

How do we find path with largest bottleneck capacity?

(A) Max bottleneck capacity is one of the edge capacities. Why?
(B) Can do binary search on the edge capacities. First, sort the edges by their capacities

and then do binary search on that array as before.
(C) Algorithm’s running time is O(m logm).
(D) Different algorithm that also leads to O(m logm) time algorithm by adapting Prim’s

algorithm.

17.4.1.3 Removing Dependence on C

(A) Dinic [1970], Edmonds and Karp [1972]
Picking augmenting paths with fewest number of edges yields a O(m2n) algorithm, i.e.,
independent of C. Such an algorithm is called a strongly polynomial time algorithm
since the running time does not depend on the numbers (assuming RAM model). (Many
implementation of Ford-Fulkerson would actually use shortest augmenting path if they
use BFS to find an s-t path).

(B) Further improvements can yield algorithms running in O(mn log n), or O(n3).

17.4.1.4 Ford-Fulkerson Algorithm

algEdmondsKarp
for every edge e, f(e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

Perform BFS in Gf

P: shortest s-t path in Gf

f = augment(f, P )
Construct new residual graph Gf.

Running time O(m2n).

17.4.1.5 Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?
Proof gives the algorithm!

(A) Compute an s-t maximum flow f in G
(B) Obtain the residual graph Gf

(C) Find the nodes A reachable from s in Gf

9



(D) Output the cut (A,B) = {(u, v) | u ∈ A, v ∈ B}. Note: The cut is found in G while A
is found in Gf

Running time is essentially the same as finding a maximum flow.
Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum
flow and if it is, outputs a minimum cut. How?

10



Bibliography

Dinic, E. A. (1970). Algorithm for solution of a problem of maximum flow in a network with
power estimation. Soviet Math. Doklady, 11:1277–1280.

Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency
for network flow problems. J. Assoc. Comput. Mach., 19(2):248–264.

11

http://www.acm.org/jacm/

	Algorithm(s) for Maximum Flow
	Ford-Fulkerson Algorithm
	Correctness and Analysis
	Termination
	Correctness

	Polynomial Time Algorithms
	Capacity Scaling Algorithm



