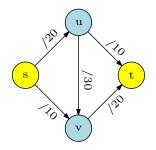
CS 473: Fundamental Algorithms, Spring 2013

Network Flow Algorithms

Lecture 17 March 27, 2013

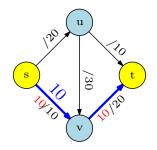
Part I

Algorithm(s) for Maximum Flow



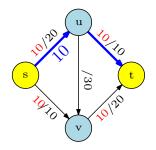
- Begin with f(e) = 0 for each edge.
 - Find a s-t path P with f(e) < c(e) for every edge e ∈ P.

Augment flow along this path.



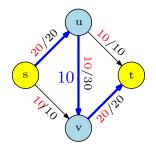
- Begin with f(e) = 0 for each edge.
 - Find a s-t path P with f(e) < c(e) for every edge e ∈ P.

Augment flow along this path.



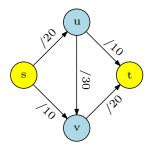
- Begin with f(e) = 0 for each edge.
 - Find a s-t path P with f(e) < c(e) for every edge e ∈ P.

Augment flow along this path.

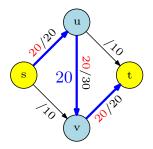


- Begin with f(e) = 0 for each edge.
 - Find a s-t path P with f(e) < c(e) for every edge e ∈ P.

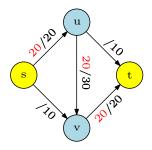
Augment flow along this path.



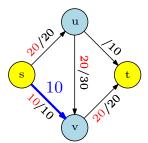
- Begin with f(e) = 0 for each edge
- Pind a s-t path P with f(e) < c(e) for every edge e ∈ P
- Output Augment flow along this path
 - Repeat augmentation for as long as possible.



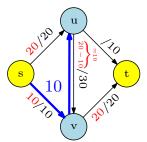
- Begin with f(e) = 0 for each edge
- Find a s-t path P with f(e) < c(e) for every edge e ∈ P
- Output Augment flow along this path
 - Repeat augmentation for as long as possible.



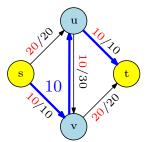
- Begin with f(e) = 0 for each edge
- Pind a s-t path P with f(e) < c(e) for every edge e ∈ P
- Output Augment flow along this path
 - Repeat augmentation for as long as possible.



- **D** Begin with f(e) = 0 for each edge
- Find a s-t path P with f(e) < c(e) for every edge e ∈ P
- Augment flow along this path
 - Repeat augmentation for as long as possible.



- **D** Begin with f(e) = 0 for each edge
- Find a s-t path P with f(e) < c(e) for every edge e ∈ P
- Augment flow along this path
 - Repeat augmentation for as long as possible.



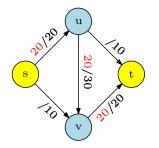
- **D** Begin with f(e) = 0 for each edge
- Find a s-t path P with f(e) < c(e) for every edge e ∈ P
- Augment flow along this path
 - Repeat augmentation for as long as possible.

Definition

For a network G = (V, E) and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- V' = V,
- **2** Forward Edges: For each edge $e \in E$ with f(e) < c(e), we add $e \in E'$ with capacity c(e) f(e).
- **3** Backward Edges: For each edge $e = (u, v) \in E$ with f(e) > 0, we add $(v, u) \in E'$ with capacity f(e).

Residual Graph Example



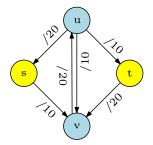
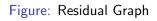


Figure: Flow on edges is indicated in red



Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let **f** be a flow in **G** and **G**_f be the residual graph. If **f**' is a flow in **G**_f then $\mathbf{f} + \mathbf{f}'$ is a flow in **G** of value $\mathbf{v}(\mathbf{f}) + \mathbf{v}(\mathbf{f}')$.

Lemma

Let **f** and **f'** be two flows in **G** with $\mathbf{v}(\mathbf{f'}) \ge \mathbf{v}(\mathbf{f})$. Then there is a flow **f''** of value $\mathbf{v}(\mathbf{f'}) - \mathbf{v}(\mathbf{f})$ in **G**_f.

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let **f** be a flow in **G** and **G**_f be the residual graph. If **f'** is a flow in **G**_f then $\mathbf{f} + \mathbf{f'}$ is a flow in **G** of value $\mathbf{v}(\mathbf{f}) + \mathbf{v}(\mathbf{f'})$.

Lemma

Let **f** and **f**' be two flows in **G** with $\mathbf{v}(\mathbf{f}') \ge \mathbf{v}(\mathbf{f})$. Then there is a flow **f**'' of value $\mathbf{v}(\mathbf{f}') - \mathbf{v}(\mathbf{f})$ in **G**_f.

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let **f** be a flow in **G** and **G**_f be the residual graph. If **f'** is a flow in **G**_f then $\mathbf{f} + \mathbf{f'}$ is a flow in **G** of value $\mathbf{v}(\mathbf{f}) + \mathbf{v}(\mathbf{f'})$.

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f.

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let **f** be a flow in **G** and **G**_f be the residual graph. If **f'** is a flow in **G**_f then $\mathbf{f} + \mathbf{f'}$ is a flow in **G** of value $\mathbf{v}(\mathbf{f}) + \mathbf{v}(\mathbf{f'})$.

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f.

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

```
\begin{array}{l} MaxFlow(G,s,t):\\ \mbox{ if the flow from s to t is 0 then }\\ \mbox{ return 0 }\\ \mbox{ Find any flow f with } v(f) > 0 \mbox{ in } G\\ \mbox{ Recursively compute a maximum flow } f' \mbox{ in } G_f\\ \mbox{ Output the flow } f + f' \end{array}
```

Iterative algorithm for finding a maximum flow:

```
\begin{split} & \mathsf{MaxFlow}\left(G,s,t\right):\\ & \text{Start with flow } f \text{ that is } 0 \text{ on all edges}\\ & \text{while there is a flow } f' \text{ in } G_f \text{ with } \nu(f') > 0 \text{ do}\\ & f = f + f'\\ & \text{Update } G_f \end{split}
```

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

```
\begin{array}{l} MaxFlow(G,s,t):\\ \mbox{ if the flow from s to t is 0 then }\\ \mbox{ return 0 }\\ \mbox{ Find any flow f with } v(f) > 0 \mbox{ in } G\\ \mbox{ Recursively compute a maximum flow } f' \mbox{ in } G_f\\ \mbox{ Output the flow } f + f' \end{array}
```

Iterative algorithm for finding a maximum flow:

```
\begin{split} & \text{MaxFlow}(G,s,t):\\ & \text{Start with flow } f \text{ that is } 0 \text{ on all edges}\\ & \text{while there is a flow } f' \text{ in } G_f \text{ with } v(f') > 0 \text{ do}\\ & f = f + f'\\ & \text{Update } G_f \end{split}
```

Ford-Fulkerson Algorithm

```
\begin{array}{l} algFordFulkerson \\ for every edge e, f(e) = 0 \\ G_f \text{ is residual graph of } G \text{ with respect to } f \\ while \; G_f \text{ has a simple s-t path } do \\ let \; P \; be \; simple \; s\text{-t path in } G_f \\ f = augment(f, P) \\ Construct \; new \; residual \; graph \; G_f. \end{array}
```

```
\begin{array}{l} augment(f,P) \\ & \text{let } b \text{ be bottleneck capacity,} \\ & \text{i.e., min capacity of edges in } P \ (\text{in } G_f) \\ & \text{for each edge } (u,v) \text{ in } P \ do \\ & \text{if } e = (u,v) \text{ is a forward edge then} \\ & f(e) = f(e) + b \\ & \text{else } (* (u,v) \text{ is a backward edge } *) \\ & \text{let } e = (v,u) \ (* (v,u) \text{ is in } G \ *) \\ & f(e) = f(e) - b \\ & \text{return } f \end{array}
```

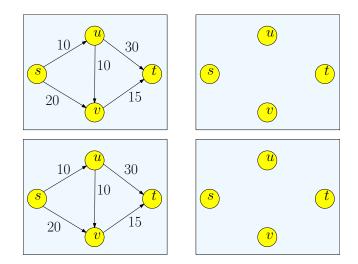
Ford-Fulkerson Algorithm

```
\begin{array}{l} algFordFulkerson \\ for every edge e, f(e) = 0 \\ G_f \text{ is residual graph of } G \text{ with respect to } f \\ while \; G_f \text{ has a simple } s\text{-t path } do \\ let \; P \; be \; simple \; s\text{-t path in } G_f \\ f = augment(f, P) \\ Construct \; new \; residual \; graph \; G_f. \end{array}
```

```
\begin{array}{l} \text{augment}(f,P) \\ \text{let } b \text{ be bottleneck capacity,} \\ \text{i.e., min capacity of edges in } P \text{ (in } G_f) \\ \text{for each edge } (u,v) \text{ in } P \text{ do} \\ \text{if } e = (u,v) \text{ is a forward edge then} \\ f(e) = f(e) + b \\ else \ (* (u,v) \text{ is a backward edge }*) \\ \text{let } e = (v,u) \ (* (v,u) \text{ is in } G \ *) \\ f(e) = f(e) - b \\ \text{return } f \end{array}
```

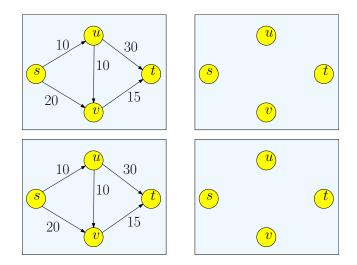
Sariel, Alexandra (UIUC)

Example

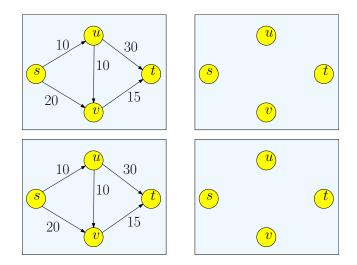


Sariel, Alexandra (UIUC)

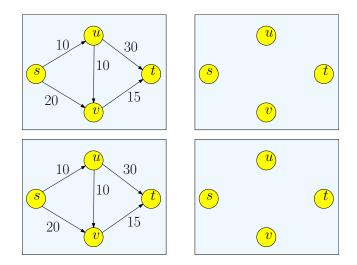
Example continued



Example continued



Example continued



Lemma

If f is a flow and P is a simple s-t path in G_f , then f' = augment(f, P) is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

• Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) - b and $b \leq f(e)$. Both cases $0 \leq f'(e) \leq c(e)$.

Lemma

If f is a flow and P is a simple s-t path in G_f , then f' = augment(f, P) is also a flow.

Proof.

Verify that f' is a flow. Let **b** be augmentation amount.

 Capacity constraint: If (u, v) ∈ P is a forward edge then f'(e) = f(e) + b and b ≤ c(e) - f(e). If (u, v) ∈ P is a backward edge, then letting e = (v, u), f'(e) = f(e) - b and b ≤ f(e). Both cases 0 ≤ f'(e) ≤ c(e).

Lemma

If f is a flow and P is a simple s-t path in G_f , then f' = augment(f, P) is also a flow.

Proof.

Verify that $\mathbf{f'}$ is a flow. Let **b** be augmentation amount.

• Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) - b and $b \leq f(e)$. Both cases $0 \leq f'(e) \leq c(e)$.

Lemma

If f is a flow and P is a simple s-t path in G_f , then f' = augment(f, P) is also a flow.

Proof.

Verify that $\mathbf{f'}$ is a flow. Let **b** be augmentation amount.

• Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) - b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.

Lemma

If f is a flow and P is a simple s-t path in G_f , then f' = augment(f, P) is also a flow.

Proof.

Verify that $\mathbf{f'}$ is a flow. Let **b** be augmentation amount.

- Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \leq c(e) f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) b and $b \leq f(e)$. Both cases $0 \leq f'(e) \leq c(e)$.
- Conservation constraint: Let v be an internal node. Let e₁, e₂ be edges of P incident to v. Four cases based on whether e₁, e₂ are forward or backward edges. Check cases (see fig next slide).

Properties of Augmentation Conservation Constraint

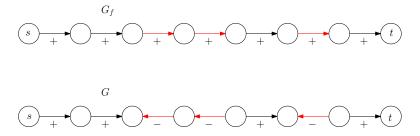


Figure: Augmenting path P in G_f and corresponding change of flow in G. Red edges are backward edges.

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values on the edges (i.e., f(e), for all edges e) and the residual capacities in G_f are integers.

Proof.

Initial flow and residual capacities are integers. Suppose lemma holds for **j** iterations. Then in (j + 1)st iteration, minimum capacity edge **b** is an integer, and so flow after augmentation is an integer.

Progress in Ford-Fulkerson

Proposition

Let f be a flow and f' be flow after one augmentation. Then $\nu(f) < \nu(f').$

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph. We have the following.

- First edge e in P must leave s.
- Original network G has no incoming edges to s; hence e is a forward edge.
- **P** is simple and so never returns to **s**.
- Thus, value of flow increases by the flow on edge e.

Termination proof for integral flow

Theorem

Let **C** be the minimum cut value; in particular $C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most **C** augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most ${\sf C}.$

Running time

- Number of iterations $\leq C$.
- 2 Number of edges in $G_f \leq 2m$.
- Solution Time to find augmenting path is O(n + m).

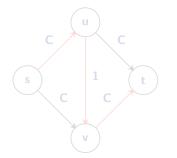
• Running time is O(C(n + m)) (or O(mC)).

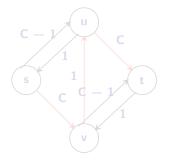
Sariel, Alexandra (UIUC)

CS473

Efficiency of Ford-Fulkerson

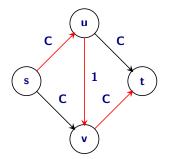
Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

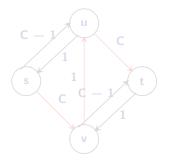




Ford-Fulkerson can take $\Omega(C)$ iterations.

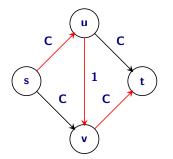
Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

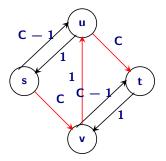




Ford-Fulkerson can take $\Omega(C)$ iterations.

Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?





Ford-Fulkerson can take $\Omega(C)$ iterations.

Question: When the algorithm terminates, is the flow computed the maximum **s-t** flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!

Question: When the algorithm terminates, is the flow computed the maximum **s**-**t** flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!

Recalling Cuts

Definition

Given a flow network an s-t cut is a set of edges $\mathbf{E}' \subset \mathbf{E}$ such that removing \mathbf{E}' disconnects s from t: in other words there is no directed $\mathbf{s} \to \mathbf{t}$ path in $\mathbf{E} - \mathbf{E}'$. Capacity of cut \mathbf{E}' is $\sum_{e \in \mathbf{F}'} \mathbf{c}(\mathbf{e})$.

Let $\mathbf{A} \subset \mathbf{V}$ such that

 $\textbf{0} \ \textbf{s} \in \textbf{A}, \textbf{t} \not\in \textbf{A}, \text{ and}$

2 $\mathbf{B} = \mathbf{V} \setminus -\mathbf{A}$ and hence $\mathbf{t} \in \mathbf{B}$.

Define $(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}$

Claim

(A, B) is an s-t cut.

Recall: Every minimal s-t cut E' is a cut of the form (A, B).

Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

Proof.

Let **A** be all vertices reachable from **s** in G_f ; **B** = **V** \ **A**.

s ∈ A and t ∈ B. So (A, B) is an s-t cut in G.

t If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then f(e) = c(e) (saturated edge) because otherwise v is reachable from s in G_f .

Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

Proof.

Let A be all vertices reachable from s in G_f ; $B = V \setminus A$. s $\in A$ and $t \in B$. So (A, B) is an s-t cut in G. If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then f(e) = c(e) (saturated edge) because otherwise v is reachable from s in G_f .

Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

Proof.

Let A be all vertices reachable from s in G_f ; $B = V \setminus A$. $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G.

t If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then f(e) = c(e) (saturated edge) because otherwise v is reachable from s in G_f .

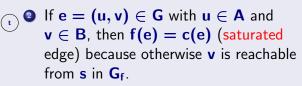
Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

Proof.

Let **A** be all vertices reachable from **s** in G_f ; **B** = **V** \ **A**.

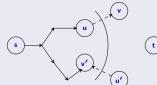
s ∈ A and t ∈ B. So (A, B) is an s-t cut in G.



Lemma Proof Continued

Proof.

	If $\mathbf{e} = (\mathbf{u}', \mathbf{v}') \in \mathbf{G}$ with $\mathbf{u}' \in \mathbf{B}$ and $\mathbf{v}' \in \mathbf{A}$, then $\mathbf{f}(\mathbf{e}) = 0$ because
	otherwise \mathbf{u}' is reachable from \mathbf{s} in $\mathbf{G}_{\mathbf{f}}$
v	O Thus,
	(t) $v(f) = f^{out}(A) - f^{in}(A)$



- $\begin{array}{rcl} (f) & = & f^{\rm out}(A) f^{\rm in}(A) \\ & = & f^{\rm out}(A) 0 \\ & = & c(A,B) 0 \end{array}$
 - = c(A, B).

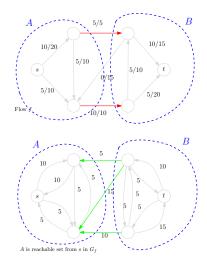
Example

Flow f 10/10 Flow f 10/10 5/10 5/10 10/15 5/10 5/10 5/20

 $\mathbf{5}$

 $\overline{5}$

5



Residual graph G_f : no s-t path

10

5

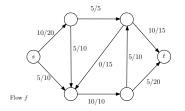
10

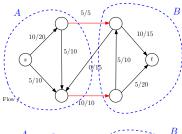
10

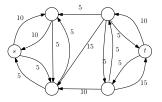
 $\mathbf{5}$

5

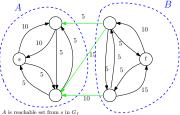
Example







Residual graph G_f : no s-t path



Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \leq c(A, B)$.
- For flow f* returned by algorithm, v(f*) = c(A*, B*) for some s-t cut (A*, B*).
- Hence, f* is maximum.

Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network **G**, the value of a maximum **s-t** flow is equal to the capacity of the minimum **s-t** cut.

Proof.

Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.

Max-Flow Min-Cut Theorem and Integrality of Flows

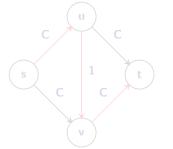
Theorem

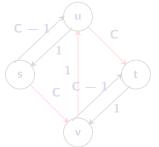
For any network **G** with integer capacities, there is a maximum **s**-**t** flow that is integer valued.

Proof.

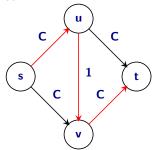
Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.

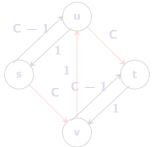
Running time = O(mC) is not polynomial. Can the upper bound be achieved?



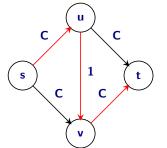


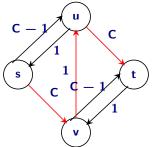
Running time = O(mC) is not polynomial. Can the upper bound be achieved?





Running time = O(mC) is not polynomial. Can the upper bound be achieved?





Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- ① Choose the augmenting path with largest bottleneck capacity.
- One of the shortest augmenting path.

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

Choose the augmenting path with largest bottleneck capacity.Choose the shortest augmenting path.

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Ochoose the shortest augmenting path.

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- I How do we find path with largest bottleneck capacity?
 - **()** Assume we know Δ the bottleneck capacity
 - Remove all edges with residual capacity $\leq \Delta$
 - One of the content of the content
 - In Do binary search to find largest Δ
 - Running time: O(m log C)
- Can we bound the number of augmentations? Can show that in O(m log C) augmentations the algorithm reaches a max flow. This leads to an O(m² log² C) time algorithm.

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- I How do we find path with largest bottleneck capacity?
 - **()** Assume we know Δ the bottleneck capacity
 - **2** Remove all edges with residual capacity $\leq \Delta$
 - One of the content of the content
 - Do binary search to find largest Δ
 - Running time: O(m log C)

Can we bound the number of augmentations? Can show that in O(m log C) augmentations the algorithm reaches a max flow. This leads to an O(m² log² C) time algorithm.

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- I How do we find path with largest bottleneck capacity?
 - **()** Assume we know Δ the bottleneck capacity
 - **2** Remove all edges with residual capacity $\leq \Delta$
 - One of the content of the content
 - Do binary search to find largest Δ
 - Running time: O(m log C)
- Can we bound the number of augmentations? Can show that in O(m log C) augmentations the algorithm reaches a max flow. This leads to an O(m² log² C) time algorithm.

How do we find path with largest bottleneck capacity?

- Max bottleneck capacity is one of the edge capacities. Why?
- ② Can do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.
- Algorithm's running time is O(m log m).
- Oifferent algorithm that also leads to O(m log m) time algorithm by adapting Prim's algorithm.

Removing Dependence on C

O Dinic [1970], Edmonds and Karp [1972]

- Picking augmenting paths with fewest number of edges yields a $O(m^2n)$ algorithm, i.e., independent of C. Such an algorithm is called a strongly polynomial time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use BFS to find an s-t path).
- Further improvements can yield algorithms running in O(mn log n), or O(n³).

Ford-Fulkerson Algorithm

```
\begin{array}{l} algEdmondsKarp \\ for every edge e, f(e) = 0 \\ G_f \text{ is residual graph of } G \text{ with respect to } f \\ while G_f \text{ has a simple } s\text{-t path } do \\ Perform BFS \text{ in } G_f \\ P: \text{ shortest } s\text{-t path in } G_f \\ f = augment(f, P) \\ Construct new residual graph } G_f. \end{array}
```

Running time $O(m^2n)$.

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut? Proof gives the algorithm!

- Compute an s-t maximum flow f in G
- **2** Obtain the residual graph G_f
- Find the nodes A reachable from s in G_f
- Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given **G** and a flow **f** there is a linear time algorithm to check if **f** is a maximum flow and if it is, outputs a minimum cut. How?

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut? Proof gives the algorithm!

- Compute an s-t maximum flow f in G
- Obtain the residual graph G_f
- Find the nodes A reachable from s in G_f
- Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given **G** and a flow **f** there is a linear time algorithm to check if **f** is a maximum flow and if it is, outputs a minimum cut. How?

- Dinic, E. A. (1970). Algorithm for solution of a problem of maximum flow in a network with power estimation. *Soviet Math. Doklady*, 11:1277–1280.
- Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. *J. Assoc. Comput. Mach.*, 19(2):248–264.