CS 473: Fundamental Algorithms, Spring 2013

Network Flow Algorithms

Lecture 17
March 27, 2013

Sariel, Alexandra (UIUC) CS473 1 Spring 2013

1/43

Greedy Approach
© Begin with f(e) = 0 for each edge.

every edge e € P.
© Augment flow along this path.

© Repeat augmentation for as long as
possible.

Sariel, Alexandra (UIUC) CS473 3 Spring 2013

@ Find a s-t path P with f(e) < c(e) for

3/43

Part |

Algorithm(s) for Maximum Flow

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2/43

Greedy Approach: Issues

@ Begin with f(e) = 0 for each edge

@ Find a s-t path P with f(e) < c(e) for
every edge e € P

© Augment flow along this path

© Repeat augmentation for as long as
possible.

Greedy can get stuck in sub-optimal flow!

Need to “push-back” flow along edge (u,v).

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 /43




Residual Graph

Definition
For a network G = (V, E) and flow f, the residual graph
Gf = (V/, E’) of G with respect to f is
oV =YV,
@ Forward Edges: For each edge e € E with f(e) < c(e), we
add e € E’ with capacity c(e) — f(e).
@ Backward Edges: For each edge e = (u,v) € E with
f(e) > 0, we add (v,u) € E’ with capacity f(e).

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 /43

Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma

Let f be a flow in G and Gy be the residual graph. If f' is a flow in
Gy then f + ' is a flow in G of value v(f) + v(f’).

Lemma

Let f and ' be two flows in G with v(f’) > v(f). Then there is a
flow " of value v(f') — v(f) in Gs.

Definition of 4+ and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 /43

Residual Graph Example

Figure: Flow on edges is indicated in

red Figure: Residual Graph

Sariel, Alexandra (UIUC) CS473 6 Spring 2013

6/ 43

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

MaxFlow (G, s, t) :
if the flow from s to t is 0 then
return 0
Find any flow f with v(f) > 0 in G
Recursively compute a maximum flow f’ in Gy
Output the flow f + f/

Iterative algorithm for finding a maximum flow:

MaxFlow (G, s, t) :
Start with flow f that is 0 on all edges
while there is a flow f’ in Gf with v(f’) > 0 do
f=Ff+1f
Update Gf

Output f

Sariel, Alexandra (UIUC) CS473 8 Spring 2013

8 /43




Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f(e) =0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do
let P be simple s-t path in Gy
f = augment(f, P)
Construct new residual graph Gs.

augment (f,P)
let b be bottleneck capacity,
i.e., min capacity of edges in P (in G¢)
for each edge (u,v) in P do
if e = (u,v) is a forward edge then
f(e) =f(e) +b
else (x (u,v) is a backward edge *)
let e = (v,u) (* (v,u) is in G *)
f(e) =f(e) —b

return f

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 /43

Properties of Augmentation

Figure: Augmenting path P in G¢ and corresponding change of flow in G.
Red edges are backward edges.

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 /43

Properties about Augmentation: Flow

Lemma

Iff is a flow and P is a simple s-t path in G¢, then
f’ = augment(f, P) is also a flow.

Proof.

Verify that f” is a flow. Let b be augmentation amount.

© Capacity constraint: If (u,v) € P is a forward edge then
f'(e) =f(e) + b and b < c(e) — f(e). If (u,v) €EPisa
backward edge, then letting e = (v, u), f’(e) = f(e) — b and
b < f(e). Both cases 0 < f’(e) < c(e).

@ Conservation constraint: Let v be an internal node. Let ey, e; be
edges of P incident to v. Four cases based on whether e;, e; are
forward or backward edges. Check cases (see fig next slide). [

4

Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 /

43

Properties of Augmentation

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f(e), for all edges e) and the residual capacities in Gg
are integers.

4

Proof.

Initial flow and residual capacities are integers. Suppose lemma holds
for j iterations. Then in (j 4 1)st iteration, minimum capacity edge b
is an integer, and so flow after augmentation is an integer. O

4

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 /43




Progress in Ford-Fulkerson

Proposition

Let f be a flow and f’ be flow after one augmentation. Then
v(f) < v(f').

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual
graph. We have the following.

© First edge e in P must leave s.

@ Original network G has no incoming edges to s; hence e is a
forward edge.

© P is simple and so never returns to s.

© Thus, value of flow increases by the flow on edge e. ]

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 /43

Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be
as 2(mC) or is our analysis weak?

Ford-Fulkerson can take Q(C) iterations.

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 43

Termination proof for integral flow

Theorem

Let C be the minimum cut value; in particular
C < > e out of s €(€). Ford-Fulkerson algorithm terminates after
finding at most C augmenting paths.

Proof.
The value of the flow increases by at least 1 after each
augmentation. Maximum value of flow is at most C. O]

Running time
© Number of iterations < C.
© Number of edges in Gy < 2m.
@ Time to find augmenting path is O(n + m).
© Running time is O(C(n + m)) (or O(mC)). ]

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 43

Correctness of Ford-Fulkerson

Question: When the algorithm terminates, is the flow computed the
maximum s-t flow?

Proof idea: show a cut of value equal to the flow. Also shows that
maximum flow is equal to minimum cut!

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 43




Recalling Cuts

Definition
Given a flow network an s-t cut is a set of edges E’ C E such that

removing E’ disconnects s from t: in other words there is no directed
s — t path in E — E’. Capacity of cut E’ is ) ¢ c(e).

Let A C V such that

Q@seA tgA, and

@ B=V\ —A and hence t € B.

Define (A,B) = {(u,v) € E|u € A,v € B}

Claim
(A, B) is an s-t cut. }

Recall: Every minimal s-t cut E’ is a cut of the form (A, B).

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 43

Lemma Proof Continued

Proof.

Q Ife= (u,Vv) € G with v’ € B and
v/ € A, then f(e) = 0 because
@ otherwise u’ is reachable from s in G¢

(v) @ Thus,

(. v(f) = f(A) —7(A)

= foU(A) — 0
= c¢(A,B)—-0
= c(A,B).
DJ
Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 43

Ford-Fulkerson Correctness

Lemma

If there is no s-t path in G¢ then there is some cut (A, B) such that
v(f) = c(A, B)

Proof.

Let A be all vertices reachable from s in G¢; B =V \ A.
@ scAandt e B. So (A,B) is an st

o /® cut in G

O, ()@ If e=(u,v) € G withu € A and
() v € B, then f(e) = c(e) (saturated
1O) edge) because otherwise v is reachable
from s in Gy.
DJ
Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 43

Example

Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20/ 43




Ford-Fulkerson Correctness

Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

@ For any flow f and s-t cut (A, B), v(f) < c(A, B).

@ For flow f* returned by algorithm, v(f*) = c(A*, B*) for some
s-t cut (A*, B*).

© Hence, f* is maximum.

Sariel, Alexandra (UIUC) CS473 Spring 2013 21 /43

Max-Flow Min-Cut Theorem and Integrality of
Flows

Theorem

For any network G, the value of a maximum s-t flow is equal to the
capacity of the minimum s-t cut.

Proof.

Ford-Fulkerson algorithm terminates with a maximum flow of value

equal to the capacity of a (minimum) cut. O

v

Max-Flow Min-Cut Theorem and Integrality of
Flows

Theorem

For any network G with integer capacities, there is a maximum s-t
flow that is integer valued.

Proof.

Ford-Fulkerson algorithm produces an integer valued flow when
capacities are integers.

Sariel, Alexandra (UIUC) CS473

Sariel, Alexandra (UIUC) CS473 Spring 2013 22 /43

Spring 2013 23 /43

Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound be
achieved?

Sariel, Alexandra (UIUC) CS473

Spring 2013 24 / 43




Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a
polynomial time algorithm? Can we choose an augmenting path in
some clever way? Yes! Two variants.

@ Choose the augmenting path with largest bottleneck capacity.
@ Choose the shortest augmenting path.

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 /43

Augmenting Paths with Large Bottleneck Capacity

@ Pick augmenting paths with largest bottleneck capacity in each
iteration of Ford-Fulkerson.
@ How do we find path with largest bottleneck capacity?
@ Assume we know A the bottleneck capacity
® Remove all edges with residual capacity < A
© Check if there is a path from s to t
O Do binary search to find largest A
@ Running time: O(m log C)
© Can we bound the number of augmentations? Can show that in
O(mlog C) augmentations the algorithm reaches a max flow.
This leads to an O(m? log? C) time algorithm.

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 43

Augmenting Paths with Large Bottleneck Capacity

How do we find path with largest bottleneck capacity?

@ Max bottleneck capacity is one of the edge capacities. Why?

© Can do binary search on the edge capacities. First, sort the
edges by their capacities and then do binary search on that array
as before.

@ Algorithm’s running time is O(m log m).
© Different algorithm that also leads to O(m log m) time
algorithm by adapting Prim’s algorithm.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 /43

Removing Dependence on C

© Dinic [1970], Edmonds and Karp [1972]
Picking augmenting paths with fewest number of edges yields a
O(mzn) algorithm, i.e., independent of C. Such an algorithm is
called a strongly polynomial time algorithm since the running
time does not depend on the numbers (assuming RAM model).
(Many implementation of Ford-Fulkerson would actually use
shortest augmenting path if they use BFS to find an s-t path).

© Further improvements can yield algorithms running in
O(mnlogn), or O(n3).

Sariel, Alexandra (UIUC) CS473 28 Spring 2013 28 /43




Ford-Fulkerson Algorithm

algEdmondsKarp
for every edge e, f(e) =0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do
Perform BFS in Gf
P: shortest s-t path in Gf
f = augment(f, P)
Construct new residual graph Gs.

Running time O(m?2n).

Sariel, Alexandra (UIUC) CS473 29 Spring 2013 29 /43

Dinic, E. A. (1970). Algorithm for solution of a problem of maximum
flow in a network with power estimation. Soviet Math. Doklady,
11:1277-1280.

Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in
algorithmic efficiency for network flow problems. J. Assoc.
Comput. Mach., 19(2):248-264.

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 /43

Finding a Minimum Cut
Question: How do we find an actual minimum s-t cut?
Proof gives the algorithm!

@ Compute an s-t maximum flow f in G

@ Obtain the residual graph Gg

© Find the nodes A reachable from s in Gy

© Output the cut (A, B) = {(u,v) | u € A,v € B}. Note: The
cut is found in G while A is found in G

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check
if f is a maximum flow and if it is, outputs a minimum cut. How?

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 /43



http://www.acm.org/jacm/
http://www.acm.org/jacm/

	Network Flow Algorithms
	Algorithm(s) for Maximum Flow
	Greedy Approach: Issues

	Ford-Fulkerson Algorithm
	Residual Graph

	Correctness and Analysis
	Termination
	Properties of Augmentation
	Properties of Augmentation
	Correctness
	Correctness of Ford-Fulkerson

	Polynomial Time Algorithms
	Capacity Scaling Algorithm



