Chapter 16

Network Flows

CS 473: Fundamental Algorithms, Spring 2013
March 15, 2013

16.0.0.1 Everything flows

Panta rei — everything flows (literally).
Heraclitus (535-475 BC)

16.1 Network Flows: Introduction and Setup
16.1.0.2 Transportation/Road Network
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.0.3 Internet Backbone Network
.0.4 Common Features of Flow Networks
N

A) Network represented by a (directed) graph G = (V, E).

) Each edge e has a capacity c(e) > 0 that limits amount of traffic on e.
) Source(s) of traffic/data.

) Sink(s) of traffic/data.

)

Traffic flows from sources to sinks.
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(F) Traffic is switched/interchanged at nodes.
Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

16.1.0.5 Single Source/Single Sink Flows

Simple setting:

(A) Single source s and single sink ¢.

(B) Every other node v is an internal node.
(C) Flow originates at s and terminates at ¢.

(A) Each edge e has a capacity c¢(e) > 0.

(B) Sometimes assume:
Source s € V has no incoming edges, and sink ¢t € V
has no outgoing edges.

Assumptions: All capacities are integer, and every vertex has at least one edge incident to
it.
16.1.0.6 Definition of Flow

Two ways to define flows:

(A) edge based, or

(B) path based.

Essentially equivalent but have different uses.
Edge based definition is more compact.

16.1.0.7 Edge Based Definition of Flow

Definition 16.1.1. Flow in network G = (V, E), is function f : E — R=° s.t.
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(A) Capacity Constraint: For each edgee, f(e) <

cle).

B) Conservation Constraint: For each vertex
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14/30 (C) Value of flow= (total flow out of source) —

(total flow in to source).

Figure 16.1: Flow with value.

16.1.0.8 Flow...
Conservation of flow law is also known as Kirchhoff’s law.

16.1.0.9 More Definitions and Notation

Notation
(A) The inflow into a vertex v is f™(v) = > ¢ into v f(€) and the outflow is fo"'(v) =

Ze out of v f(e) )
(B) For aset of vertices A, f™(A) = >, into A f(e). Outflow fo*(A) is defined analogously

Definition 16.1.2. For a network G = (V, E) with source s, the value of flow f is defined
as v(f) = fo"(s) = ["(s).

16.1.0.10 A Path Based Definition of Flow

Intuition: Flow goes from source s to sink ¢ along a path.
P: set of all paths from s to t. |P| can be exponential in n.

Definition 16.1.3 (Flow by paths.). A flow in network G= (V, E), is function f : P —
R=Y s.t.

(A) Capacity Constraint: For each edge e, total flow on e is < c(e).

> fp) < cle)

pEP:e€p

(B) Conservation Constraint: No need! Automatic.

Value of flow: > ., f(p).



16.1.0.11 Example

P = {p1,p2,p3}
pr:s—u—t

Pris—>u—v—>t
p3:s—v—t

f(p1) =10, f(p2) = 4, f(p3) =6

16.1.0.12 Path based flow implies edge based flow

Lemma 16.1.4. Given a path based flow f : P — R20 there is an edge based flow f': E —
R=Y of the same value.

Proof: For each edge e define f'(e) = > .., f(p).
Exercise: Verify capacity and conservation constraints for f’.
Exercise: Verify that value of f and f’ are equal ]

16.1.0.13 Example

P = {p1,p2, p3}
pPLis—u—t

p2isS—u—v—t
pP3:Ss—v—1t

f(p1) =10, f(p2) =4, f(ps) = 6

fl(s—u)=14
f'(u—v) =

fl(s—wv)=6
flu—1t)=10
flv—=1t)=10




16.1.1 Flow Decomposition
16.1.1.1 Edge based flow to Path based Flow

Lemma 16.1.5. Given an edge based flow f' : E — R2°, there is a path based flow f :
P — R2° of same value. Moreover, f assigns non-negative flow to at most m paths where
|E| =m and |V| =n. Given f', the path based flow can be computed in O(mn) time.

16.1.2 Flow Decomposition
16.1.2.1 Edge based flow to Path based Flow

Proof :[Proof Idea)]

(A) Remove all edges with f’(e) = 0.

(B) Find a path p from s to t.

(C) Assign f(p) to be min.e, f'(e).

(D) Reduce f’(e) for all e € p by f(p).

(E) Repeat until no path from s to t.

(F) In each iteration at least on edge has flow reduced to zero.

(G) Hence, at most m iterations. Can be implemented in O(m(m + n)) time. O(mn) time
requires care.

16.1.2.2 Example

16.1.2.3 Edge vs Path based Definitions of Flow

Edge based flows:

(A) compact representation, only m values to be specified, and

(B) need to check flow conservation explicitly at each internal node.
Path flows:

(A) in some applications, paths more natural,

(B) not compact,



(C) no need to check flow conservation constraints.
Equivalence shows that we can go back and forth easily.

16.1.2.4 The Maximum-Flow Problem

Problem
Input A network G with capacity ¢ and source s and sink t.
Goal Find flow of mazimum value.

Question: Given a flow network, what is an upper bound on the maximum flow between
source and sink?

16.1.2.5 Cuts

Definition 16.1.6 (s-t cut). Given a flow network an s-t cut is a set of edges E' C E
such that removing E' disconnects s from t: in other words there is no directed s — t path
in E—FE'

The capacity of a cut E' is c(E') =) . cle).

Caution:
(A) Cut may leave t — s paths!
(B) There might be many s-t cuts.

16.1.3 s —1t cuts

16.1.3.1 A death by a thousand cuts




16.1.3.2 Minimal Cut

Definition 16.1.7 (Minimal s-t cut.). Given a s-t flow network G= (V,E), E C E is a
minimal cut if for all e € E, if E'\ {e} is not a cut.

Observation: given a cut E’, can check efficiently whether E’ is a minimal cut or not.
How?

16.1.3.3 Cuts as Vertex Partitions

Let A C V such that

(A) se A, t ¢ A, and

(B) B=V \ A (hence t € B).
The cut (A, B) is the set of edges

(A,B) ={(u,v) € E|ue Av € B}.

Cut (A, B) is set of edges leaving A.

Claim 16.1.8. (A, B) is an s-t cut.

Proof: Let P be any s — t path in GG. Since t is not in A, P has to leave A via some edge
(u,v) in (A, B). [ |

16.1.3.4 Cuts as Vertex Partitions
Lemma 16.1.9. Suppose E' is an s-t cut. Then there is a cut (A, B) such that (A, B) C E'.

Proof: E’is an s-t cut implies no path from s to ¢t in (V, E — E').
(A) Let A be set of all nodes reachable by s in (V, E — E’).
(B) Since E' is a cut, t ¢ A.
(C) (A, B) C E'. Why?If some edge (u,v) € (A, B) is not in E’ then v will be reachable by
s and should be in A, hence a contradiction.
u

Corollary 16.1.10. FEvery minimal s-t cut E’ is a cut of the form (A, B).



16.1.3.5 Minimum Cut

Definition 16.1.11. Given a flow network an s-t minimum cut is a cut E' of smallest
capacity amongst all s-t cuts.

Observation: exponential number of s-t cuts and no “easy” algorithm to find a minimum
cut.

16.1.3.6 The Minimum-Cut Problem
Problem

Input A flow network G

Goal Find the capacity of a minimum s-t cut

16.1.3.7 Flows and Cuts

Lemma 16.1.12. For any s-t cut E', maximum s-t flow < capacity of E'.

Proof: Formal proof easier with path based definition of flow.

Suppose f : P — R2° is a max-flow. Every path p € P contains an edge e € E'. Why?
Assign each path p € P to exactly one edge e € E'.

Let P, be paths assigned to e € E'. Then

v =D =D fp) <D cle).

peEP e€ R’ pePe ec kR’

16.1.3.8 Flows and Cuts

Lemma 16.1.13. For any s-t cut E', maximum s-t flow < capacity of E’.

Corollary 16.1.14. Mazimum s-t flow < minimum s-t cut.



16.1.3.9 Max-Flow Min-Cut Theorem

Theorem 16.1.15. In any flow network the mazrimum s-t flow is equal to the minimum
s-t cut.

Can compute minimum-cut from maximum flow and vice-versa!
Proof coming shortly.
Many applications:

(A) optimization

(B) graph theory

(C) combinatorics

16.1.3.10 The Maximum-Flow Problem
Problem

Input A network G with capacity ¢ and source s and sink t¢.
Goal Find flow of maximum value from s to t.

Exercise: Given G, s,t as above, show that one can remove all edges into s and all edges
out of t without affecting the flow value between s and ¢.
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