
Chapter 16

Network Flows

CS 473: Fundamental Algorithms, Spring 2013
March 15, 2013

16.0.0.1 Everything flows

Panta rei – everything flows (literally).
Heraclitus (535–475 BC)

16.1 Network Flows: Introduction and Setup
16.1.0.2 Transportation/Road Network

16.1.0.3 Internet Backbone Network
16.1.0.4 Common Features of Flow Networks

(A) Network represented by a (directed) graph G = (V,E).
(B) Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
(C) Source(s) of traffic/data.
(D) Sink(s) of traffic/data.
(E) Traffic flows from sources to sinks.

1

(F) Traffic is switched/interchanged at nodes.

Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

16.1.0.5 Single Source/Single Sink Flows

Simple setting:

(A) Single source s and single sink t.
(B) Every other node v is an internal node.
(C) Flow originates at s and terminates at t.

15

5

10

30

8

4

9

4
15

6 10

1015
15 10

s

a

b

c

d

e

f

t

(A) Each edge e has a capacity c(e) ≥ 0.
(B) Sometimes assume:

Source s ∈ V has no incoming edges, and sink t ∈ V
has no outgoing edges.

Assumptions: All capacities are integer, and every vertex has at least one edge incident to
it.

16.1.0.6 Definition of Flow

Two ways to define flows:

(A) edge based, or
(B) path based.

Essentially equivalent but have different uses.

Edge based definition is more compact.

16.1.0.7 Edge Based Definition of Flow

Definition 16.1.1. Flow in network G = (V,E), is function f : E → R≥0 s.t.

2

14/15

4/5

10
/1
0

14/30

8/8

0/4

9/9

0/4

1/15

4/6
10
/1
0

9/10

0/15

0/15

9/10

s

1

2

3

4

5

6

t

Figure 16.1: Flow with value.

(A) Capacity Constraint: For each edge e, f(e) ≤
c(e).

(B) Conservation Constraint: For each vertex
v ̸= s, t. ∑

e into v

f(e) =
∑

e out of v

f(e)

(C) Value of flow= (total flow out of source) −
(total flow in to source).

16.1.0.8 Flow...

Conservation of flow law is also known as Kirchhoff’s law .

16.1.0.9 More Definitions and Notation

Notation

(A) The inflow into a vertex v is f in(v) =
∑

e into v f(e) and the outflow is f out(v) =∑
e out of v f(e)

(B) For a set of vertices A, f in(A) =
∑

e into A f(e). Outflow f out(A) is defined analogously

Definition 16.1.2. For a network G = (V,E) with source s, the value of flow f is defined
as v(f) = f out(s)− f in(s).

16.1.0.10 A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P : set of all paths from s to t. |P| can be exponential in n.

Definition 16.1.3 (Flow by paths.). A flow in network G = (V,E), is function f : P →
R≥0 s.t.

(A) Capacity Constraint: For each edge e, total flow on e is ≤ c(e).∑
p∈P:e∈p

f(p) ≤ c(e)

(B) Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f(p).

3

16.1.0.11 Example

s t

v

u

/20

/30

/20

/11

/27
P = {p1, p2, p3}
p1 : s → u → t
p2 : s → u → v → t
p3 : s → v → t
f(p1) = 10, f(p2) = 4, f(p3) = 6

s t

p
1 : 10

v

p2
: 4

u

p
3 : 6

16.1.0.12 Path based flow implies edge based flow

Lemma 16.1.4. Given a path based flow f : P → R≥0 there is an edge based flow f ′ : E →
R≥0 of the same value.

Proof : For each edge e define f ′(e) =
∑

p:e∈p f(p).

Exercise: Verify capacity and conservation constraints for f ′.

Exercise: Verify that value of f and f ′ are equal

16.1.0.13 Example

s t

p
1 : 10

v

p2
: 4

u

p
3 : 6

s t

14 10

4

10

6

p
1 : 10

v

p2
: 4

u

p
3 : 6

/20

/30

/20

/11

/27

P = {p1, p2, p3}
p1 : s → u → t
p2 : s → u → v → t
p3 : s → v → t
f(p1) = 10, f(p2) = 4, f(p3) = 6
f ′(s → u) = 14
f ′(u → v) = 4
f ′(s → v) = 6
f ′(u → t) = 10
f ′(v → t) = 10

4

16.1.1 Flow Decomposition

16.1.1.1 Edge based flow to Path based Flow

Lemma 16.1.5. Given an edge based flow f ′ : E → R≥0, there is a path based flow f :
P → R≥0 of same value. Moreover, f assigns non-negative flow to at most m paths where
|E| = m and |V | = n. Given f ′, the path based flow can be computed in O(mn) time.

16.1.2 Flow Decomposition

16.1.2.1 Edge based flow to Path based Flow

Proof :[Proof Idea]
(A) Remove all edges with f ′(e) = 0.
(B) Find a path p from s to t.
(C) Assign f(p) to be mine∈p f

′(e).
(D) Reduce f ′(e) for all e ∈ p by f(p).
(E) Repeat until no path from s to t.
(F) In each iteration at least on edge has flow reduced to zero.
(G) Hence, at most m iterations. Can be implemented in O(m(m+ n)) time. O(mn) time

requires care.

16.1.2.2 Example

14/15

4/5

10
/1
0

14/30

8/8

0/4

9/9

0/4

1/15

4/6
10
/1
0

9/10

0/15

0/15

9/10

s

1

2

3

4

5

6

t

16.1.2.3 Edge vs Path based Definitions of Flow

Edge based flows:
(A) compact representation, only m values to be specified, and
(B) need to check flow conservation explicitly at each internal node.

Path flows:
(A) in some applications, paths more natural,
(B) not compact,

5

(C) no need to check flow conservation constraints.

Equivalence shows that we can go back and forth easily.

16.1.2.4 The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the maximum flow between
source and sink?

16.1.2.5 Cuts

Definition 16.1.6 (s-t cut). Given a flow network an s-t cut is a set of edges E ′ ⊂ E
such that removing E ′ disconnects s from t: in other words there is no directed s → t path
in E − E ′.

The capacity of a cut E ′ is c(E ′) =
∑

e∈E′ c(e).

15

5

10

30

8

4

9

4
15

6 10

1015
15 10

s

a

b

c

d

e

f

t
Caution:
(A) Cut may leave t → s paths!
(B) There might be many s-t cuts.

16.1.3 s− t cuts

16.1.3.1 A death by a thousand cuts

15

5

10

30

8

4

9

4
15

6 10

1015
15 10

s

a

b

c

d

e

f

t

20

15

5

10

30

8

4

9

4
15

6 10

1015
15 10

s

a

b

c

d

e

f

t

20

6

15

5

10

30

8

4

9

4
15

6 10

1015
15 10

s

a

b

c

d

e

f

t

16.1.3.2 Minimal Cut

Definition 16.1.7 (Minimal s-t cut.). Given a s-t flow network G = (V,E), E′ ⊆ E is a
minimal cut if for all e ∈ E′, if E′ \ {e} is not a cut.

Observation: given a cut E ′, can check efficiently whether E ′ is a minimal cut or not.
How?

16.1.3.3 Cuts as Vertex Partitions

Let A ⊂ V such that
(A) s ∈ A, t ̸∈ A, and
(B) B = V \ A (hence t ∈ B).
The cut (A,B) is the set of edges

(A,B) = {(u, v) ∈ E | u ∈ A, v ∈ B} .

Cut (A,B) is set of edges leaving A.

15

5

10

30

8

4

9

4
15

6 10

1015
15 10

s

a

b

c

d

e

f

t

Claim 16.1.8. (A,B) is an s-t cut.

Proof : Let P be any s → t path in G. Since t is not in A, P has to leave A via some edge
(u, v) in (A,B).

16.1.3.4 Cuts as Vertex Partitions

Lemma 16.1.9. Suppose E ′ is an s-t cut. Then there is a cut (A,B) such that (A,B) ⊆ E ′.

Proof : E ′ is an s-t cut implies no path from s to t in (V,E − E ′).
(A) Let A be set of all nodes reachable by s in (V,E − E ′).
(B) Since E ′ is a cut, t ̸∈ A.
(C) (A,B) ⊆ E ′. Why?If some edge (u, v) ∈ (A,B) is not in E ′ then v will be reachable by

s and should be in A, hence a contradiction.

Corollary 16.1.10. Every minimal s-t cut E ′ is a cut of the form (A,B).

7

15

5

10

30

8

4

9

4
15

6 10

1015
15 10

s

a

b

c

d

e

f

t

16.1.3.5 Minimum Cut

Definition 16.1.11. Given a flow network an s-t minimum cut is a cut E ′ of smallest
capacity amongst all s-t cuts.

Observation: exponential number of s-t cuts and no “easy” algorithm to find a minimum
cut.

16.1.3.6 The Minimum-Cut Problem

Problem

Input A flow network G

Goal Find the capacity of a minimum s-t cut

16.1.3.7 Flows and Cuts

Lemma 16.1.12. For any s-t cut E ′, maximum s-t flow ≤ capacity of E ′.

Proof : Formal proof easier with path based definition of flow.
Suppose f : P → R≥0 is a max-flow. Every path p ∈ P contains an edge e ∈ E ′. Why?

Assign each path p ∈ P to exactly one edge e ∈ E ′.
Let Pe be paths assigned to e ∈ E ′. Then

v(f) =
∑
p∈P

f(p) =
∑
e∈E′

∑
p∈Pe

f(p) ≤
∑
e∈E′

c(e).

16.1.3.8 Flows and Cuts

Lemma 16.1.13. For any s-t cut E ′, maximum s-t flow ≤ capacity of E ′.

Corollary 16.1.14. Maximum s-t flow ≤ minimum s-t cut.

8

16.1.3.9 Max-Flow Min-Cut Theorem

Theorem 16.1.15. In any flow network the maximum s-t flow is equal to the minimum
s-t cut.

Can compute minimum-cut from maximum flow and vice-versa!
Proof coming shortly.
Many applications:

(A) optimization
(B) graph theory
(C) combinatorics

16.1.3.10 The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value from s to t.

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges
out of t without affecting the flow value between s and t.

9

	Network Flows: Introduction and Setup

