Chapter 16

Network Flows

CS 473: Fundamental Algorithms, Spring 2013 March 15, 2013

16.0.0.1 Everything flows

Panta rei – everything flows (literally). Heraclitus (535–475 BC)

16.1 Network Flows: Introduction and Setup

16.1.0.2 Transportation/Road Network

16.1.0.3 Internet Backbone Network16.1.0.4 Common Features of Flow Networks

- (A) **Network** represented by a (directed) graph G = (V, E).
- (B) Each edge e has a *capacity* $c(e) \ge 0$ that limits amount of *traffic* on e.
- (C) Source(s) of traffic/data.
- (D) Sink(s) of traffic/data.
- (E) Traffic flows from sources to sinks.

(F) Traffic is *switched/interchanged* at nodes.

Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

16.1.0.5 Single Source/Single Sink Flows

Simple setting:

- (A) Single source s and single sink t.
- (B) Every other node v is an internal node.
- (C) Flow originates at s and terminates at t.

- (A) Each edge e has a capacity $c(e) \ge 0$.
- (B) Sometimes assume: Source $s \in V$ has no incoming edges, and sink $t \in V$ has no outgoing edges.

Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

16.1.0.6 Definition of Flow

Two ways to define flows:

- (A) edge based, or
- (B) path based.

Essentially equivalent but have different uses.

Edge based definition is more compact.

16.1.0.7 Edge Based Definition of Flow

Definition 16.1.1. Flow in network G = (V, E), is function $f : E \to \mathbb{R}^{\geq 0}$ s.t.

- (A) Capacity Constraint: For each edge e, f(e) <c(e).
 - Conservation Constraint: For each vertex $v \neq s, t$.

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

(C) Value of flow= (total flow out of source) -(total flow in to source).

Figure 16.1: Flow with value.

16.1.0.8 Flow...

Conservation of flow law is also known as **Kirchhoff's law**.

16.1.0.9More Definitions and Notation

Notation

- (A) The inflow into a vertex v is $f^{\text{in}}(v) = \sum_{e \text{ into } v} f(e)$ and the outflow is $f^{\text{out}}(v) = \sum_{e \text{ into } v} f(e)$ (B) For a set of vertices A, $f^{\text{in}}(A) = \sum_{e \text{ into } A} f(e)$. Outflow $f^{\text{out}}(A)$ is defined analogously

Definition 16.1.2. For a network G = (V, E) with source s, the value of flow f is defined as $v(f) = f^{\text{out}}(s) - f^{\text{in}}(s)$.

A Path Based Definition of Flow 16.1.0.10

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition 16.1.3 (Flow by paths.). A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathcal{P}$ $\mathbb{R}^{\geq 0}$ s.t.

(A) Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$\sum_{p \in \mathcal{P}: e \in p} f(p) \leq c(e)$$

(B) Conservation Constraint: No need! Automatic.

Value of flow: $\sum_{p \in \mathcal{P}} f(p)$.

16.1.0.11 Example

$$\mathcal{P} = \{p_1, p_2, p_3\}$$

$$p_1 : s \to u \to t$$

$$p_2 : s \to u \to v \to t$$

$$p_3 : s \to v \to t$$

$$f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$$

16.1.0.12 Path based flow implies edge based flow

Lemma 16.1.4. Given a path based flow $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $f': E \to \mathbb{R}^{\geq 0}$ of the same value.

Proof: For each edge e define $f'(e) = \sum_{p:e \in p} f(p)$.

Exercise: Verify capacity and conservation constraints for f'.

Exercise: Verify that value of f and f' are equal

16.1.0.13 Example

$$\mathcal{P} = \{p_1, p_2, p_3\}
p_1 : s \to u \to t
p_2 : s \to u \to v \to t
p_3 : s \to v \to t
f(p_1) = 10, f(p_2) = 4, f(p_3) = 6
f'(s \to u) = 14
f'(u \to v) = 4
f'(s \to v) = 6
f'(u \to t) = 10
f'(v \to t) = 10$$

16.1.1 Flow Decomposition

16.1.1.1 Edge based flow to Path based Flow

Lemma 16.1.5. Given an edge based flow $f': E \to \mathbb{R}^{\geq 0}$, there is a path based flow $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$ of same value. Moreover, f assigns non-negative flow to at most m paths where |E| = m and |V| = n. Given f', the path based flow can be computed in O(mn) time.

16.1.2 Flow Decomposition

16.1.2.1 Edge based flow to Path based Flow

Proof:[Proof Idea]

- (A) Remove all edges with f'(e) = 0.
- (B) Find a path p from s to t.
- (C) Assign f(p) to be $\min_{e \in p} f'(e)$.
- (D) Reduce f'(e) for all $e \in p$ by f(p).
- (E) Repeat until no path from s to t.
- (F) In each iteration at least on edge has flow reduced to zero.
- (G) Hence, at most m iterations. Can be implemented in O(m(m+n)) time. O(mn) time requires care.

16.1.2.2 Example

16.1.2.3 Edge vs Path based Definitions of Flow

Edge based flows:

- (A) compact representation, only m values to be specified, and
- (B) need to check flow conservation explicitly at each internal node. Path flows:
- (A) in some applications, paths more natural,
- (B) not compact,

(C) no need to check flow conservation constraints. Equivalence shows that we can go back and forth easily.

16.1.2.4 The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an *upper bound* on the maximum flow between source and sink?

16.1.2.5 Cuts

Definition 16.1.6 (s-t cut). Given a flow network an **s-t cut** is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'.

The **capacity** of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

Caution:

- (A) Cut may leave $t \to s$ paths!
- (B) There might be many s-t cuts.

16.1.3 s - t cuts

16.1.3.1 A death by a thousand cuts

16.1.3.2 Minimal Cut

Definition 16.1.7 (Minimal s-t cut.). Given a s-t flow network G = (V, E), $E' \subseteq E$ is a minimal cut if for all $e \in E'$, if $E' \setminus \{e\}$ is not a cut.

Observation: given a cut E', can check efficiently whether E' is a minimal cut or not. How?

16.1.3.3 Cuts as Vertex Partitions

Let $A \subset V$ such that

(A) $s \in A, t \notin A$, and

(B) $B = V \setminus A$ (hence $t \in B$).

The cut (A, B) is the set of edges

$$(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}.$$

Cut (A, B) is set of edges leaving A.

Claim 16.1.8. (A, B) is an s-t cut.

Proof: Let P be any $s \to t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

16.1.3.4 Cuts as Vertex Partitions

Lemma 16.1.9. Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof: E' is an s-t cut implies no path from s to t in (V, E - E').

- (A) Let A be set of all nodes reachable by s in (V, E E').
- (B) Since E' is a cut, $t \notin A$.
- (C) $(A, B) \subseteq E'$. Why? If some edge $(u, v) \in (A, B)$ is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary 16.1.10. Every minimal s-t cut E' is a cut of the form (A, B).

16.1.3.5 Minimum Cut

Definition 16.1.11. Given a flow network an s-t minimum cut is a cut E' of smallest capacity amongst all s-t cuts.

Observation: exponential number of s-t cuts and no "easy" algorithm to find a minimum cut.

16.1.3.6 The Minimum-Cut Problem

Problem

Input A flow network G

Goal Find the capacity of a minimum s-t cut

16.1.3.7 Flows and Cuts

Lemma 16.1.12. For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof: Formal proof easier with path based definition of flow.

Suppose $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow. Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why? Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E'$.

Let \mathcal{P}_e be paths assigned to $e \in E'$. Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \le \sum_{e \in E'} c(e).$$

16.1.3.8 Flows and Cuts

Lemma 16.1.13. For any s-t cut E', maximum s-t flow \leq capacity of E'.

Corollary 16.1.14. Maximum s-t flow \leq minimum s-t cut.

16.1.3.9 Max-Flow Min-Cut Theorem

Theorem 16.1.15. In any flow network the maximum s-t flow is equal to the minimum s-t cut.

Can compute minimum-cut from maximum flow and vice-versa!

Proof coming shortly.

Many applications:

- (A) optimization
- (B) graph theory
- (C) combinatorics

16.1.3.10 The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value from s to t.

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t.