Chapter 16

Network Flows

CS 473: Fundamental Algorithms, Spring 2013
March 15, 2013

16.0.0.1 Everything flows

Panta rei - everything flows (literally).
Heraclitus (535-475 BC)

16.1 Network Flows: Introduction and Setup

16.1.0.2 Transportation/Road Network

16.1.0.3 Internet Backbone Network
16.1.0.4 Common Features of Flow Networks
(A) Network represented by a (directed) graph $G=(V, E)$.
(B) Each edge e has a capacity $c(e) \geq 0$ that limits amount of traffic on e.
(C) Source (s) of traffic/data.
(D) $\operatorname{Sink}(s)$ of traffic/data.
(E) Traffic flows from sources to sinks.

(F) Traffic is switched/interchanged at nodes.

Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

16.1.0.5 Single Source/Single Sink Flows

Simple setting:
(A) Single source s and single $\operatorname{sink} t$.
(B) Every other node v is an internal node.
(C) Flow originates at s and terminates at t.

(A) Each edge e has a capacity $c(e) \geq 0$.
(B) Sometimes assume:

Source $s \in V$ has no incoming edges, and $\operatorname{sink} t \in V$ has no outgoing edges.

Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

16.1.0.6 Definition of Flow

Two ways to define flows:
(A) edge based, or
(B) path based.

Essentially equivalent but have different uses.
Edge based definition is more compact.

16.1.0.7 Edge Based Definition of Flow

Definition 16.1.1. Flow in network $G=(V, E)$, is function $f: E \rightarrow \mathbb{R}^{\geq 0}$ s.t.

(C) Value of flow= (total flow out of source) (total flow in to source).

Figure 16.1: Flow with value.

16.1.0.8 Flow...

Conservation of flow law is also known as Kirchhoff's law.

16.1.0.9 More Definitions and Notation

Notation
(A) The inflow into a vertex v is $f^{\text {in }}(v)=\sum_{e}$ into $v f(e)$ and the outflow is $f^{\text {out }}(v)=$ \sum_{e} out of $v f(e)$
(B) For a set of vertices $A, f^{\text {in }}(A)=\sum_{e}$ into $A f(e)$. Outflow $f^{\text {out }}(A)$ is defined analogously

Definition 16.1.2. For a network $G=(V, E)$ with source s, the value of flow f is defined as $v(f)=f^{\text {out }}(s)-f^{\text {in }}(s)$.

16.1.0.10 A Path Based Definition of Flow

Intuition: Flow goes from source s to $\operatorname{sink} t$ along a path.
\mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.
Definition 16.1.3 (Flow by paths.). A flow in network $G=(V, E)$, is function $f: \mathcal{P} \rightarrow$ $\mathbb{R}^{\geq 0}$ s.t.
(A) Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$
\sum_{p \in \mathcal{P}: e \in p} f(p) \leq c(e)
$$

(B) Conservation Constraint: No need! Automatic.

Value of flow: $\sum_{p \in \mathcal{P}} f(p)$.

16.1.0.11 Example

$\mathcal{P}=\left\{p_{1}, p_{2}, p_{3}\right\}$
$p_{1}: s \rightarrow u \rightarrow t$
$p_{2}: s \rightarrow u \rightarrow v \rightarrow t$
$p_{3}: s \rightarrow v \rightarrow t$
$f\left(p_{1}\right)=10, f\left(p_{2}\right)=4, f\left(p_{3}\right)=6$

16.1.0.12 Path based flow implies edge based flow

Lemma 16.1.4. Given a path based flow $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ there is an edge based flow $f^{\prime}: E \rightarrow$ $\mathbb{R}^{\geq 0}$ of the same value.

Proof: For each edge e define $f^{\prime}(e)=\sum_{p: e \in p} f(p)$.
Exercise: Verify capacity and conservation constraints for f^{\prime}.
Exercise: Verify that value of f and f^{\prime} are equal

16.1.0.13 Example

$$
\begin{aligned}
& \mathcal{P}=\left\{p_{1}, p_{2}, p_{3}\right\} \\
& p_{1}: s \rightarrow u \rightarrow t \\
& p_{2}: s \rightarrow u \rightarrow v \rightarrow t \\
& p_{3}: s \rightarrow v \rightarrow t \\
& f\left(p_{1}\right)=10, f\left(p_{2}\right)=4, f\left(p_{3}\right)=6 \\
& f^{\prime}(s \rightarrow u)=14 \\
& f^{\prime}(u \rightarrow v)=4 \\
& f^{\prime}(s \rightarrow v)=6 \\
& f^{\prime}(u \rightarrow t)=10 \\
& f^{\prime}(v \rightarrow t)=10
\end{aligned}
$$

16.1.1 Flow Decomposition

16.1.1.1 Edge based flow to Path based Flow

Lemma 16.1.5. Given an edge based flow $f^{\prime}: E \rightarrow \mathbb{R}^{\geq 0}$, there is a path based flow $f:$ $\mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ of same value. Moreover, f assigns non-negative flow to at most m paths where $|E|=m$ and $|V|=n$. Given f^{\prime}, the path based flow can be computed in $O(m n)$ time.

16.1.2 Flow Decomposition

16.1.2.1 Edge based flow to Path based Flow

Proof:[Proof Idea]
(A) Remove all edges with $f^{\prime}(e)=0$.
(B) Find a path p from s to t.
(C) Assign $f(p)$ to be $\min _{e \in p} f^{\prime}(e)$.
(D) Reduce $f^{\prime}(e)$ for all $e \in p$ by $f(p)$.
(E) Repeat until no path from s to t.
(F) In each iteration at least on edge has flow reduced to zero.
(G) Hence, at most m iterations. Can be implemented in $O(m(m+n))$ time. $O(m n)$ time requires care.

16.1.2.2 Example

16.1.2.3 Edge vs Path based Definitions of Flow

Edge based flows:
(A) compact representation, only m values to be specified, and
(B) need to check flow conservation explicitly at each internal node.

Path flows:
(A) in some applications, paths more natural,
(B) not compact,
(C) no need to check flow conservation constraints.

Equivalence shows that we can go back and forth easily.

16.1.2.4 The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and $\operatorname{sink} t$.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the maximum flow between source and sink?

16.1.2.5 Cuts

Definition 16.1.6 (s-t cut). Given a flow network an s-t cut is a set of edges $E^{\prime} \subset E$ such that removing E^{\prime} disconnects s from t : in other words there is no directed $s \rightarrow t$ path in $E-E^{\prime}$.

The capacity of a cut E^{\prime} is $c\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} c(e)$.

Caution:

(A) Cut may leave $t \rightarrow s$ paths!
(B) There might be many s - t cuts.

16.1.3 $s-t$ cuts

16.1.3.1 A death by a thousand cuts

16.1.3.2 Minimal Cut

Definition 16.1.7 (Minimal \boldsymbol{s}-t cut.). Given a s-t flow network $G=(V, E), E \subseteq E$ is a minimal cut if for all $e \in E$, if $E \backslash\{e\}$ is not a cut.

Observation: given a cut E^{\prime}, can check efficiently whether E^{\prime} is a minimal cut or not. How?

16.1.3.3 Cuts as Vertex Partitions

Let $A \subset V$ such that
(A) $s \in A, t \notin A$, and
(B) $B=V \backslash A$ (hence $t \in B$).

The cut (A, B) is the set of edges

$$
(A, B)=\{(u, v) \in E \mid u \in A, v \in B\}
$$

Cut (A, B) is set of edges leaving A.

Claim 16.1.8. (A, B) is an s-t cut.
Proof: Let P be any $s \rightarrow t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

16.1.3.4 Cuts as Vertex Partitions

Lemma 16.1.9. Suppose E^{\prime} is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E^{\prime}$.
Proof: E^{\prime} is an s - t cut implies no path from s to t in $\left(V, E-E^{\prime}\right)$.
(A) Let A be set of all nodes reachable by s in $\left(V, E-E^{\prime}\right)$.
(B) Since E^{\prime} is a cut, $t \notin A$.
(C) $(A, B) \subseteq E^{\prime}$. Why?If some edge $(u, v) \in(A, B)$ is not in E^{\prime} then v will be reachable by s and should be in A, hence a contradiction.

Corollary 16.1.10. Every minimal s-t cut E^{\prime} is a cut of the form (A, B).

16.1.3.5 Minimum Cut

Definition 16.1.11. Given a flow network an s - t minimum cut is a cut E^{\prime} of smallest capacity amongst all s-t cuts.

Observation: exponential number of s - t cuts and no "easy" algorithm to find a minimum cut.

16.1.3.6 The Minimum-Cut Problem

Problem
Input A flow network G
Goal Find the capacity of a minimum $s-t$ cut

16.1.3.7 Flows and Cuts

Lemma 16.1.12. For any s - t cut E^{\prime}, maximum s - t flow \leq capacity of E^{\prime}.
Proof: Formal proof easier with path based definition of flow.
Suppose $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ is a max-flow. Every path $p \in \mathcal{P}$ contains an edge $e \in E^{\prime}$. Why? Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E^{\prime}$.

Let \mathcal{P}_{e} be paths assigned to $e \in E^{\prime}$. Then

$$
v(f)=\sum_{p \in \mathcal{P}} f(p)=\sum_{e \in E^{\prime}} \sum_{p \in \mathcal{P}_{e}} f(p) \leq \sum_{e \in E^{\prime}} c(e) .
$$

16.1.3.8 Flows and Cuts

Lemma 16.1.13. For any s-t cut E^{\prime}, maximum s-t flow \leq capacity of E^{\prime}.

Corollary 16.1.14. Maximum s-t flow \leq minimum s-t cut.

16.1.3.9 Max-Flow Min-Cut Theorem

Theorem 16.1.15. In any flow network the maximum s - t flow is equal to the minimum s-t cut.

Can compute minimum-cut from maximum flow and vice-versa!
Proof coming shortly.
Many applications:
(A) optimization
(B) graph theory
(C) combinatorics

16.1.3.10 The Maximum-Flow Problem

Problem
Input A network G with capacity c and source s and $\operatorname{sink} t$.
Goal Find flow of maximum value from s to t.
Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t.

