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Everything flows

Panta rei – everything flows (literally).
Heraclitus (535–475 BC)
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Part I
.

......

Network Flows: Introduction and
Setup
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Transportation/Road Network
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Internet Backbone Network
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Common Features of Flow Networks

...1 Network represented by a (directed) graph G = (V,E).

...2 Each edge e has a capacity c(e) ≥ 0 that limits amount of
traffic on e.

...3 Source(s) of traffic/data.

...4 Sink(s) of traffic/data.

...5 Traffic flows from sources to sinks.

...6 Traffic is switched/interchanged at nodes.

Flow abstract term to indicate stuff (traffic/data/etc) that flows
from sources to sinks.

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 / 31



Single Source/Single Sink Flows

Simple setting:
...1 Single source s and single sink t.
...2 Every other node v is an internal node.
...3 Flow originates at s and terminates at t.
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...1 Each edge e has a capacity c(e) ≥ 0.

...2 Sometimes assume:
Source s ∈ V has no incoming edges,
and sink t ∈ V has no outgoing edges.

Assumptions: All capacities are integer, and every vertex has at least
one edge incident to it.
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Definition of Flow

Two ways to define flows:
...1 edge based, or
...2 path based.

Essentially equivalent but have different uses.

Edge based definition is more compact.
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Edge Based Definition of Flow

.
Definition
..

......

Flow in network G = (V, E), is function f : E → R≥0 s.t.
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Figure: Flow with value.

...1 Capacity Constraint: For each edge
e, f(e) ≤ c(e).
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Figure: Flow with value.

...1 Capacity Constraint: For each edge
e, f(e) ≤ c(e).

...2 Conservation Constraint: For each
vertex v ̸= s, t.∑
e into v

f(e) =
∑

e out of v

f(e)
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...1 Capacity Constraint: For each edge
e, f(e) ≤ c(e).

...2 Conservation Constraint: For each
vertex v ̸= s, t.∑
e into v

f(e) =
∑

e out of v

f(e)

...3 Value of flow= (total flow out of
source) − (total flow in to source).
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Flow...

Conservation of flow law is also known as Kirchhoff’s law.
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More Definitions and Notation

.
Notation
..

......

...1 The inflow into a vertex v is f in(v) =
∑

e into v f(e) and the
outflow is fout(v) =

∑
e out of v f(e)

...2 For a set of vertices A, f in(A) =
∑

e into A f(e). Outflow
fout(A) is defined analogously

.
Definition
..

......

For a network G = (V,E) with source s, the value of flow f is
defined as v(f) = fout(s) − f in(s).
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A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P : set of all paths from s to t. |P| can be exponential in n.
.
Definition (Flow by paths.)
..

......

A flow in network G = (V, E), is function f : P → R≥0 s.t.
...1 Capacity Constraint: For each edge e, total flow on e is ≤ c(e).∑

p∈P:e∈p

f(p) ≤ c(e)

...2 Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f(p).
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Example

s t

v

u

/20

/30

/20

/11

/27

P = {p1, p2, p3}
p1 : s → u → t
p2 : s → u → v → t
p3 : s → v → t

f(p1) = 10, f(p2) = 4, f(p3) = 6
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Path based flow implies edge based flow

.
Lemma
..

......
Given a path based flow f : P → R≥0 there is an edge based flow
f ′ : E → R≥0 of the same value.

.
Proof.
..

......

For each edge e define f ′(e) =
∑

p:e∈p f(p).
Exercise: Verify capacity and conservation constraints for f ′.
Exercise: Verify that value of f and f ′ are equal
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Example

s t

p
1 : 10

v

p2
: 4

u

p
3 : 6

P = {p1, p2, p3}
p1 : s → u → t
p2 : s → u → v → t
p3 : s → v → t

f(p1) = 10, f(p2) = 4, f(p3) = 6
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Example

s t

p
1 : 10
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: 4
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P = {p1, p2, p3}
p1 : s → u → t
p2 : s → u → v → t
p3 : s → v → t

f(p1) = 10, f(p2) = 4, f(p3) = 6

f ′(s → u) = 14
f ′(u → v) = 4
f ′(s → v) = 6
f ′(u → t) = 10
f ′(v → t) = 10
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Flow Decomposition
Edge based flow to Path based Flow

.
Lemma
..

......

Given an edge based flow f ′ : E → R≥0, there is a path based flow
f : P → R≥0 of same value. Moreover, f assigns non-negative flow
to at most m paths where |E| = m and |V| = n. Given f ′, the path
based flow can be computed in O(mn) time.
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Flow Decomposition
Edge based flow to Path based Flow

.
Proof Idea.
..

......

...1 Remove all edges with f ′(e) = 0.

...2 Find a path p from s to t.

...3 Assign f(p) to be mine∈p f ′(e).

...4 Reduce f ′(e) for all e ∈ p by f(p).

...5 Repeat until no path from s to t.

...6 In each iteration at least on edge has flow reduced to zero.

...7 Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care.
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Edge vs Path based Definitions of Flow

Edge based flows:
...1 compact representation, only m values to be specified, and
...2 need to check flow conservation explicitly at each internal node.

Path flows:
...1 in some applications, paths more natural,
...2 not compact,
...3 no need to check flow conservation constraints.

Equivalence shows that we can go back and forth easily.
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The Maximum-Flow Problem

.
Problem
..

......

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the
maximum flow between source and sink?
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Cuts

.
Definition (s-t cut)
..

......

Given a flow network an s-t cut is a set of edges E′ ⊂ E such that
removing E′ disconnects s from t: in other words there is no directed
s → t path in E − E′.
The capacity of a cut E′ is c(E′) =

∑
e∈E′ c(e).

Caution:
...1 Cut may leave t → s paths!
...2 There might be many s-t cuts.
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s − t cuts
A death by a thousand cuts
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Minimal Cut

.
Definition (Minimal s-t cut.)
..

......

Given a s-t flow network G = (V, E), E′ ⊆ E is a minimal cut if for
all e ∈ E′, if E′ \ {e} is not a cut.
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Observation: given a cut E′, can check efficiently whether E′ is a
minimal cut or not. How?
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Cuts as Vertex Partitions

Let A ⊂ V such that
...1 s ∈ A, t ̸∈ A, and
...2 B = V \ A (hence t ∈ B).

The cut (A,B) is the set of edges

(A,B) = {(u, v) ∈ E | u ∈ A, v ∈ B} .

Cut (A,B) is set of edges leaving A.
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.
Claim
..
......(A,B) is an s-t cut.

.
Proof.
..

......

Let P be any s → t path in G. Since t is not in A, P has to leave A
via some edge (u, v) in (A,B).
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Cuts as Vertex Partitions
.
Lemma
..

......

Suppose E′ is an s-t cut. Then there is a cut (A,B) such that
(A,B) ⊆ E′.

.
Proof.
..

......

E′ is an s-t cut implies no path from s to t in (V,E − E′).
...1 Let A be set of all nodes reachable by s in (V,E − E′).
...2 Since E′ is a cut, t ̸∈ A.
...3 (A,B) ⊆ E′. Why?

.
Corollary
..
......Every minimal s-t cut E′ is a cut of the form (A,B).
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Minimum Cut

.
Definition
..

......

Given a flow network an s-t minimum cut is a cut E′ of smallest
capacity amongst all s-t cuts.
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Observation: exponential number of s-t cuts and no “easy” algorithm
to find a minimum cut.
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The Minimum-Cut Problem

.
Problem
..

......

Input A flow network G

Goal Find the capacity of a minimum s-t cut
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Flows and Cuts

.
Lemma
..
......For any s-t cut E′, maximum s-t flow ≤ capacity of E′.

.
Proof.
..

......

Formal proof easier with path based definition of flow.
Suppose f : P → R≥0 is a max-flow.

Every path p ∈ P contains an edge e ∈ E′. Why?
Assign each path p ∈ P to exactly one edge e ∈ E′.
Let Pe be paths assigned to e ∈ E′. Then

v(f) =
∑
p∈P

f(p) =
∑
e∈E′

∑
p∈Pe

f(p) ≤
∑
e∈E′

c(e).
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Flows and Cuts

.
Lemma
..
......For any s-t cut E′, maximum s-t flow ≤ capacity of E′.

.
Corollary
..
......Maximum s-t flow ≤ minimum s-t cut.
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Max-Flow Min-Cut Theorem

.
Theorem
..

......
In any flow network the maximum s-t flow is equal to the minimum
s-t cut.

Can compute minimum-cut from maximum flow and vice-versa!
Proof coming shortly.
Many applications:

...1 optimization

...2 graph theory

...3 combinatorics
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The Maximum-Flow Problem

.
Problem
..

......

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value from s to t.

Exercise: Given G, s, t as above, show that one can remove all
edges into s and all edges out of t without affecting the flow value
between s and t.
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Notes
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