CS 473: Fundamental Algorithms, Spring 2013

Network Flows

Lecture 16 March 15, 2013

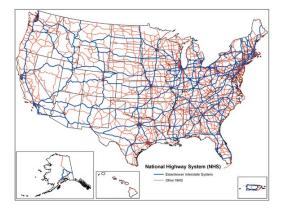
Everything flows

Panta rei – everything flows (literally). Heraclitus (535–475 BC)

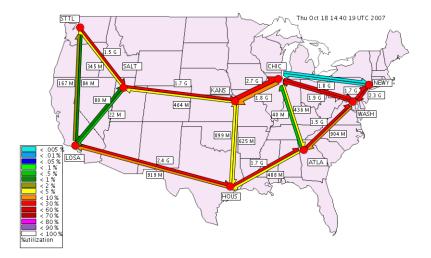
Part I

Network Flows: Introduction and Setup

Transportation/Road Network



Internet Backbone Network



Common Features of Flow Networks

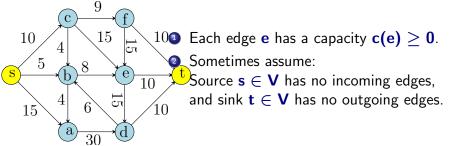
- **1** Network represented by a (directed) graph G = (V, E).
- e Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- Source(s) of traffic/data.
- Sink(s) of traffic/data.
- Traffic flows from sources to sinks.
- Traffic is *switched/interchanged* at nodes.

Flow abstract term to indicate stuff (traffic/data/etc) that **flows** from sources to sinks.

Single Source/Single Sink Flows

Simple setting:

- Single source **s** and single sink **t**.
- ② Every other node v is an internal node.
- Solution States at s and terminates at t.



Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

Definition of Flow

Two ways to define flows:

- edge based, or
- 2 path based.

Essentially equivalent but have different uses.

Edge based definition is more compact.

Definition

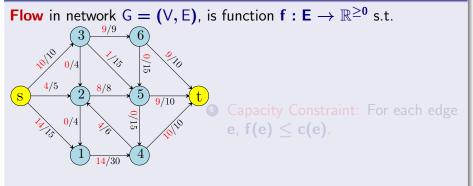


Figure: Flow with value.

Definition

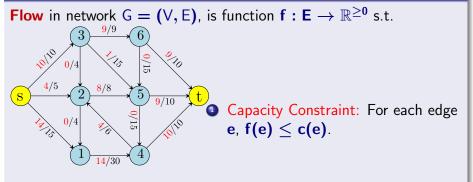


Figure: Flow with value.

Definition

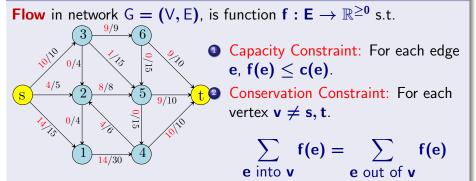


Figure: Flow with value.

Definition

Flow in network G = (V, E), is function f : $E \to \mathbb{R}^{\geq 0}$ s.t. 3 9/9 6 Capacity Constraint: For each edge e, f(e) \leq c(e). 4/5 2 8/8 5 9/10 t Conservation Constraint: For each vertex $v \neq s$, t. 9 (e) into v = t out of v f(e) = t out of v f(e) = t out of v

Figure: Flow with value.

Value of flow= (total flow out of source) - (total flow in to source).

Conservation of flow law is also known as Kirchhoff's law.

More Definitions and Notation

Notation

- The inflow into a vertex v is fⁱⁿ(v) = ∑_e into v f(e) and the outflow is f^{out}(v) = ∑_e out of v f(e)
 For a set of vertices A, fⁱⁿ(A) = ∑_e into A f(e). Outflow
 - **f**^{out}(**A**) is defined analogously

Definition

For a network G = (V, E) with source s, the value of flow f is defined as $v(f) = f^{out}(s) - f^{in}(s)$.

Intuition: Flow goes from source \mathbf{s} to sink \mathbf{t} along a path.

 \mathcal{P} : set of all paths from **s** to **t**. $|\mathcal{P}|$ can be **exponential** in **n**.

Definition (Flow by paths.)

- A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.
 - Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{\mathsf{p}\in\mathcal{P}:\mathsf{e}\in\mathsf{p}}\mathsf{f}(\mathsf{p})\leq\mathsf{c}(\mathsf{e})$

Onservation Constraint: No need! Automatic.

Value of flow: $\sum_{\mathbf{p}\in\mathcal{P}} \mathbf{f}(\mathbf{p})$.

Intuition: Flow goes from source \mathbf{s} to sink \mathbf{t} along a path.

 \mathcal{P} : set of all paths from **s** to **t**. $|\mathcal{P}|$ can be **exponential** in **n**.

Definition (Flow by paths.)

- A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.
 - Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{\mathsf{p}\in\mathcal{P}:\mathsf{e}\in\mathsf{p}}\mathsf{f}(\mathsf{p})\leq\mathsf{c}(\mathsf{e})$

Onservation Constraint: No need! Automatic.

Value of flow: $\sum_{\mathbf{p}\in\mathcal{P}} \mathbf{f}(\mathbf{p})$.

Intuition: Flow goes from source **s** to sink **t** along a path.

 \mathcal{P} : set of all paths from **s** to **t**. $|\mathcal{P}|$ can be **exponential** in **n**.

Definition (Flow by paths.)

- A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.
 - Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{\mathsf{p}\in\mathcal{P}:\mathsf{e}\in\mathsf{p}}\mathsf{f}(\mathsf{p})\leq\mathsf{c}(\mathsf{e})$

Sonservation Constraint: No need! Automatic.

Value of flow: $\sum_{p \in \mathcal{P}} f(p)$.

Intuition: Flow goes from source **s** to sink **t** along a path.

 \mathcal{P} : set of all paths from **s** to **t**. $|\mathcal{P}|$ can be **exponential** in **n**.

Definition (Flow by paths.)

- A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.
 - Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{\mathsf{p}\in\mathcal{P}:\mathsf{e}\in\mathsf{p}}\mathsf{f}(\mathsf{p})\leq\mathsf{c}(\mathsf{e})$

Conservation Constraint: No need! Automatic.

Value of flow: $\sum_{p \in \mathcal{P}} f(p)$.

Intuition: Flow goes from source **s** to sink **t** along a path.

 \mathcal{P} : set of all paths from **s** to **t**. $|\mathcal{P}|$ can be **exponential** in **n**.

Definition (Flow by paths.)

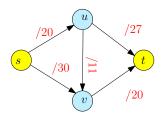
- A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.
 - Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{\mathsf{p}\in\mathcal{P}:\mathsf{e}\in\mathsf{p}}\mathsf{f}(\mathsf{p})\leq\mathsf{c}(\mathsf{e})$

Conservation Constraint: No need! Automatic.

Value of flow: $\sum_{\mathbf{p}\in\mathcal{P}} \mathbf{f}(\mathbf{p})$.

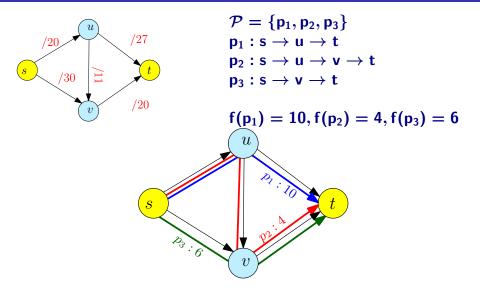
Example



$$\begin{aligned} \mathcal{P} &= \{p_1, p_2, p_3\}\\ p_1 : s \rightarrow u \rightarrow t\\ p_2 : s \rightarrow u \rightarrow v \rightarrow t\\ p_3 : s \rightarrow v \rightarrow t \end{aligned}$$
$$f(p_1) &= 10, f(p_2) = 4, f(p_3) = 6 \end{aligned}$$

Sariel, Alexandra (UIUC)

Example



Path based flow implies edge based flow

Lemma

Given a path based flow $\mathbf{f} : \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $\mathbf{f}' : \mathbf{E} \to \mathbb{R}^{\geq 0}$ of the same value.

Proof.

For each edge **e** define $\mathbf{f'(e)} = \sum_{\mathbf{p}:\mathbf{e}\in\mathbf{p}} \mathbf{f(p)}$. **Exercise:** Verify capacity and conservation constraints for $\mathbf{f'}$. **Exercise:** Verify that value of \mathbf{f} and $\mathbf{f'}$ are equal

Path based flow implies edge based flow

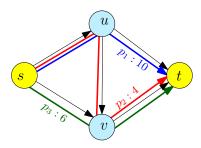
Lemma

Given a path based flow $\mathbf{f} : \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $\mathbf{f}' : \mathbf{E} \to \mathbb{R}^{\geq 0}$ of the same value.

Proof.

For each edge **e** define $\mathbf{f'(e)} = \sum_{\mathbf{p}:\mathbf{e} \in \mathbf{p}} \mathbf{f(p)}$. **Exercise:** Verify capacity and conservation constraints for $\mathbf{f'}$. **Exercise:** Verify that value of \mathbf{f} and $\mathbf{f'}$ are equal

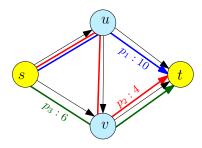
Example



$$\begin{aligned} \mathcal{P} &= \{p_1, p_2, p_3\} \\ p_1 : s \to u \to t \\ p_2 : s \to u \to v \to t \\ p_3 : s \to v \to t \end{aligned}$$

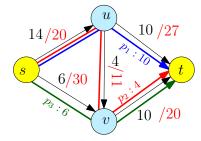
 $f(p_1)=10, f(p_2)=4, f(p_3)=6$

Example



$$\begin{split} \mathcal{P} &= \{p_1, p_2, p_3\} \\ p_1 : s \rightarrow u \rightarrow t \\ p_2 : s \rightarrow u \rightarrow v \rightarrow t \\ p_3 : s \rightarrow v \rightarrow t \end{split}$$

 $f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$



$$\begin{array}{l} f'(s \rightarrow u) = 14 \\ f'(u \rightarrow v) = 4 \\ f'(s \rightarrow v) = 6 \\ f'(u \rightarrow t) = 10 \\ f'(v \rightarrow t) = 10 \end{array}$$

Flow Decomposition Edge based flow to Path based Flow

Lemma

Given an edge based flow $\mathbf{f}' : \mathbf{E} \to \mathbb{R}^{\geq 0}$, there is a path based flow $\mathbf{f} : \mathcal{P} \to \mathbb{R}^{\geq 0}$ of same value. Moreover, \mathbf{f} assigns non-negative flow to at most \mathbf{m} paths where $|\mathbf{E}| = \mathbf{m}$ and $|\mathbf{V}| = \mathbf{n}$. Given \mathbf{f}' , the path based flow can be computed in $\mathbf{O}(\mathbf{mn})$ time.

Flow Decomposition Edge based flow to Path based Flow

Proof Idea.

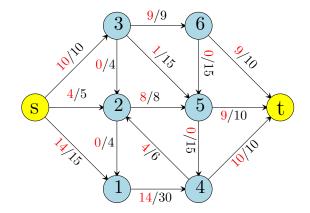
- Remove all edges with f'(e) = 0.
- Find a path p from s to t.
- Assign f(p) to be $\min_{e \in p} f'(e)$.
- Seduce f'(e) for all $e \in p$ by f(p).
- Repeat until no path from s to t.
- In each iteration at least on edge has flow reduced to zero.
- Hence, at most m iterations. Can be implemented in O(m(m + n)) time. O(mn) time requires care.

Flow Decomposition Edge based flow to Path based Flow

Proof Idea.

- Remove all edges with f'(e) = 0.
- Find a path p from s to t.
- Assign f(p) to be $\min_{e \in p} f'(e)$.
- Seduce f'(e) for all $e \in p$ by f(p).
- Sepeat until no path from s to t.
- In each iteration at least on edge has flow reduced to zero.
- Hence, at most m iterations. Can be implemented in O(m(m + n)) time. O(mn) time requires care.

Example



Edge vs Path based Definitions of Flow

Edge based flows:

- **o** compact representation, only **m** values to be specified, and
- 2 need to check flow conservation explicitly at each internal node.

Path flows:

- in some applications, paths more natural,
- Inot compact,
- In need to check flow conservation constraints.

Equivalence shows that we can go back and forth easily.

The Maximum-Flow Problem

Problem

Input A network **G** with capacity **c** and source **s** and sink **t**. Goal Find flow of **maximum** value.

Question: Given a flow network, what is an *upper bound* on the maximum flow between source and sink?

The Maximum-Flow Problem

Problem

Input A network **G** with capacity **c** and source **s** and sink **t**. Goal Find flow of **maximum** value.

Question: Given a flow network, what is an *upper bound* on the maximum flow between source and sink?

Definition (s-t cut)

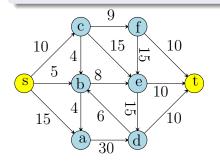
Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed s \rightarrow t path in E - E'. The capacity of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

Caution:

- Out may leave t → s paths!
- Intere might be many s-t cuts.

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed s \rightarrow t path in E - E'. The capacity of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.



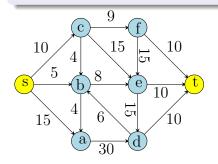
Caution:

• Cut may leave $t \rightarrow s$ paths!

There might be many **s-t** cuts.

Definition (s-t cut)

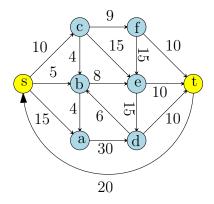
Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed s \rightarrow t path in E - E'. The capacity of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

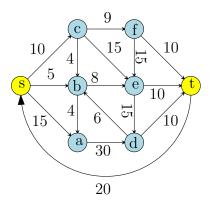


Caution:

- Cut may leave $t \rightarrow s$ paths!
- There might be many s-t cuts.

${f s}-{f t}$ cuts A death by a thousand cuts

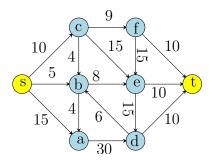




Minimal Cut

Definition (Minimal s-t cut.)

Given a s-t flow network G = (V, E), $E' \subseteq E$ is a minimal cut if for all $e \in E'$, if $E' \setminus \{e\}$ is not a cut.



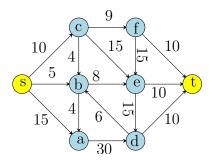
Observation: given a cut **E**', can check efficiently whether **E**' is a minimal cut or not. How?

Sariel, Alexandra (UIUC)

Minimal Cut

Definition (Minimal s-t cut.)

Given a s-t flow network G = (V, E), $E' \subseteq E$ is a minimal cut if for all $e \in E'$, if $E' \setminus \{e\}$ is not a cut.



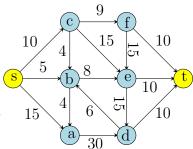
Observation: given a cut E', can check efficiently whether E' is a minimal cut or not. How?

Sariel, Alexandra (UIUC)

Let $A \subset V$ such that • $s \in A, t \notin A$, and • $B = V \setminus A$ (hence $t \in B$). The **cut** (A, B) is the set of edges

 $(\mathsf{A},\mathsf{B})=\left\{(\mathsf{u},\mathsf{v})\in\mathsf{E}\mid\mathsf{u}\in\mathsf{A},\mathsf{v}\in\mathsf{B}\right\}.$

Cut (A, B) is set of edges leaving A.



Claim (A, B) is an s-t cut. Proof. Let P be any $s \rightarrow t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B). Sariel, Alexandra (UUC) CS473 24 Spring 2013 24/31

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- 1 Let A be set of all nodes reachable by s in (V, E E')
- **2** Since **E'** is a cut, $\mathbf{t} \not\in \mathbf{A}$.
- **(A, B)** \subseteq **E'**. Why?

Corollary

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- Let A be set of all nodes reachable by s in (V, E E').
- **2** Since \mathbf{E}' is a cut, $\mathbf{t} \not\in \mathbf{A}$.
- **(A, B)** \subseteq **E'**. Why?

Corollary

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- Let A be set of all nodes reachable by s in (V, E E').
- **2** Since $\mathbf{E'}$ is a cut, $\mathbf{t} \not\in \mathbf{A}$.
- (A, B) ⊆ E'. Why?If some edge (u, v) ∈ (A, B) is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

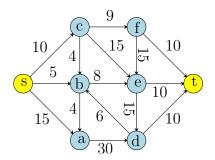
- Let A be set of all nodes reachable by s in (V, E E').
- **2** Since $\mathbf{E'}$ is a cut, $\mathbf{t} \not\in \mathbf{A}$.
- (A, B) ⊆ E'. Why?If some edge (u, v) ∈ (A, B) is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Minimum Cut

Definition

Given a flow network an s-t minimum cut is a cut \mathbf{E}' of smallest capacity amongst all s-t cuts.



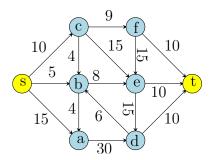
Observation: exponential number of **s-t** cuts and no "easy" algorithm to find a minimum cut.

Sariel, Alexandra (UIUC)

Minimum Cut

Definition

Given a flow network an s-t minimum cut is a cut ${\sf E}'$ of smallest capacity amongst all s-t cuts.



Observation: exponential number of **s-t** cuts and no "easy" algorithm to find a minimum cut.

Sariel, Alexandra (UIUC)

The Minimum-Cut Problem

Problem

Input A flow network **G** Goal Find the capacity of a *minimum* **s-t** cut

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

Formal proof easier with path based definition of flow. Suppose $f:\mathcal{P}\to\mathbb{R}^{\geq0}$ is a max-flow.

Every path $\mathbf{p} \in \mathcal{P}$ contains an edge $\mathbf{e} \in \mathbf{E}'$. Why? Assign each path $\mathbf{p} \in \mathcal{P}$ to exactly one edge $\mathbf{e} \in \mathbf{E}'$. Let $\mathcal{P}_{\mathbf{e}}$ be paths assigned to $\mathbf{e} \in \mathbf{E}'$. Then

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

Formal proof easier with path based definition of flow. Suppose $\mathbf{f}: \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.

Every path $\mathbf{p} \in \mathcal{P}$ contains an edge $\mathbf{e} \in \mathbf{E}'$. Why? Assign each path $\mathbf{p} \in \mathcal{P}$ to exactly one edge $\mathbf{e} \in \mathbf{E}'$. Let $\mathcal{P}_{\mathbf{e}}$ be paths assigned to $\mathbf{e} \in \mathbf{E}'$. Then

$$\mathsf{v}(f) = \sum_{\mathsf{p} \in \mathcal{P}} \mathsf{f}(\mathsf{p}) = \sum_{\mathsf{e} \in \mathsf{E}'} \sum_{\mathsf{p} \in \mathcal{P}_{\mathsf{e}}} \mathsf{f}(\mathsf{p}) \leq \sum_{\mathsf{e} \in \mathsf{E}'} \mathsf{c}(\mathsf{e}).$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

Formal proof easier with path based definition of flow. Suppose $\mathbf{f}: \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.

Every path $\mathbf{p} \in \mathcal{P}$ contains an edge $\mathbf{e} \in \mathbf{E'}$. Why? Assign each path $\mathbf{p} \in \mathcal{P}$ to exactly one edge $\mathbf{e} \in \mathbf{E'}$. Let $\mathcal{P}_{\mathbf{e}}$ be paths assigned to $\mathbf{e} \in \mathbf{E'}$. Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

Formal proof easier with path based definition of flow. Suppose $\mathbf{f}: \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.

Every path $\mathbf{p} \in \mathcal{P}$ contains an edge $\mathbf{e} \in \mathbf{E'}$. Why? Assign each path $\mathbf{p} \in \mathcal{P}$ to exactly one edge $\mathbf{e} \in \mathbf{E'}$. Let $\mathcal{P}_{\mathbf{e}}$ be paths assigned to $\mathbf{e} \in \mathbf{E'}$. Then

$$\mathsf{v}(f) = \sum_{\mathsf{p} \in \mathcal{P}} \mathsf{f}(\mathsf{p}) = \sum_{\mathsf{e} \in \mathsf{E}'} \sum_{\mathsf{p} \in \mathcal{P}_\mathsf{e}} \mathsf{f}(\mathsf{p}) \leq \sum_{\mathsf{e} \in \mathsf{E}'} \mathsf{c}(\mathsf{e}).$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Corollary

Maximum \mathbf{s} - \mathbf{t} *flow* \leq *minimum* \mathbf{s} - \mathbf{t} *cut.*

Max-Flow Min-Cut Theorem

Theorem

In any flow network the maximum **s-t** flow is equal to the minimum **s-t** cut.

Can compute minimum-cut from maximum flow and vice-versa! Proof coming shortly. Many applications:

Many applications:

- optimization
- 2 graph theory
- Combinatorics

Max-Flow Min-Cut Theorem

Theorem

In any flow network the maximum **s-t** flow is equal to the minimum **s-t** cut.

Can compute minimum-cut from maximum flow and vice-versa!

Proof coming shortly. Many applications:

- optimization
- 2 graph theory
- Combinatorics

Max-Flow Min-Cut Theorem

Theorem

In any flow network the maximum **s-t** flow is equal to the minimum **s-t** cut.

Can compute minimum-cut from maximum flow and vice-versa! Proof coming shortly.

Many applications:

- optimization
- graph theory
- combinatorics

The Maximum-Flow Problem

Problem

Input A network **G** with capacity **c** and source **s** and sink **t**. Goal Find flow of **maximum** value from **s** to **t**.

Exercise: Given **G**, **s**, **t** as above, show that one can remove all edges into **s** and all edges out of **t** without affecting the flow value between **s** and **t**.

The Maximum-Flow Problem

Problem

Input A network **G** with capacity **c** and source **s** and sink **t**. Goal Find flow of **maximum** value from **s** to **t**.

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t.