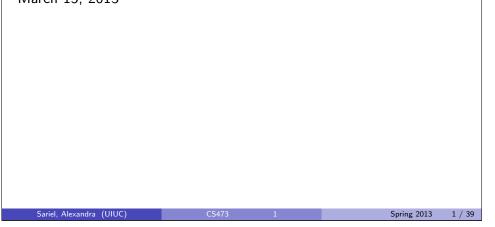
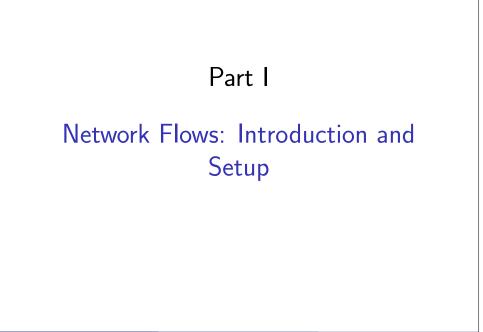
CS 473: Fundamental Algorithms, Spring 2013

Network Flows

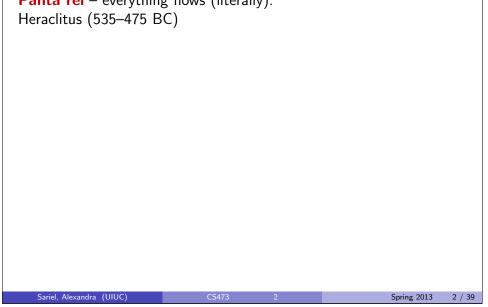
Lecture 16 March 15, 2013

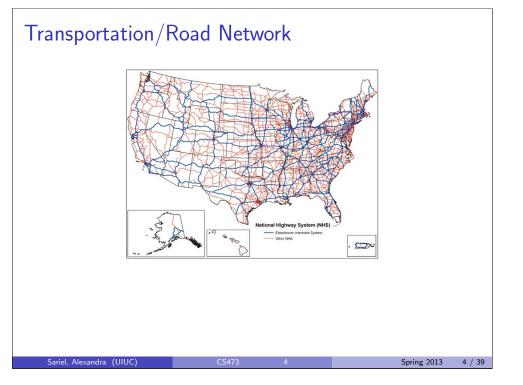




Everything flows

Panta rei – everything flows (literally). Heraclitus (535–475 BC)





<section-header><section-header>

Single Source/Single Sink Flows

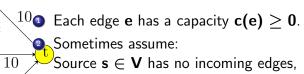
Simple setting:

10

• Single source \mathbf{s} and single sink \mathbf{t} .

15

- **2** Every other node **v** is an **internal** node.
- Solution Flow originates at **s** and terminates at **t**.



and sink $t \in V$ has no outgoing edges.

Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

Common Features of Flow Networks

- Network represented by a (directed) graph G = (V, E).
- ② Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- Source(s) of traffic/data.
- Sink(s) of traffic/data.
- S Traffic *flows* from sources to sinks.
- Traffic is *switched/interchanged* at nodes.

Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

Definition of Flow

Two ways to define flows:

- edge based, or
- 2 path based.

Essentially equivalent but have different uses.

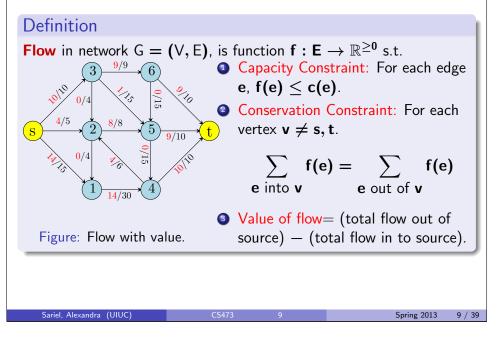
Edge based definition is more compact.

a) 30

CS473

Spring 2013

Edge Based Definition of Flow



More Definitions and Notation

Notation

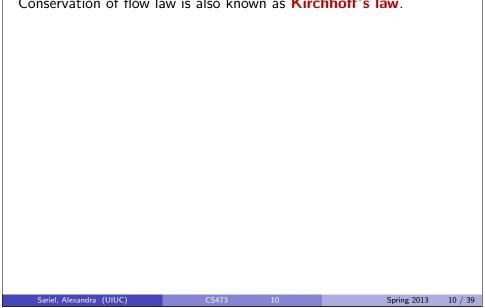
- **①** The inflow into a vertex **v** is $f^{in}(v) = \sum_{e \text{ into } v} f(e)$ and the outflow is $f^{out}(v) = \sum_{e \text{ out of } v} f(e)$
- **2** For a set of vertices **A**, $f^{in}(A) = \sum_{e \text{ into } A} f(e)$. Outflow **f**^{out}(**A**) is defined analogously

Definition

For a network $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ with source \mathbf{s} , the value of flow \mathbf{f} is defined as $v(f) = f^{out}(s) - f^{in}(s)$.

Flow...

Conservation of flow law is also known as **Kirchhoff's law**.



A Path Based Definition of Flow

Intuition: Flow goes from source **s** to sink **t** along a path.

 \mathcal{P} : set of all paths from **s** to **t**. $|\mathcal{P}|$ can be *exponential* in **n**.

Definition (Flow by paths.)

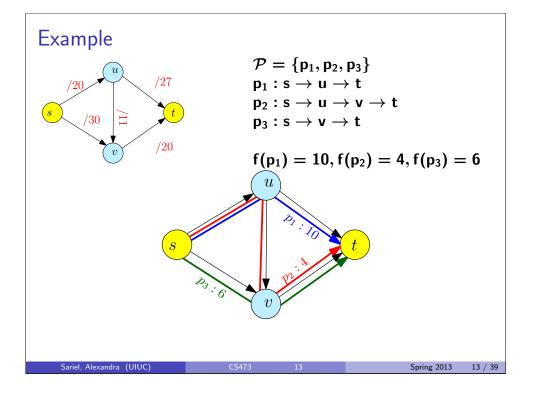
A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.

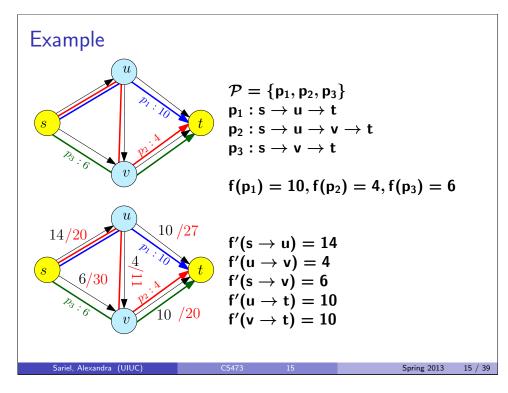
Or Capacity Constraint: For each edge \mathbf{e} , total flow on \mathbf{e} is $< \mathbf{c}(\mathbf{e})$.

$$\sum_{p\in \mathcal{P}: e\in p} f(p) \leq c(e)$$

Conservation Constraint: No need! Automatic.

Value of flow: $\sum_{p \in \mathcal{P}} f(p)$.





Path based flow implies edge based flow

Lemma

Given a path based flow $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $f' : E \to \mathbb{R}^{\geq 0}$ of the same value.

Proof.

For each edge **e** define $\mathbf{f'(e)} = \sum_{\mathbf{p}:\mathbf{e}\in\mathbf{p}} \mathbf{f(p)}$. **Exercise:** Verify capacity and conservation constraints for $\mathbf{f'}$. **Exercise:** Verify that value of **f** and **f'** are equal

Flow Decomposition Edge based flow to Path based Flow

Lemma

Given an edge based flow $\mathbf{f}' : \mathbf{E} \to \mathbb{R}^{\geq 0}$, there is a path based flow $\mathbf{f} : \mathcal{P} \to \mathbb{R}^{\geq 0}$ of same value. Moreover, \mathbf{f} assigns non-negative flow to at most \mathbf{m} paths where $|\mathbf{E}| = \mathbf{m}$ and $|\mathbf{V}| = \mathbf{n}$. Given \mathbf{f}' , the path based flow can be computed in $\mathbf{O}(\mathbf{mn})$ time.

CS473 _____

Spring 2013 16 / 39

14/30

Spring 2013

Flow Decomposition

Edge based flow to Path based Flow

Proof Idea.

- Remove all edges with f'(e) = 0.
- **2** Find a path \mathbf{p} from \mathbf{s} to \mathbf{t} .
- **3** Assign f(p) to be $\min_{e \in p} f'(e)$.
- Reduce f'(e) for all $e \in p$ by f(p).
- **③** Repeat until no path from \mathbf{s} to \mathbf{t} .
- **I**n each iteration at least on edge has flow reduced to zero.
- Hence, at most **m** iterations. Can be implemented in O(m(m + n)) time. O(mn) time requires care.

Edge vs Path based Definitions of Flow

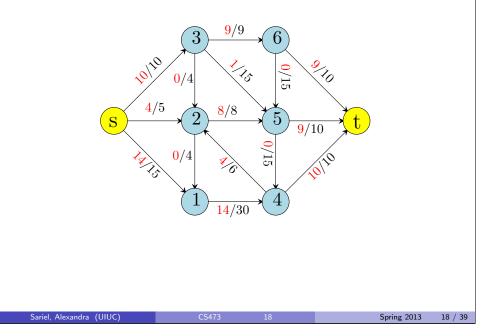
Edge based flows:

Sariel, Alexandra (UIUC

- **(** *compact* representation, only **m** values to be specified, and
- need to check flow conservation explicitly at each internal node.Path flows:
- in some applications, paths more natural,
- ont compact,
- In no need to check flow conservation constraints.

Equivalence shows that we can go back and forth easily.

Example



The Maximum-Flow Problem

Problem

Input A network **G** with capacity **c** and source **s** and sink **t**. Goal Find flow of *maximum* value.

Question: Given a flow network, what is an *upper bound* on the maximum flow between source and sink?

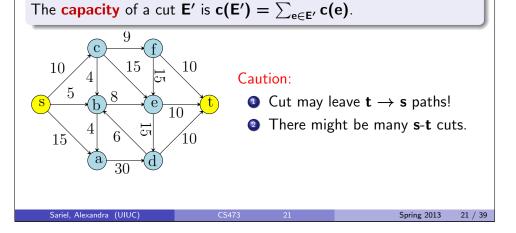
17/39

Spring 2013

Cuts

Definition (s-t cut)

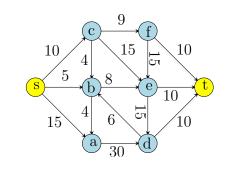
Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing **E'** disconnects **s** from **t**: in other words there is no directed $s \rightarrow t$ path in E - E'.



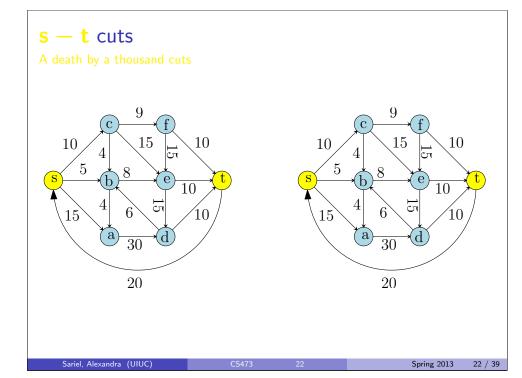
Minimal Cut

Definition (Minimal s-t cut.)

Given a s-t flow network G = (V, E), $E' \subset E$ is a minimal cut if for all $\mathbf{e} \in \mathbf{E}'$, if $\mathbf{E}' \setminus \{\mathbf{e}\}$ is not a cut.



Observation: given a cut \mathbf{E}' , can check efficiently whether \mathbf{E}' is a minimal cut or not. How? Sariel, Alexandra (UIUC) Spring 2013 23 / 39



Cuts as Vertex Partitions					
Let $\mathbf{A} \subset \mathbf{V}$ such that					
$\bullet \ \mathbf{s} \in \mathbf{A}, \ \mathbf{t} \not\in \mathbf{A}, \ \text{and} \qquad \qquad 10 \qquad 15 \qquad 10$					
2 $\mathbf{B} = \mathbf{V} \setminus \mathbf{A}$ (hence $\mathbf{t} \in \mathbf{B}$). $10 4 15 \mathbf{t} 10 \mathbf{H}$					
The cut (A , B) is the set of edges $5 + 6 + 6 + 10 + 10 + 10 + 10 + 10 + 10 +$					
$(\mathbf{A},\mathbf{B}) = \{(\mathbf{u},\mathbf{v}) \in \mathbf{E} \mid \mathbf{u} \in \mathbf{A}, \mathbf{v} \in \mathbf{B}\}.$ 15 4 6 $\overrightarrow{c_{T}}$ 10					
Cut (A, B) is set of edges leaving A.					
Claim					
(A, B) is an s-t cut.					
Proof.					
Let P be any $s \to t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B) .					
Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 39					

Cuts as Vertex Partitions

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subset E'$

Proof.

- E' is an s-t cut implies no path from s to t in (V, E E').
- **1** Let **A** be set of all nodes reachable by **s** in (V, E E').
- **2** Since $\mathbf{E'}$ is a cut, $\mathbf{t} \not\in \mathbf{A}$.
- **3** $(A, B) \subset E'$. Why?If some edge $(u, v) \in (A, B)$ is not in E'then \mathbf{v} will be reachable by \mathbf{s} and should be in \mathbf{A} , hence a contradiction.

Corollary

Sariel, Alexandra (UIUC)

Every minimal s-t cut E' is a cut of the form (A, B).

The Minimum-Cut Problem

Problem

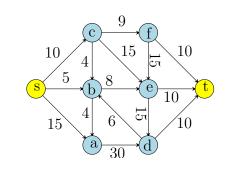
Input A flow network **G**

Goal Find the capacity of a *minimum* **s**-**t** cut

Minimum Cut

Definition

Given a flow network an s-t minimum cut is a cut E' of smallest capacity amongst all s-t cuts.



Observation: exponential number of s-t cuts and no "easy" algorithm to find a minimum cut. Sariel, Alexandra (UIUC)

Flows and Cuts

Lemma

For any s-t cut E', maximum s-t flow < capacity of E'.

Proof.

Formal proof easier with path based definition of flow. Suppose $\mathbf{f}: \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.

Every path $\mathbf{p} \in \mathcal{P}$ contains an edge $\mathbf{e} \in \mathbf{E'}$. Why? Assign each path $\mathbf{p} \in \mathcal{P}$ to exactly one edge $\mathbf{e} \in \mathbf{E'}$. Let \mathcal{P}_{e} be paths assigned to $e \in E'$. Then

$$\mathsf{v}(\mathsf{f}) = \sum_{\mathsf{p} \in \mathcal{P}} \mathsf{f}(\mathsf{p}) = \sum_{\mathsf{e} \in \mathsf{E}'} \sum_{\mathsf{p} \in \mathcal{P}_{\mathsf{e}}} \mathsf{f}(\mathsf{p}) \leq \sum_{\mathsf{e} \in \mathsf{E}'} \mathsf{c}(\mathsf{e}).$$

Sariel, Alexandra (UIUC

25 / 39

Spring 2013

Sariel Alexandra (UIUC

Spring 2013

26 / 39

Flows and Cuts

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Corollary

Maximum s-t *flow* \leq *minimum* s-t *cut.*

Sariel, Alexandra (UIUC)	CS473	29	Spring 2013	29 / 39

The Maximum-Flow Problem

Problem

Input A network **G** with capacity **c** and source **s** and sink **t**. Goal Find flow of *maximum* value from **s** to **t**.

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t.

Max-Flow Min-Cut Theorem

Theorem

In any flow network the maximum **s**-**t** flow is equal to the minimum **s**-**t** cut.

Can compute minimum-cut from maximum flow and vice-versa! Proof coming shortly.

Many applications:

- optimization
- graph theory
- combinatorics

Sariel, Alexandra (UIUC)

Spring 2013

30 / 39

Spring 2013

31 / 39