
Chapter 15

Hashing

CS 473: Fundamental Algorithms, Spring 2013
March 13, 2013

15.1 Hash Tables

15.2 Introduction
15.2.0.1 Dictionary Data Structure

(A) U : universe of keys with total order: numbers, strings, etc.
(B) Data structure to store a subset S ⊆ U
(C) Operations:

(A) Search/lookup: given x ∈ U is x ∈ S?
(B) Insert: given x ̸∈ S add x to S.
(C) Delete: given x ∈ S delete x from S

(D) Static structure: S given in advance or changes very infrequently, main operations are
lookups.

(E) Dynamic structure: S changes rapidly so inserts and deletes as important as lookups.

15.2.0.2 Dictionary Data Structures

Common solutions:

(A) Static:
(A) Store S as a sorted array
(B) Lookup: Binary search in O(log |S|) time (comparisons)

(B) Dynamic:
(A) Store S in a balanced binary search tree
(B) Lookup, Insert, Delete in O(log |S|) time (comparisons)

1

y

s

f

15.2.0.3 Dictionary Data Structures

Question: “Should Tables be Sorted?”
(also title of famous paper by Turing award winner Andy Yao)

Hashing is a widely used & powerful technique for dictionaries.

Motivation:

(A) Universe U may not be (naturally) totally ordered.
(B) Keys correspond to large objects (images, graphs etc) for which comparisons are very

expensive.
(C) Want to improve “average” performance of lookups to O(1) even at cost of extra space

or errors with small probability: many applications for fast lookups in networking,
security, etc.

15.2.0.4 Hashing and Hash Tables

Hash Table data structure:

(A) A (hash) table/array T of size m (the table size).
(B) A hash function h : U → {0, . . . ,m− 1}.
(C) Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:

(A) Each element x ∈ S hashes to a distinct slot in T . Store x in slot h(x)
(B) Lookup: Given y ∈ U check if T [h(y)] = y. O(1) time!

Collisions unavoidable. Several different techniques to handle them.

15.2.0.5 Handling Collisions: Chaining

Collision: h(x) = h(y) for some x ̸= y.

Chaining to handle collisions:

(A) For each slot i store all items hashed to slot i in a linked list. T [i] points to the linked
list

(B) Lookup: to find if y ∈ U is in T , check the linked list at T [h(y)]. Time proportion to
size of linked list.

This is also known as Open hashing .

2

15.2.0.6 Handling Collisions

Several other techniques:

(A) Open addressing.
Every element has a list of places it can be (in certain order). Check in this order.

(B) . . .
(C) Cuckoo hashing.

Every value has two possible locations. When inserting, insert in one of the locations,
otherwise, kick stored value to its other location. Repeat till stable. if no stability then
rebuild table.

(D) Others.

15.2.0.7 Understanding Hashing

Does hashing give O(1) time per operation for dictionaries?

Questions:

(A) Complexity of evaluating h on a given element?
(B) Relative sizes of the universe U and the set to be stored S.
(C) Size of table relative to size of S.
(D) Worst-case vs average-case vs randomized (expected) time?
(E) How do we choose h?

15.2.0.8 Understanding Hashing

(A) Complexity of evaluating h on a given element? Should be small.
(B) Relative sizes of the universe U and the set to be stored S: typically |U| ≫ |S|.
(C) Size of table relative to size of S. The load factor of T is the ratio n/t where n = |S|

and m = |T |. Typically n/t is a small constant smaller than 1.
Also known as the fill factor .

Main and interrelated questions:

(A) Worst-case vs average-case vs randomized (expected) time?
(B) How do we choose h?

15.2.0.9 Single hash function

(A) U : universe (very large).
(B) Assume N = |U| ≫ m where m is size of table T . In particular assume N ≥ m2 (very

conservative).
(C) Fix hash function h : U → {0, . . . ,m− 1}.
(D) N items hashed to m slots. By pigeon hole principle there is some i ∈ {0, . . . ,m − 1}

such that N/m ≥ m elements of U get hashed to i (!).
(E) Implies that there is a set S ⊆ U where |S| = m such that all of S hashes to same slot.

Ooops.

Lesson: For every hash function there is a very bad set. Bad set. Bad.

3

15.2.0.10 Picking a hash function

(A) Hash function are often chosen in an ad hoc fashion. Implicit assumption is that input
behaves well.

(B) Theory and sound practice suggests that a hash function should be chosen properly
with guarantees on its behavior.

Parameters: N = |U|, m = |T |, n = |S|
(A) H is a family of hash functions: each function h ∈ H should be efficient to evaluate

(that is, to compute h(x)).
(B) h is chosen randomly from H (typically uniformly at random). Implicitly assumes that
H allows an efficient sampling.

(C) Randomized guarantee: should have the property that for any fixed set S ⊆ U of size
m the expected number of collisions for a function chosen from H should be “small”.
Here the expectation is over the randomness in choice of h.

15.2.0.11 Picking a hash function

Question: Why not let H be the set of all functions from U to {0, 1, . . . ,m− 1}?
(A) Too many functions! A random function has high complexity!

of functions: M = m|U|.
Bits to encode such a function ≈ logM = |U| logm.

Question: Are there good and compact families H?
(A) Yes... But what it means for H to be good and compact.

15.3 Universal Hashing
15.3.0.12 Uniform hashing

Question: What are good properties of H in distributing data?
(A) Consider any element x ∈ U . Then if h ∈ H is picked randomly then x should go into

a random slot in T . In other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.
(B) Consider any two distinct elements x, y ∈ U . Then if h ∈ H is picked randomly then

the probability of a collision between x and y should be at most 1/m. In other words
Pr[h(x) = h(y)] = 1/m (cannot be smaller).

(C) Second property is stronger than the first and the crucial issue.

Definition 15.3.1. A family hash function H is 2-universal if for all distinct x, y ∈ U ,
Pr[h(x) = h(y)] = 1/m where m is the table size.

Note: The set of all hash functions satisfies stronger properties!

15.3.0.13 Analyzing Uniform Hashing

(A) T is hash table of size m.
(B) S ⊆ U is a fixed set of size ≤ m.
(C) h is chosen randomly from a uniform hash family H.

4

(D) x is a fixed element of U . Assume for simplicity that x /∈ S.

Question: What is the expected time to look up x in T using h assuming chaining used
to resolve collisions?

15.3.0.14 Analyzing Uniform Hashing

Question: What is the expected time to look up x in T using h assuming chaining used to
resolve collisions?

(A) The time to look up x is the size of the list at T [h(x)]: same as the number of elements
in S that collide with x under h.

(B) Let ℓ(x) be this number. We want E[ℓ(x)]
(C) For y ∈ S let Ay be the even that x, y collide and Dy be the corresponding indicator

variable.

15.3.1 Analyzing Uniform Hashing

15.3.1.1 Continued...

Number of elements colliding with x: ℓ(x) =
∑

y∈S Dy.

⇒ E[ℓ(x)] =
∑
y∈S

E[Dy] linearity of expectation

=
∑
y∈S

Pr[h(x) = h(y)]

=
∑
y∈S

1

m
since H is a uniform hash family

= |S|/m
≤ 1 if |S| ≤ m

15.3.1.2 Analyzing Uniform Hashing

Question: What is the expected time to look up x in T using h assuming chaining used to
resolve collisions?

Answer: O(n/m).

Comments:

(A) O(1) expected time also holds for insertion.
(B) Analysis assumes static set S but holds as long as S is a set formed with at most O(m)

insertions and deletions.
(C) Worst-case: look up time can be large! How large? Ω(log n/ log log n)

[Lower bound holds even under stronger assumptions.]

5

15.3.2 Rehashing, amortization and...

15.3.2.1 ... making the hash table dynamic

Previous analysis assumed fixed S of size ≃ m.

Question: What happens as items are inserted and deleted?

(A) If |S| grows to more than cm for some constant c then hash table performance clearly
degrades.

(B) If |S| stays around ≃ m but incurs many insertions and deletions then the initial random
hash function is no longer random enough!

Solution: Rebuild hash table periodically!

(A) Choose a new table size based on current number of elements in table.
(B) Choose a new random hash function and rehash the elements.
(C) Discard old table and hash function.

Question: When to rebuild? How expensive?

15.3.2.2 Rebuilding the hash table

(A) Start with table size m where m is some estimate of |S| (can be some large constant).
(B) If |S| grows to more than twice current table size, build new hash table (choose a new

random hash function) with double the current number of elements. Can also use similar
trick if table size falls below quarter the size.

(C) If |S| stays roughly the same but more than c|S| operations on table for some chosen
constant c (say 10), rebuild.

The amortize cost of rebuilding to previously performed operations. Rebuilding ensures
O(1) expected analysis holds even when S changes. HenceO(1) expected look up/insert/delete
time dynamic data dictionary data structure!

15.3.2.3 Some math required...

Lemma 15.3.2. Let p be a prime number,

x: an integer number in {1, . . . , p− 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

In other words: For every element there is a unique inverse.

=⇒ Zp = {0, 1, . . . , p− 1} when working module p is a field.

15.3.2.4 Proof of lemma

Claim 15.3.3. Let p be a prime number. For any α, β, i ∈ {1, . . . , p− 1} s.t. α ̸= β, we
have that αi ̸= βi mod p.

6

Proof : Assume for the sake of contradiction αi = βi mod p. Then

i(α− β) = 0 mod p

=⇒ p divides i(α− β)

=⇒ p divides α− β

=⇒ α− β = 0

=⇒ α = β.

And that is a contradiction.

15.3.3 Proof of lemma...

15.3.3.1 Uniqueness.

Lemma 15.3.4. Let p be a prime number,
x: an integer number in {1, . . . , p− 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

Proof : Assume the lemma is false and there are two distinct numbers y, z ∈ {1, . . . , p− 1}
such that

xy = 1 mod p and xz = 1 mod p.

But this contradicts the above claim (set i = x, α = y and β = z).

15.3.4 Proof of lemma...

15.3.4.1 Existence

Proof : By claim, for any α ∈ {1, . . . , p− 1} we have that {α ∗ 1 mod p, α ∗ 2 mod p, . . . , α ∗ (p− 1) mod p} =
{1, 2, . . . , p− 1}.

=⇒ There exists a number y ∈ {1, . . . , p− 1} such that αy = 1 mod p.

15.3.4.2 Constructing Universal Hash Families

Parameters: N = |U|, m = |T |, n = |S|
(A) Choose a prime number p ≥ N . Zp = {0, 1, . . . , p− 1} is a field.
(B) For a, b ∈ Zp, a ̸= 0, define the hash function ha,b as ha,b(x) = ((ax + b) mod p)

mod m.
(C) Let H = {ha,b | a, b ∈ Zp, a ̸= 0}. Note that |H| = p(p− 1).

Theorem 15.3.5. H is a 2-universal hash family.

Comments:
(A) Hash family is of small size, easy to sample from.
(B) Easy to store a hash function (a, b have to be stored) and evaluate it.

7

15.3.4.3 What the is going on?

ha,b(x) = ((ax+ b) mod p) mod m
First map x ̸= y to r = h(x) and s = h(y).

0 1 2 3 x

(x, y)

y

→
(r, s)

0 1 2 3 r

s

This is a random uniform mapping (choosing a and b) – every cell has the same probability

to be the target, for fixed x and y.
(r, s)

0 1 2 3 r

s

=⇒

=⇒

(A) First part of mapping maps (x, y) to a
random location (ha,b(x), ha,b(y)) in the
“matrix”.

(B) (ha,b(x), ha,b(y)) is not on main diagonal.
(C) All blue locations are “bad” – map by

mod m to a location of collusion.
(D) But... at most 1/m fraction of allowable

locations in the matrix are bad.

15.3.4.4 Constructing Universal Hash Families

Theorem 15.3.6. H is a (2)-universal hash family.

Proof : Fix x, y ∈ U . What is the probability they will collide if h is picked randomly from
H?
(A) Let a, b be bad for x, y if ha,b(x) = ha,b(y).
(B) Claim: Number of bad pairs is at most p(p− 1)/m.
(C) Total number of hash functions is p(p−1) and hence probability of a collision is ≤ 1/m.

8

15.3.4.5 Some Lemmas

Lemma 15.3.7. If x ̸= y then for any a, b ∈ Zp such that a ̸= 0, we have
ax+ b mod p ̸= ay + b mod p.

Proof : If ax+b mod p = ay+b mod p then a(x−y) mod p = 0 and a ̸= 0 and (x−y) ̸= 0.
However, a and (x− y) cannot divide p since p is prime and a < p and (x− y) < p.

15.3.4.6 Some Lemmas

Lemma 15.3.8. If x ̸= y then for each (r, s) such that r ̸= s and 0 ≤ r, s ≤ p−1 there is ex-
actly one a, b such that ax+ b mod p = r and ay + b mod p = s .

Proof : Solve the two equations:

ax+ b = r mod p and ay + b = s mod p

We get a = r−s
x−y

mod p and b = r − ax mod p.

15.3.4.7 Understanding the hashing

Once we fix a and b, and we are given a value x, we compute the hash value of x in two
stages:
(A) Compute : r ← (ax+ b) mod p.
(B) Fold : r′ ← r mod m

Collision...

Given two values x and y they might collide because of either steps.

Lemma 15.3.9. # not equal pairs of Zp × Zp that are folded to the same number is p(p−
1)/m.

15.3.4.8 Folding numbers

Lemma 15.3.10. # not equal pairs of Zp×Zp that are folded to the same number is p(p−
1)/m.

Proof : Consider a pair (x, y) ∈ {0, 1, . . . , p− 1}2 s.t. x ̸= y. Fix x:
(A) There are ⌈p/m⌉ values of y that fold into x. That is

x mod m = y mod m.

(B) One of them is when x = y.
(C) =⇒ # of colliding pairs (⌈p/m⌉ − 1)p ≤ (p− 1)p/m

9

15.3.5 Proof of Claim

15.3.5.1 # of bad pairs is p(p− 1)/m

Proof : Let a, b ∈ Zp such that a ̸= 0 and ha,b(x) = ha,b(y).
(A) Let ax+ b mod p = r and ay + b mod = s mod p.
(B) Collision if and only if r = s mod m.
(C) (Folding error): Number of pairs (r, s) such that r ̸= s and 0 ≤ r, s ≤ p− 1 and r = s

mod m is p(p− 1)/m.
(D) From previous lemma for each bad pair (a, b) there is a unique pair (r, s) such that r = s

mod m. Hence total number of bad pairs is p(p− 1)/m.

Prob of x and y to collide: # bad pairs
#pairs

= p(p−1)/m
p(p−1)

= 1
m
.

15.3.5.2 Perfect Hashing

Question: Can we make look up time O(1) in worst case?

Yes for static dictionaries but then space usage is O(m) only in expectation.

15.3.5.3 Practical Issues

Hashing used typically for integers, vectors, strings etc.

• Universal hashing is defined for integers. To implement for other objects need to map
objects in some fashion to integers (via representation)

• Practical methods for various important cases such as vectors, strings are studied exten-
sively. See http://en.wikipedia.org/wiki/Universal_hashing for some pointers.

• Recent important paper briding theory and practice of hashing. “The power of simple
tabulation hashing” by Mikkel Thorup and Mihai Patrascu, 2011. See http://en.

wikipedia.org/wiki/Tabulation_hashing

15.3.5.4 Bloom Filters

Hashing:

(A) To insert x in dictionary store x in table in location h(x)
(B) To lookup y in dictionary check contents of location h(y)

Bloom Filter: tradeoff space for false positives

(A) Storing items in dictionary expensive in terms of memory, especially if items are un-
wieldy objects such a long strings, images, etc with non-uniform sizes.

(B) To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
(C) To lookup y if bit in location h(y) is 1 say yes, else no.

10

http://en.wikipedia.org/wiki/Universal_hashing
http://en.wikipedia.org/wiki/Tabulation_hashing
http://en.wikipedia.org/wiki/Tabulation_hashing

15.3.5.5 Bloom Filters

Bloom Filter: tradeoff space for false positives
(A) To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
(B) To lookup y if bit in location h(y) is 1 say yes, else no
(C) No false negatives but false positives possible due to collisions

Reducing false positives:
(A) Pick k hash functions h1, h2, . . . , hk independently
(B) To insert x for 1 ≤ i ≤ k set bit in location hi(x) in table i to 1
(C) To lookup y compute hi(y) for 1 ≤ i ≤ k and say yes only if each bit in the corresponding

location is 1, otherwise say no. If probability of false positive for one hash function is
α < 1 then with k independent hash function it is αk.

15.3.5.6 Take away points

(A) Hashing is a powerful and important technique for dictionaries. Many practical appli-
cations.

(B) Randomization fundamental to understanding hashing.
(C) Good and efficient hashing possible in theory and practice with proper definitions (uni-

versal, perfect, etc).
(D) Related ideas of creating a compact fingerprint/sketch for objects is very powerful in

theory and practice.
(E) Many applications in practice.

11

	Hash Tables
	Introduction
	Universal Hashing

