Chapter 14

Randomized Algorithms: QuickSort and QuickSelect

CS 473: Fundamental Algorithms, Spring 2013
March 8, 2013

14.1 Slick analysis of QuickSort

14.1.0.1 A Slick Analysis of QuickSort

Let $Q(A)$ be number of comparisons done on input array A :
(A) For $1 \leq i<j<n$ let $R_{i j}$ be the event that rank i element is compared with rank j element.
(B) $X_{i j}$ is the indicator random variable for $R_{i j}$. That is, $X_{i j}=1$ if rank i is compared with rank j element, otherwise 0.

$$
Q(A)=\sum_{1 \leq i<j \leq n} X_{i j}
$$

and hence by linearity of expectation,

$$
\mathbf{E}[Q(A)]=\sum_{1 \leq i<j \leq n} \mathbf{E}\left[X_{i j}\right]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right] .
$$

14.1.0.2 A Slick Analysis of QuickSort

$R_{i j}=\operatorname{rank} i$ element is compared with rank j element.
Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?

7	5	9	1	3	4	8	6

With ranks:

7	5	9	1	3	4	8	6
6	4	8	1	2	3	7	5

As such, probability of comparing 5 to 8 is $\operatorname{Pr}\left[R_{4,7}\right]$.
(A) If pivot too small (say 3 [rank 2]). Partition and call recursively:
\(\left.\begin{array}{|l|l|l|l|l|l|l|}\hline 7 \& 5 \& 9 \& 1 \& 3 \& 4 \& 8

\hline\end{array}\right]\)| 1 | 3 | 7 | 5 | 9 | 4 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Decision if to compare 5 to 8 is moved to subproblem.
(B) If pivot too large (say 9 [rank 8]):
\(\left.\begin{array}{|l|l|l|l|l|l|l|}\hline 7 \& 5 \& \overline{9} \& 1 \& 3 \& 4 \& 8

\hline\end{array}\right]\)| 7 | 5 | 1 | 3 | 4 | 8 | 6 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Decision if to compare 5 to 8 moved to subproblem.

164.41.8 1Question: SWhat is $\operatorname{Pr}\left[R_{i, j}\right]$ too 8 is $\operatorname{Pr}\left[R_{4,7}\right]$.
(A) If pivot is 5 (rank 4). Bingo!

(B) If pivot is 8 (rank 7). Bingo!

(C) If pivot in between the two numbers (say 6 [rank 5]):

| 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\Longrightarrow| 5 | 1 | 3 | 4 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5 and 8 will never be compared to each other.

14.1.2 A Slick Analysis of QuickSort

14.1.2.1 Question: What is $\operatorname{Pr}\left[R_{i, j}\right]$?

Conclusion:

$R_{i, j}$ happens if and only if:
i th or j th ranked element is the first pivot out of i th to j th ranked elements.

How to analyze this?

Thinking acrobatics!
(A) Assign every element in the array a random priority (say in $[0,1]$).
(B) Choose pivot to be the element with lowest priority in subproblem.
(C) Equivalent to picking pivot uniformly at random (as QuickSort do).

14.1.3 A Slick Analysis of QuickSort

14.1.3.1 Question: What is $\operatorname{Pr}\left[R_{i, j}\right]$?

How to analyze this?
Thinking acrobatics!
(A) Assign every element in the array a random priority (say in $[0,1]$).
(B) Choose pivot to be the element with lowest priority in subproblem.
$\Longrightarrow R_{i, j}$ happens if either i or j have lowest priority out of elements rank i to j, There are $k=j-i+1$ relevant elements.

$$
\operatorname{Pr}\left[R_{i, j}\right]=\frac{2}{k}=\frac{2}{j-i+1} .
$$

14.1.3.2 A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?
Lemma 14.1.1. $\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

Proof: Let $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}$ be elements of A in sorted order. Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: If pivot is chosen outside S then all of S either in left array or right array.
Observation: a_{i} and a_{j} separated when a pivot is chosen from S for the first time. Once separated no comparison.

Observation: a_{i} is compared with a_{j} if and only if either a_{i} or a_{j} is chosen as a pivot from S at separation...

14.1.4 A Slick Analysis of QuickSort

14.1.4.1 Continued...

Lemma 14.1.2. $\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

Proof: Let $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}$ be sort of A. Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: a_{i} is compared with a_{j} if and only if either a_{i} or a_{j} is chosen as a pivot from S at separation.

Observation: Given that pivot is chosen from S the probability that it is a_{i} or a_{j} is exactly $2 /|S|=2 /(j-i+1)$ since the pivot is chosen uniformly at random from the array.

14.1.5 A Slick Analysis of QuickSort

14.1.5.1 Continued...

$$
\mathbf{E}[Q(A)]=\sum_{1 \leq i<j \leq n} \mathbf{E}\left[X_{i j}\right]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right]
$$

Lemma 14.1.3. $\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

$$
\begin{aligned}
\mathbf{E}[Q(A)] & =\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right]=\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& \leq 2 \sum_{i=1}^{n-1}\left(H_{n-i+1}-1\right) \leq 2 \sum_{1 \leq i<n} H_{n} \\
& \leq 2 n H_{n}=O(n \log n)
\end{aligned}
$$

14.2 QuickSelect with high probability

14.2.1 Yet another analysis of QuickSort

14.2.1.1 You should never trust a man who has only one way to spell a word

Consider element e in the array.
Consider the subproblems it participates in during QuickSort execution:
$S_{1}, S_{2}, \ldots, S_{k}$.

Definition

e is lucky in the j th iteration if $\left|S_{j}\right| \leq(3 / 4)\left|S_{j-1}\right|$.

Key observation

The event e is lucky in j th iteration
is independent of
the event that e is lucky in k th iteration,
(If $j \neq k$)
$X_{j}=1$ iff e is lucky in the j th iteration.

14.2.2 Yet another analysis of QuickSort

14.2.2.1 Continued...

Claim

$\operatorname{Pr}\left[X_{j}=1\right]=1 / 2$.
Proof:
(A) X_{j} determined by j recursive subproblem.
(B) Subproblem has $n_{j-1}=\left|X_{j-1}\right|$ elements.
(C) If j th pivot rank $\in\left[n_{j-1} / 4,(3 / 4) n_{j-1}\right]$, then e lucky in j th iter.
(D) Prob. e is lucky $\geq\left|\left[n_{j-1} / 4,(3 / 4) n_{j-1}\right]\right| / n_{j-1}=1 / 2$.

Observation

If $X_{1}+X_{2}+\ldots X_{k}=\left\lceil\log _{4 / 3} n\right\rceil$ then e subproblem is of size one. Done!

14.2.3 Yet another analysis of QuickSort

14.2.3.1 Continued...

Observation

Probability e participates in $\geq k=40\left\lceil\log _{4 / 3} n\right\rceil$ subproblems. Is equal to

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1}+X_{2}+\ldots+X_{k} \leq\left\lceil\log _{4 / 3} n\right\rceil\right] \\
& \quad \leq \operatorname{Pr}\left[X_{1}+X_{2}+\ldots+X_{k} \leq k / 4\right] \\
& \quad \leq 2 \cdot 0.68^{k / 4} \leq 1 / n^{5} .
\end{aligned}
$$

Conclusion

QuickSort takes $O(n \log n)$ time with high probability.

14.3 Randomized Selection

14.3.0.2 Randomized Quick Selection

Input Unsorted array A of n integers
Goal Find the j th smallest number in A (rank j number)
Randomized Quick Selection
(A) Pick a pivot element uniformly at random from the array
(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(C) Return pivot if rank of pivot is j.
(D) Otherwise recurse on one of the arrays depending on j and their sizes.

14.3.0.3 Algorithm for Randomized Selection

Assume for simplicity that A has distinct elements.

```
QuickSelect(A, j):
    Pick pivot x uniformly at random fr
    Partition }A\mathrm{ into }\mp@subsup{A}{\mathrm{ less }}{},x\mathrm{ , and }\mp@subsup{A}{\mathrm{ grea}}{
    if ( }|\mp@subsup{A}{\mathrm{ less }}{}|=j-1)\mathrm{ then
        return x
    if ( }|\mp@subsup{A}{\mathrm{ 1ess }}{}|\geqj)\mathrm{ then
        return QuickSelect( }\mp@subsup{A}{\mathrm{ less }}{},j
    else
        return QuickSelect ( }\mp@subsup{A}{\mathrm{ greater }}{},j
```


14.3.0.4 QuickSelect analysis

(A) $S_{1}, S_{2}, \ldots, S_{k}$ be the subproblems considered by the algorithm.

Here $\left|S_{1}\right|=n$.
(B) S_{i} would be successful if $\left|S_{i}\right| \leq(3 / 4)\left|S_{i-1}\right|$
(C) $Y_{1}=$ number of recursive calls till first successful iteration.

Clearly, total work till this happens is $O\left(Y_{1} n\right)$.
(D) $n_{i}=$ size of the subproblem immediately after the $(i-1)$ th successful iteration.
(E) $Y_{i}=$ number of recursive calls after the $(i-1)$ th successful call, till the i th successful iteration.
(F) Running time is $O\left(\sum_{i} n_{i} Y_{i}\right)$.

14.3.0.5 QuickSelect analysis

Example

$S_{i}=$ subarray used in i th recursive call
$\left|S_{i}\right|=$ size of this subarray
Red indicates successful iteration.

Inst'	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}
$\left\|S_{i}\right\|$	100	70	60	50	40	30	25	5	2
Succ'	$Y_{1}=2$	$Y_{2}=4$						$Y_{3}=2$	$Y_{4}=1$
$n_{i}=$	$n_{1}=100$	$n_{2}=60$						$n_{3}=25$	$n_{4}=2$

(A) All the subproblems after $(i-1)$ th successful iteration till i th successful iteration have size $\leq n_{i}$.
(B) Total work: $O\left(\sum_{i} n_{i} Y_{i}\right)$.

14.3.0.6 QuickSelect analysis

Total work: $O\left(\sum_{i} n_{i} Y_{i}\right)$.
We have:
(A) $n_{i} \leq(3 / 4) n_{i-1} \leq(3 / 4)^{i-1} n$.
(B) Y_{i} is a random variable with geometric distribution Probability of $Y_{i}=k$ is $1 / 2^{i}$.
(C) $\mathbf{E}\left[Y_{i}\right]=2$.

As such, expected work is proportional to

$$
\begin{aligned}
& \mathbf{E}\left[\sum_{i} n_{i} Y_{i}\right]=\sum_{i} \mathbf{E}\left[n_{i} Y_{i}\right] \leq \sum_{i} \mathbf{E}\left[(3 / 4)^{i-1} n Y_{i}\right] \\
& \quad=n \sum_{i}(3 / 4)^{i-1} \mathbf{E}\left[Y_{i}\right]=n \sum_{i=1}(3 / 4)^{i-1} 2 \leq 8 n .
\end{aligned}
$$

14.3.0.7 QuickSelect analysis

Theorem 14.3.1. The expected running time of QuickSelect is $O(n)$.

14.3.1 QuickSelect analysis

14.3.1.1 Analysis via Recurrence

(A) Given array A of size n let $Q(A)$ be number of comparisons of randomized selection on A for selecting rank j element.
(B) Note that $Q(A)$ is a random variable
(C) Let $A_{\text {less }}^{i}$ and $A_{\text {greater }}^{i}$ be the left and right arrays obtained if pivot is rank i element of A.
(D) Algorithm recurses on $A_{\text {less }}^{i}$ if $j<i$ and recurses on $A_{\text {greater }}^{i}$ if $j>i$ and terminates if $j=i$.

$$
\begin{aligned}
Q(A)=n & +\sum_{i=1}^{j-1} \operatorname{Pr}[\text { pivot has rank } i] Q\left(A_{\text {greater }}^{i}\right) \\
& +\sum_{i=j+1}^{n} \operatorname{Pr}[\text { pivot has rank } i] Q\left(A_{\text {less }}^{i}\right)
\end{aligned}
$$

14.3.1.2 Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where $T(n)$ is the worst-case expected time.

$$
T(n) \leq n+\frac{1}{n}\left(\sum_{i=1}^{j-1} T(n-i)+\sum_{i=j}^{n} T(i-1)\right) .
$$

Theorem 14.3.2. $T(n)=O(n)$.

Proof: (Guess and) Verify by induction (see next slide).

14.3.1.3 Analyzing the recurrence

Theorem 14.3.3. $T(n)=O(n)$.

Prove by induction that $T(n) \leq \alpha n$ for some constant $\alpha \geq 1$ to be fixed later.
Base case: $n=1$, we have $T(1)=0$ since no comparisons needed and hence $T(1) \leq \alpha$.
Induction step: Assume $T(k) \leq \alpha k$ for $1 \leq k<n$ and prove it for $T(n)$. We have by the recurrence:

$$
\begin{aligned}
T(n) & \leq n+\frac{1}{n}\left(\sum_{i=1}^{j-1} T(n-i)+\sum_{i=j^{n}} T(i-1)\right) \\
& \leq n+\frac{\alpha}{n}\left(\sum_{i=1}^{j-1}(n-i)+\sum_{i=j}^{n}(i-1)\right) \quad \text { by applying induction }
\end{aligned}
$$

14.3.1.4 Analyzing the recurrence

$$
\begin{aligned}
T(n) & \leq n+\frac{\alpha}{n}\left(\sum_{i=1}^{j-1}(n-i)+\sum_{i=j}^{n}(i-1)\right) \\
& \leq n+\frac{\alpha}{n}((j-1)(2 n-j) / 2+(n-j+1)(n+j-2) / 2) \\
& \leq n+\frac{\alpha}{2 n}\left(n^{2}+2 n j-2 j^{2}-3 n+4 j-2\right)
\end{aligned}
$$

$$
\text { above expression maximized when } j=(n+1) / 2 \text { : calculus }
$$

$$
\leq n+\frac{\alpha}{2 n}\left(3 n^{2} / 2-n\right) \quad \text { substituting }(n+1) / 2 \text { for } j
$$

$$
\leq n+3 \alpha n / 4
$$

$$
\leq \alpha n \text { for any constant } \alpha \geq 4
$$

14.3.1.5 Comments on analyzing the recurrence

(A) Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug $j=n / 2$ to simplify without calculus
(B) Analyzing recurrences comes with practice and after a while one can see things more intuitively John Von Neumann:
Young man, in mathematics you don't understand things. You just get used to them.

