Chapter 14

Randomized Algorithms: QuickSort and QuickSelect

CS 473: Fundamental Algorithms, Spring 2013 March 8, 2013

14.1 Slick analysis of QuickSort

14.1.0.1 A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:

- (A) For $1 \le i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.
- (B) X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij} = 1$ if rank i is compared with rank j element, otherwise 0.

$$Q(A) = \sum_{1 \le i < j \le n} X_{ij}$$

and hence by linearity of expectation,

$$\mathbf{E}[Q(A)] = \sum_{1 \le i < j \le n} \mathbf{E}[X_{ij}] = \sum_{1 \le i < j \le n} \mathbf{Pr}[R_{ij}].$$

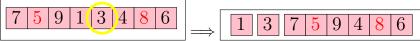
14.1.0.2 A Slick Analysis of QuickSort

 $R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $Pr[R_{ij}]$?

As such, probability of comparing 5 to 8 is $Pr[R_{4,7}]$.

(A) If pivot too small (say 3 [rank 2]). Partition and call recursively:



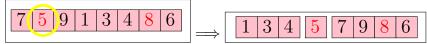
Decision if to compare 5 to 8 is moved to subproblem.

(B) If pivot too large (say 9 [rank 8]):

Decision if to compare 5 to 8 moved to subproblem.

Analysis of QuickSort
As such, probability of comparing 5

14.141.1 1 Question: 5What is $Pr[R_{i,j}]$ to 8 is $Pr[R_{4,7}]$. (A) If pivot is 5 (rank 4). Bingo!



(B) If pivot is 8 (rank 7). Bingo!

(C) If pivot in between the two numbers (say 6 [rank 5]):

5 and 8 will never be compared to each other.

14.1.2 A Slick Analysis of QuickSort

14.1.2.1 Question: What is $Pr[R_{i,j}]$?

Conclusion:

 $R_{i,j}$ happens if and only if:

ith or jth ranked element is the first pivot out of ith to jth ranked elements.

How to analyze this?

Thinking acrobatics!

- (A) Assign every element in the array a random priority (say in [0, 1]).
- (B) Choose pivot to be the element with lowest priority in subproblem.
- (C) Equivalent to picking pivot uniformly at random (as QuickSort do).

14.1.3 A Slick Analysis of QuickSort

14.1.3.1 Question: What is $Pr[R_{i,j}]$?

How to analyze this?

Thinking acrobatics!

- (A) Assign every element in the array a random priority (say in [0,1]).
- (B) Choose pivot to be the element with lowest priority in subproblem.

 $\implies R_{i,j}$ happens if either i or j have lowest priority out of elements rank i to j, There are k = j - i + 1 relevant elements.

$$\mathbf{Pr}\Big[R_{i,j}\Big] = \frac{2}{k} = \frac{2}{j-i+1}.$$

14.1.3.2 A Slick Analysis of QuickSort

Question: What is $Pr[R_{ij}]$?

Lemma 14.1.1. $\Pr[R_{ij}] = \frac{2}{j-i+1}$.

Proof: Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: If pivot is chosen outside S then all of S either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...

14.1.4 A Slick Analysis of QuickSort

14.1.4.1 Continued...

Lemma 14.1.2.
$$\Pr[R_{ij}] = \frac{2}{j-i+1}$$
.

Proof: Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be sort of A. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation.

Observation: Given that pivot is chosen from S the probability that it is a_i or a_j is exactly 2/|S| = 2/(j-i+1) since the pivot is chosen uniformly at random from the array.

14.1.5 A Slick Analysis of QuickSort

14.1.5.1 Continued...

$$\mathbf{E}[Q(A)] = \sum_{1 \le i < j \le n} \mathbf{E}[X_{ij}] = \sum_{1 \le i < j \le n} \mathbf{Pr}[R_{ij}].$$

Lemma 14.1.3. $Pr[R_{ij}] = \frac{2}{j-i+1}$.

$$\mathbf{E}[Q(A)] = \sum_{1 \le i < j \le n} \mathbf{Pr}[R_{ij}] = \sum_{1 \le i < j \le n} \frac{2}{j - i + 1}$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1}$$

$$\le 2 \sum_{i=1}^{n-1} (H_{n-i+1} - 1) \le 2 \sum_{1 \le i < n} H_n$$

$$< 2nH_n = O(n \log n)$$

$$=2\sum_{i=1}^{n-1}\sum_{i< j}^{n}\frac{1}{j-i+1}$$

14.2 QuickSelect with high probability

14.2.1 Yet another analysis of QuickSort

14.2.1.1 You should never trust a man who has only one way to spell a word

Consider element e in the array.

Consider the subproblems it participates in during **QuickSort** execution: S_1, S_2, \ldots, S_k .

Definition

e is lucky in the jth iteration if $|S_j| \leq (3/4) |S_{j-1}|$.

Key observation

The event e is lucky in jth iteration is independent of the event that e is lucky in kth iteration, (If $j \neq k$) $X_j = 1$ iff e is lucky in the jth iteration.

14.2.2 Yet another analysis of QuickSort

14.2.2.1 Continued...

Claim

$$\Pr[X_j = 1] = 1/2.$$

Proof:

- (A) X_j determined by j recursive subproblem.
- (B) Subproblem has $n_{i-1} = |X_{i-1}|$ elements.
- (C) If jth pivot rank $\in [n_{j-1}/4, (3/4)n_{j-1}]$, then e lucky in jth iter.
- (D) Prob. e is lucky $\geq |[n_{j-1}/4, (3/4)n_{j-1}]|/n_{j-1} = 1/2$.

Observation

If $X_1 + X_2 + \dots + X_k = \lceil \log_{4/3} n \rceil$ then e subproblem is of size one. Done!

14.2.3 Yet another analysis of QuickSort

14.2.3.1 Continued...

Observation

Probability e participates in $\geq k = 40 \lceil \log_{4/3} n \rceil$ subproblems. Is equal to

$$\mathbf{Pr}\Big[X_1 + X_2 + \dots + X_k \le \lceil \log_{4/3} n \rceil\Big]$$

$$\le \mathbf{Pr}[X_1 + X_2 + \dots + X_k \le k/4]$$

$$\le 2 \cdot 0.68^{k/4} \le 1/n^5.$$

Conclusion

QuickSort takes $O(n \log n)$ time with high probability.

14.3 Randomized Selection

14.3.0.2 Randomized Quick Selection

Input Unsorted array A of n integers

Goal Find the jth smallest number in A (rank j number)

Randomized Quick Selection

- (A) Pick a pivot element uniformly at random from the array
- (B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- (C) Return pivot if rank of pivot is j.
- (D) Otherwise recurse on one of the arrays depending on j and their sizes.

14.3.0.3 Algorithm for Randomized Selection

Assume for simplicity that A has distinct elements.

```
\begin{aligned} & \textbf{QuickSelect}(A,\ j): \\ & \text{Pick pivot } x \text{ uniformly at random fr} \\ & \text{Partition } A \text{ into } A_{\text{less}},\ x, \text{ and } A_{\text{great}} \\ & \textbf{if } (|A_{\text{less}}| = j-1) \text{ then} \\ & \textbf{return } x \\ & \textbf{if } (|A_{\text{less}}| \geq j) \text{ then} \\ & \textbf{return } \textbf{QuickSelect}(A_{\text{less}},\ j) \\ & \textbf{else} \\ & \textbf{return } \textbf{QuickSelect}(A_{\text{greater}},\ j-1) \end{aligned}
```

14.3.0.4 QuickSelect analysis

- (A) S_1, S_2, \ldots, S_k be the subproblems considered by the algorithm. Here $|S_1| = n$.
- (B) S_i would be **successful** if $|S_i| \leq (3/4) |S_{i-1}|$
- (C) Y_1 = number of recursive calls till first successful iteration. Clearly, total work till this happens is $O(Y_1n)$.
- (D) n_i = size of the subproblem immediately after the (i-1)th successful iteration.
- (E) $Y_i = \text{number of recursive calls after the } (i-1)\text{th successful call, till the } i\text{th successful iteration.}$
- (F) Running time is $O(\sum_i n_i Y_i)$.

14.3.0.5 QuickSelect analysis

Example

 $S_i = \text{subarray used in } i \text{th recursive call}$

 $|S_i| = \text{size of this subarray}$

Red indicates successful iteration.

successful fieration.										
	Inst'	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9
	$ S_i $	100	70	60	50	40	30	25	5	2
	Succ'	$Y_1 = 2$		$Y_2 = 4$				$Y_3 = 2$		$Y_4 = 1$
	$n_i =$	$n_1 = 100$		$n_2 = 60$				$n_3 = 25$		$n_4 = 2$

- (A) All the subproblems after (i-1)th successful iteration till *i*th successful iteration have size $\leq n_i$.
- (B) Total work: $O(\sum_i n_i Y_i)$.

14.3.0.6 QuickSelect analysis

Total work: $O(\sum_i n_i Y_i)$.

We have:

- (A) $n_i \le (3/4)n_{i-1} \le (3/4)^{i-1}n$.
- (B) Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- (C) $\mathbf{E}[Y_i] = 2$.

As such, expected work is proportional to

$$\mathbf{E}\left[\sum_{i} n_{i} Y_{i}\right] = \sum_{i} \mathbf{E}\left[n_{i} Y_{i}\right] \leq \sum_{i} \mathbf{E}\left[(3/4)^{i-1} n Y_{i}\right]$$
$$= n \sum_{i} (3/4)^{i-1} \mathbf{E}\left[Y_{i}\right] = n \sum_{i=1} (3/4)^{i-1} 2 \leq 8n.$$

14.3.0.7 QuickSelect analysis

Theorem 14.3.1. The expected running time of QuickSelect is O(n).

QuickSelect analysis 14.3.1

14.3.1.1Analysis via Recurrence

- (A) Given array A of size n let Q(A) be number of comparisons of randomized selection on A for selecting rank j element.
- (B) Note that Q(A) is a random variable
- (C) Let A_{less}^i and A_{greater}^i be the left and right arrays obtained if pivot is rank i element of A.

 (D) Algorithm recurses on A_{less}^i if j < i and recurses on A_{greater}^i if j > i and terminates if j = i.

$$Q(A) = n + \sum_{i=1}^{j-1} \mathbf{Pr}[\text{pivot has rank } i] Q(A_{\text{greater}}^i)$$
$$+ \sum_{i=j+1}^{n} \mathbf{Pr}[\text{pivot has rank } i] Q(A_{\text{less}}^i)$$

14.3.1.2 Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where T(n) is the worst-case expected time.

$$T(n) \le n + \frac{1}{n} (\sum_{i=1}^{j-1} T(n-i) + \sum_{i=j}^{n} T(i-1)).$$

Theorem 14.3.2. T(n) = O(n).

Proof: (Guess and) Verify by induction (see next slide).

14.3.1.3 Analyzing the recurrence

Theorem 14.3.3. T(n) = O(n).

Prove by induction that $T(n) \leq \alpha n$ for some constant $\alpha \geq 1$ to be fixed later.

Base case: n=1, we have T(1)=0 since no comparisons needed and hence $T(1)\leq \alpha$.

Induction step: Assume $T(k) \le \alpha k$ for $1 \le k < n$ and prove it for T(n). We have by the recurrence:

$$T(n) \leq n + \frac{1}{n} \left(\sum_{i=1}^{j-1} T(n-i) + \sum_{i=j}^{n} T(i-1) \right)$$

$$\leq n + \frac{\alpha}{n} \left(\sum_{i=1}^{j-1} (n-i) + \sum_{i=j}^{n} (i-1) \right) \text{ by applying induction}$$

14.3.1.4 Analyzing the recurrence

$$T(n) \leq n + \frac{\alpha}{n} (\sum_{i=1}^{j-1} (n-i) + \sum_{i=j}^{n} (i-1))$$

$$\leq n + \frac{\alpha}{n} ((j-1)(2n-j)/2 + (n-j+1)(n+j-2)/2)$$

$$\leq n + \frac{\alpha}{2n} (n^2 + 2nj - 2j^2 - 3n + 4j - 2)$$
above expression maximized when $j = (n+1)/2$: calculus
$$\leq n + \frac{\alpha}{2n} (3n^2/2 - n) \quad \text{substituting } (n+1)/2 \text{ for } j$$

$$\leq n + 3\alpha n/4$$

$$\leq \alpha n \quad \text{for any constant } \alpha \geq 4$$

14.3.1.5 Comments on analyzing the recurrence

- (A) Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug j = n/2 to simplify without calculus
- (B) Analyzing recurrences comes with practice and after a while one can see things more intuitively **John Von Neumann**:

Young man, in mathematics you don't understand things. You just get used to them.