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Randomized Algorithms:
QuickSort and QuickSelect
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Part I
.

......

Slick analysis of QuickSort
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A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:
...1 For 1 ≤ i < j < n let Rij be the event that rank i element is
compared with rank j element.

...2 Xij is the indicator random variable for Rij. That is, Xij = 1 if
rank i is compared with rank j element, otherwise 0.

Q(A) =
∑

1≤i<j≤n

Xij

and hence by linearity of expectation,

E
[
Q(A)

]
=

∑
1≤i<j≤n

E
[
Xij

]
=

∑
1≤i<j≤n

Pr
[
Rij

]
.
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A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij]?

7 5 9 1 3 4 8 6
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A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of comparing 5 to 8 is Pr[R4,7].
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A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

...1 If pivot too small (say 3 [rank 2]). Partition and call recursively:

7 5 9 1 3 4 8 6
=⇒ 7 5 93 4 8 61

Decision if to compare 5 to 8 is moved to subproblem.
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Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

...1 If pivot too small (say 3 [rank 2]). Partition and call recursively:

7 5 9 1 3 4 8 6
=⇒ 7 5 93 4 8 61

Decision if to compare 5 to 8 is moved to subproblem.
...2 If pivot too large (say 9 [rank 8]):

7 5 9 1 3 4 8 67 5 9 1 3 4 8 6
=⇒

7 5 1 3 4 8 6 9

Decision if to compare 5 to 8 moved to subproblem.
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A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of com-
paring 5 to 8 is Pr[R4,7].

...1 If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6
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A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of com-
paring 5 to 8 is Pr[R4,7].

...1 If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6

...2 If pivot is 8 (rank 7). Bingo!

7 5 9 1 3 4 8 6
=⇒ 7 5 91 3 4 6 8

...3 If pivot in between the two numbers (say 6 [rank 5]):

7 5 9 1 3 4 8 6
=⇒ 75 91 3 4 6 8

5 and 8 will never be compared to each other.

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 24



A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

.
Conclusion:
..

......

Ri,j happens if and only if:
ith or jth ranked element is the first pivot out of

ith to jth ranked elements.

.
How to analyze this?
..

......

Thinking acrobatics!
...1 Assign every element in the array a random priority (say in
[0, 1]).

...2 Choose pivot to be the element with lowest priority in
subproblem.

...3 Equivalent to picking pivot uniformly at random
(as QuickSort do).
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A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

.
How to analyze this?
..

......

Thinking acrobatics!
...1 Assign every element in the array a random priority (say in
[0, 1]).

...2 Choose pivot to be the element with lowest priority in
subproblem.

=⇒ Ri,j happens if either i or j have lowest priority out of elements
rank i to j,
There are k = j − i + 1 relevant elements.

Pr
[
Ri,j

]
=

2

k
=

2

j − i + 1
.
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A Slick Analysis of QuickSort

Question: What is Pr[Rij]?
.
Lemma
..

......
Pr

[
Rij

]
= 2

j−i+1
.

.
Proof.
..

......

Let a1, . . . , ai, . . . , aj, . . . , an be elements of A in sorted order. Let
S = {ai, ai+1, . . . , aj}
Observation: If pivot is chosen outside S then all of S either in left
array or right array.
Observation: ai and aj separated when a pivot is chosen from S for
the first time. Once separated no comparison.
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation...
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A Slick Analysis of QuickSort
Continued...

.
Lemma
..

......
Pr

[
Rij

]
= 2

j−i+1
.

.
Proof.
..

......

Let a1, . . . , ai, . . . , aj, . . . , an be sort of A. Let
S = {ai, ai+1, . . . , aj}
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation.
Observation: Given that pivot is chosen from S the probability that
it is ai or aj is exactly 2/|S| = 2/(j − i + 1) since the pivot is
chosen uniformly at random from the array.
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A Slick Analysis of QuickSort
Continued...

E
[
Q(A)

]
=

∑
1≤i<j≤n

E[Xij] =
∑

1≤i<j≤n

Pr[Rij] .

.
Lemma
..

......
Pr[Rij] =

2
j−i+1

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

2

j − i + 1
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A Slick Analysis of QuickSort
Continued...

.
Lemma
..

......
Pr[Rij] =

2
j−i+1

.

E
[
Q(A)

]
= 2

n−1∑
i=1

n∑
i<j

1

j − i + 1
≤ 2

n−1∑
i=1

n−i+1∑
∆=2

1

∆
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A Slick Analysis of QuickSort
Continued...

.
Lemma
..

......
Pr[Rij] =

2
j−i+1

.

E
[
Q(A)

]
= 2

n−1∑
i=1

n∑
i<j

1

j − i + 1
≤ 2

n−1∑
i=1

n−i+1∑
∆=2

1

∆

≤ 2
n−1∑
i=1

(Hn−i+1 − 1) ≤ 2
∑

1≤i<n
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A Slick Analysis of QuickSort
Continued...

.
Lemma
..

......
Pr[Rij] =

2
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.

E
[
Q(A)

]
= 2
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i<j

1

j − i + 1
≤ 2

n−1∑
i=1

n−i+1∑
∆=2

1

∆

≤ 2
n−1∑
i=1

(Hn−i+1 − 1) ≤ 2
∑

1≤i<n

Hn

≤ 2nHn = O(n log n)
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Yet another analysis of QuickSort
You should never trust a man who has only one way to spell a word

Consider element e in the array.
Consider the subproblems it participates in during QuickSort
execution:
S1, S2, . . . , Sk.
.
Definition
..
......e is lucky in the jth iteration if |Sj| ≤ (3/4) |Sj−1|.
.
Key observation
..

......

The event e is lucky in jth iteration
is independent of
the event that e is lucky in kth iteration,
(If j ̸= k)

Xj = 1 iff e is lucky in the jth iteration.
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Yet another analysis of QuickSort
Continued...

.
Claim
..
......Pr[Xj = 1] = 1/2.

.
Proof.
..

......

...1 Xj determined by j recursive subproblem.

...2 Subproblem has nj−1 = |Xj−1| elements.

...3 If jth pivot rank ∈ [nj−1/4, (3/4)nj−1], then e lucky in jth iter.

...4 Prob. e is lucky ≥ |[nj−1/4, (3/4)nj−1]| /nj−1 = 1/2.

.
Observation
..

......
If X1 + X2 + . . .Xk = ⌈log4/3 n⌉ then e subproblem is of size one.
Done!
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Yet another analysis of QuickSort
Continued...

.
Observation
..

......

Probability e participates in ≥ k = 40⌈log4/3 n⌉ subproblems. Is
equal to

Pr
[
X1 + X2 + . . . + Xk ≤ ⌈log4/3 n⌉

]
≤ Pr[X1 + X2 + . . . + Xk ≤ k/4]

≤ 2 · 0.68k/4 ≤ 1/n5.

.
Conclusion
..
......QuickSort takes O(n log n) time with high probability.
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Because...

.
Theorem
..

......

Let Xn be the number heads when flipping a coin indepdently n
times. Then

Pr

[
Xn ≤

n

4

]
≤ 2 · 0.68n/4 and Pr

[
Xn ≥

3n

4

]
≤ 2 · 0.68n/4
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Randomized Quick Selection

Input Unsorted array A of n integers

Goal Find the jth smallest number in A (rank j number)

.
Randomized Quick Selection
..

......

...1 Pick a pivot element uniformly at random from the array

...2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

...3 Return pivot if rank of pivot is j.

...4 Otherwise recurse on one of the arrays depending on j and their
sizes.
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Algorithm for Randomized Selection

Assume for simplicity that A has distinct elements.

QuickSelect(A, j):
Pick pivot x uniformly at random from A
Partition A into Aless, x, and Agreater using x as pivot

if (|Aless| = j − 1) then
return x

if (|Aless| ≥ j) then
return QuickSelect(Aless, j)

else
return QuickSelect(Agreater, j − |Aless| − 1)
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QuickSelect analysis

...1 S1, S2, . . . , Sk be the subproblems considered by the algorithm.
Here |S1| = n.

...2 Si would be successful if |Si| ≤ (3/4) |Si−1|

...3 Y1 = number of recursive calls till first successful iteration.
Clearly, total work till this happens is O(Y1n).

...4 ni = size of the subproblem immediately after the (i − 1)th
successful iteration.

...5 Yi = number of recursive calls after the (i − 1)th successful
call, till the ith successful iteration.

...6 Running time is O(
∑

i niYi).
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QuickSelect analysis

.
Example
..

......

Si = subarray used in ith recursive call
|Si| = size of this subarray
Red indicates successful iteration.

Inst’ S1 S2 S3 S4 S5 S6 S7 S8 S9

|Si| 100 70 60 50 40 30 25 5 2
Succ’ Y1 = 2 Y2 = 4 Y3 = 2 Y4 = 1
ni = n1 = 100 n2 = 60 n3 = 25 n4 = 2

...1 All the subproblems after (i − 1)th successful iteration till ith
successful iteration have size ≤ ni.

...2 Total work: O(
∑

i niYi).
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QuickSelect analysis

Total work: O(
∑

i niYi).
We have:

...1 ni ≤ (3/4)ni−1 ≤ (3/4)i−1n.

...2 Yi is a random variable with geometric distribution
Probability of Yi = k is 1/2i.

...3 E[Yi] = 2.

As such, expected work is proportional to

E

[∑
i

niYi

]
=

∑
i

E
[
niYi

]
≤

∑
i

E
[
(3/4)i−1nYi

]
= n

∑
i

(3/4)i−1 E
[
Yi

]
= n

∑
i=1

(3/4)i−12 ≤ 8n.
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QuickSelect analysis

.
Theorem
..
......The expected running time of QuickSelect is O(n).
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QuickSelect analysis
Analysis via Recurrence

...1 Given array A of size n let Q(A) be number of comparisons of
randomized selection on A for selecting rank j element.

...2 Note that Q(A) is a random variable

...3 Let Ai
less and Ai

greater be the left and right arrays obtained if
pivot is rank i element of A.

...4 Algorithm recurses on Ai
less if j < i and recurses on Ai

greater if
j > i and terminates if j = i.

Q(A) = n +

j−1∑
i=1

Pr[pivot has rank i] Q(Ai
greater)

+
n∑

i=j+1

Pr[pivot has rank i] Q(Ai
less)
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Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where T(n) is
the worst-case expected time.

T(n) ≤ n +
1

n
(

j−1∑
i=1

T(n − i) +
n∑
i=j

T(i − 1)).

.
Theorem
..
......T(n) = O(n).

.
Proof.
..
......(Guess and) Verify by induction (see next slide).
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Analyzing the recurrence

.
Theorem
..
......T(n) = O(n).

Prove by induction that T(n) ≤ αn for some constant α ≥ 1 to be
fixed later.
Base case: n = 1, we have T(1) = 0 since no comparisons needed
and hence T(1) ≤ α.
Induction step: Assume T(k) ≤ αk for 1 ≤ k < n and prove it
for T(n). We have by the recurrence:

T(n) ≤ n +
1

n
(

j−1∑
i=1

T(n − i) +
∑
i=jn

T(i − 1))

≤ n +
α

n
(

j−1∑
i=1

(n − i) +
n∑
i=j

(i − 1)) by applying induction
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Analyzing the recurrence

T(n) ≤ n +
α

n
(

j−1∑
i=1

(n − i) +
n∑
i=j

(i − 1))

≤ n +
α

n
((j − 1)(2n − j)/2 + (n − j + 1)(n + j − 2)/2)

≤ n +
α

2n
(n2 + 2nj − 2j2 − 3n + 4j − 2)

above expression maximized when j = (n + 1)/2: calculus

≤ n +
α

2n
(3n2/2 − n) substituting (n + 1)/2 for j

≤ n + 3αn/4

≤ αn for any constant α ≥ 4
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Comments on analyzing the recurrence

...1 Algebra looks messy but intuition suggest that the median is the
hardest case and hence can plug j = n/2 to simplify without
calculus

...2 Analyzing recurrences comes with practice and after a while one
can see things more intuitively

John Von Neumann:
Young man, in mathematics you don’t understand things. You just
get used to them.
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