Randomized Algorithms: QuickSort and QuickSelect

Lecture 14 March 8, 2013

Part I

Slick analysis of QuickSort

Let **Q(A)** be number of comparisons done on input array **A**:

- $\bullet \ \, \text{For} \,\, 1 \leq i < j < n \,\, \text{let} \,\, R_{ij} \,\, \text{be the event that rank} \,\, i \,\, \text{element is} \\ \text{compared with rank} \,\, j \,\, \text{element}.$
- ② X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij}=1$ if rank i is compared with rank j element, otherwise 0.

$$Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$$

and hence by linearity of expectation

$$\label{eq:epsilon} E\!\left[Q(A)\right] = \sum_{1 \leq i < j \leq n} E\!\left[X_{ij}\right] = \sum_{1 \leq i < j \leq n} Pr\!\left[R_{ij}\right].$$

Let Q(A) be number of comparisons done on input array A:

- ① For $1 \le i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.
- ② X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij}=1$ if rank i is compared with rank j element, otherwise 0.

$$Q(A) = \sum_{1 \le i < j \le n} X_{ij}$$

and hence by linearity of expectation,

$$\label{eq:energy_energy} E\Big[Q(A)\Big] = \sum_{1 \leq i < j \leq n} E\Big[X_{ij}\Big] = \sum_{1 \leq i < j \leq n} Pr\Big[R_{ij}\Big]\,.$$

 $\mathbf{R}_{ij} = \text{rank } \mathbf{i} \text{ element is compared with rank } \mathbf{j} \text{ element.}$

Question: What is Pr[R_{ij}]?

7 5 9 1 3 4 8 6

 $\mathbf{R}_{ij} = \text{rank } \mathbf{i} \text{ element is compared with rank } \mathbf{j} \text{ element.}$

Question: What is Pr[R_{ij}]?

7 | 5 | 9 | 1 | 3 | 4 | 8 | 6

With ranks: 6 4 8 1 2 3 7 5

 $\mathbf{R}_{ij} = \text{rank } \mathbf{i} \text{ element is compared with rank } \mathbf{j} \text{ element.}$

Question: What is Pr[R_{ij}]?

With ranks: 6 4 8 1 2 3 7 5

As such, probability of comparing $\mathbf{5}$ to $\mathbf{8}$ is $Pr[\mathbf{R}_{4,7}]$.

 $\mathbf{R}_{ij} = \mathsf{rank}~i$ element is compared with rank j element.

Question: What is $Pr[R_{ij}]$?

With ranks: 6 4 8 1 2 3 7 5

If pivot too small (say 3 [rank 2]). Partition and call recursively:

4

Decision if to compare **5** to **8** is moved to subproblem.

 $\mathbf{R}_{ij} = \mathsf{rank}~i$ element is compared with rank j element.

Question: What is $Pr[R_{ij}]$?

With ranks: 6 4 8 1 2 3 7 5

If pivot too small (say 3 [rank 2]). Partition and call recursively:

Decision if to compare **5** to **8** is moved to subproblem.

② If pivot too large (say 9 [rank 8]):

4

Decision if to compare 5 to 8 moved to subproblem.

Question: What is $Pr[R_{i,j}]$?

As such, probability of comparing 5 to 8 is $Pr[R_{4,7}]$.

1 If pivot is 5 (rank 4). Bingo!

Question: What is $Pr[R_{i,j}]$?

As such, probability of comparing **5** to **8** is $Pr[R_{4,7}]$.

If pivot is 5 (rank 4). Bingo!

If pivot is 8 (rank 7). Bingo!

Question: What is $Pr[R_{i,j}]$?

As such, probability of comparing **5** to **8** is $Pr[R_{4,7}]$.

If pivot is 5 (rank 4). Bingo!

If pivot is 8 (rank 7). Bingo!

If pivot in between the two numbers (say 6 [rank 5]):

5 and 8 will never be compared to each other.

Question: What is $Pr[R_{i,j}]$?

Conclusion:

R_{i,j} happens if and only if:

ith or jth ranked element is the first pivot out of ith to jth ranked elements.

How to analyze this?

Thinking acrobatics!

- Assign every element in the array a random priority (say in [0, 1]).
- Choose pivot to be the element with lowest priority in subproblem.
- Equivalent to picking pivot uniformly at random (as QuickSort do).

Question: What is $Pr[R_{i,j}]$?

How to analyze this?

Thinking acrobatics!

- Assign every element in the array a random priority (say in [0, 1]).
- Choose pivot to be the element with lowest priority in subproblem.

 \implies $R_{i,j}$ happens if either i or j have lowest priority out of elements rank i to j,

There are k = j - i + 1 relevant elements.

$$\Pr\left[R_{i,j}\right] = \frac{2}{k} = \frac{2}{j-i+1}.$$

Question: What is $Pr[R_{i,j}]$?

How to analyze this?

Thinking acrobatics!

- Assign every element in the array a random priority (say in [0, 1]).
- Choose pivot to be the element with lowest priority in subproblem.

 \Longrightarrow $R_{i,j}$ happens if either i or j have lowest priority out of elements rank i to j,

There are k = j - i + 1 relevant elements.

$$\Pr\left[\mathsf{R}_{\mathsf{i},\mathsf{j}}\right] = \frac{2}{\mathsf{k}} = \frac{2}{\mathsf{j}-\mathsf{i}+1}.$$

Question: What is Pr[R_{ij}]?

Lemma

$$\Pr\left[\mathsf{R}_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of **A** in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_i\}$

Observation: If pivot is chosen outside **S** then all of **S** either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...

Question: What is $Pr[R_{ij}]$?

Lemma

$$\text{Pr}\Big[R_{ij}\Big] = \tfrac{2}{j-i+1}.$$

Proof

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of **A** in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_i\}$

Observation: If pivot is chosen outside **S** then all of **S** either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...

Question: What is $Pr[R_{ij}]$?

Lemma

$$\text{Pr}\Big[R_{ij}\Big] = \tfrac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of **A** in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_i\}$

 $S = \{a_i, a_{i+1}, \dots, a_j\}$ Observation: If pivot

Observation: If pivot is chosen outside **S** then all of **S** either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from **S** for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...

Continued...

Lemma

$$\Pr\left[\mathsf{R}_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let
$$a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$$
 be sort of **A**. Let

 $S = \{a_i, a_{i+1}, \dots, a_j\}$ Observation: as is com-

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation.

Observation: Given that pivot is chosen from **S** the probability that it is a_i or a_j is exactly 2/|S| = 2/(j-i+1) since the pivot is chosen uniformly at random from the array.

Continued...

$$\mathsf{E} \Big[\mathsf{Q}(\mathsf{A}) \Big] = \sum_{1 \leq i < j \leq n} \mathsf{E}[\mathsf{X}_{ij}] = \sum_{1 \leq i < j \leq n} \mathsf{Pr}[\mathsf{R}_{ij}] \,.$$

Lemma

$$\text{Pr}[R_{ij}] = \tfrac{2}{j-i+1}.$$

$$E[Q(A)] = \sum_{1 \le i < j \le n} \frac{2}{j - i + 1}$$

Continued...

Lemma

$$\Pr[\mathsf{R}_{ij}] = \tfrac{2}{j-i+1}.$$

$$\mathsf{E}\!\left[\mathsf{Q}(\mathsf{A})\right] = \sum_{1 \le i < j \le n} \mathsf{Pr}\!\left[\mathsf{R}_{ij}\right] = \sum_{1 \le i < j \le n} \frac{2}{j-i+1}$$

10

Spring 2013

Continued...

Lemma

$$\Pr[\mathsf{R}_{ij}] = \frac{2}{\mathsf{j}-\mathsf{i}+1}.$$

$$\mathsf{E}\big[\mathsf{Q}(\mathsf{A})\big] = \sum_{1 \le i < j \le n} \frac{2}{j-i+1}$$

Continued...

Lemma

$$\text{Pr}[\mathsf{R}_{ij}] = \tfrac{2}{j-i+1}.$$

$$E[Q(A)] = \sum_{\substack{1 \le i < j \le n \\ = \sum_{i=1}^{n-1} \sum_{i=i+1}^{n} \frac{2}{j-i+1}}$$

Continued...

Lemma

$$\text{Pr}[\mathsf{R}_{ij}] = \tfrac{2}{j-i+1}.$$

$$E\Big[Q(A)\Big] = \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{2}{j-i+1}$$

Continued...

Lemma

$$\text{Pr}[R_{ij}] = \tfrac{2}{j-i+1}.$$

$$\mathsf{E} \big[\mathsf{Q}(\mathsf{A}) \big] = 2 \sum_{i=1}^{n-1} \sum_{i < j}^{n} \frac{1}{j-i+1}$$

Continued...

Lemma

$$\text{Pr}[\mathsf{R}_{ij}] = \tfrac{2}{j-i+1}.$$

$$\mathsf{E} \big[\mathsf{Q}(\mathsf{A}) \big] = 2 \sum_{i=1}^{n-1} \sum_{i < j}^{n} \frac{1}{j-i+1}$$

Continued...

Lemma

$$\text{Pr}[\mathsf{R}_{ij}] = \tfrac{2}{j-i+1}.$$

$$E\Big[Q(A)\Big] = 2 \sum_{i=1}^{n-1} \sum_{i < i}^{n} \frac{1}{j-i+1} \leq 2 \sum_{i=1}^{n-1} \quad \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta}$$

10

Spring 2013

Continued...

Lemma

$$\text{Pr}[\mathsf{R}_{ij}] = \tfrac{2}{j-i+1}.$$

$$\begin{split} \mathsf{E}\Big[\mathsf{Q}(\mathsf{A})\Big] &= 2\sum_{i=1}^{n-1} \sum_{i < j}^{n} \frac{1}{j-i+1} \leq 2\sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \\ &\leq 2\sum_{i=1}^{n-1} (\mathsf{H}_{n-i+1}-1) \leq 2\sum_{1 \leq i < n} \mathsf{H}_{n} \end{split}$$

Continued...

Lemma

$$\text{Pr}[\mathsf{R}_{ij}] = \tfrac{2}{j-i+1}.$$

$$\begin{split} E\Big[Q(A)\Big] &= 2\sum_{i=1}^{n-1} \sum_{i < j}^{n} \frac{1}{j-i+1} \leq 2\sum_{i=1}^{n-1} \quad \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \\ &\leq 2\sum_{i=1}^{n-1} (H_{n-i+1}-1) \; \leq \; 2\sum_{1 \leq i < n} H_{n} \\ &< 2nH_{n} = O(n\log n) \end{split}$$

Yet another analysis of QuickSort

You should never trust a man who has only one way to spell a word

Consider element **e** in the array.

Consider the subproblems it participates in during **QuickSort** execution:

$$\textbf{S}_1,\textbf{S}_2,\ldots,\textbf{S}_k.$$

Definition

e is lucky in the **j**th iteration if $|S_j| \le (3/4) |S_{j-1}|$.

Key observation

The event \mathbf{e} is lucky in \mathbf{j} th iteration is independent of the event that \mathbf{e} is lucky in \mathbf{k} th iteration, (If $\mathbf{j} \neq \mathbf{k}$)

 $X_i = 1$ iff e is lucky in the jth iteration.

Yet another analysis of QuickSort

Continued...

Claim

$$Pr[X_j = 1] = 1/2.$$

Proof.

- $\mathbf{0} \mathbf{X}_{\mathbf{j}}$ determined by \mathbf{j} recursive subproblem.
- ② Subproblem has $n_{j-1} = |X_{j-1}|$ elements.
- **3** If jth pivot rank $\in [n_{j-1}/4, (3/4)n_{j-1}]$, then e lucky in jth iter.
- **1** Prob. **e** is lucky $\geq |[n_{j-1}/4, (3/4)n_{j-1}]|/n_{j-1} = 1/2$.

Observation

If $X_1 + X_2 + \dots X_k = \lceil \log_{4/3} n \rceil$ then **e** subproblem is of size one. Done!

Yet another analysis of QuickSort

Continued...

Observation

Probability e participates in $\geq k = 40 \lceil log_{4/3} \, n \rceil$ subproblems. Is equal to

$$\begin{split} \text{Pr}\Big[\textbf{X}_1 + \textbf{X}_2 + \ldots + \textbf{X}_k &\leq \lceil \log_{4/3} n \rceil \Big] \\ &\leq \text{Pr}[\textbf{X}_1 + \textbf{X}_2 + \ldots + \textbf{X}_k \leq k/4] \\ &\leq 2 \cdot 0.68^{k/4} \leq 1/n^5. \end{split}$$

Conclusion

QuickSort takes $O(n \log n)$ time with high probability.

Because...

Theorem

Let \mathbf{X}_n be the number heads when flipping a coin indepdently \mathbf{n} times. Then

$$\text{Pr}\bigg[X_n \leq \frac{n}{4}\bigg] \leq 2 \cdot 0.68^{n/4} \text{ and } \text{Pr}\bigg[X_n \geq \frac{3n}{4}\bigg] \leq 2 \cdot 0.68^{n/4}$$

Randomized Quick Selection

Input Unsorted array **A** of **n** integers

Goal Find the **j**th smallest number in **A** (rank **j** number)

Randomized Quick Selection

- Pick a pivot element uniformly at random from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Return pivot if rank of pivot is j.
- Otherwise recurse on one of the arrays depending on j and their sizes.

Algorithm for Randomized Selection

Assume for simplicity that **A** has distinct elements.

QuickSelect analysis

- $\textbf{9} \ \textbf{S}_1, \textbf{S}_2, \dots, \textbf{S}_k \ \text{be the subproblems considered by the algorithm}. \\ \text{Here } |\textbf{S}_1| = \textbf{n}.$
- ② S_i would be successful if $|S_i| \leq (3/4) |S_{i-1}|$
- **3** Y_1 = number of recursive calls till first successful iteration. Clearly, total work till this happens is $O(Y_1n)$.
- **1** $\mathbf{n_i} = \text{size}$ of the subproblem immediately after the $(\mathbf{i} \mathbf{1})$ th successful iteration.
- $\mathbf{Y_i} = \text{number of recursive calls after the } (\mathbf{i-1}) \text{th successful call, till the } \mathbf{i} \text{th successful iteration.}$
- **1** Running time is $O(\sum_i n_i Y_i)$.

Example

 S_i = subarray used in ith recursive call

 $|S_i|$ = size of this subarray

Red indicates successful iteration.

Inst'	S ₁	S_2	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S_9
S _i	100	70	60	50	40	30	25	5	2
Succ'	$Y_1 = 2$		$Y_2 = 4$				$Y_3 = 2$		$Y_4 = 1$
n _i =	n ₁ =	100	$n_2 = 60$				$n_3 = 25$		$n_4 = 2$

- All the subproblems after (i 1)th successful iteration till ith successful iteration have size $< n_i$.
- ② Total work: $O(\sum_i n_i Y_i)$.

Total work: $O(\sum_i n_i Y_i)$.

We have:

- **Y**_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.

As such, expected work is proportional to

$$\begin{split} & E \Bigg[\sum_i n_i Y_i \Bigg] = \sum_i E \Big[n_i Y_i \Big] \leq \sum_i E \Big[(3/4)^{i-1} n Y_i \Big] \\ & = n \sum_i (3/4)^{i-1} E \Big[Y_i \Big] = n \sum_{i=1} (3/4)^{i-1} 2 \leq 8n. \end{split}$$

Theorem

The expected running time of QuickSelect is O(n).

20

Analysis via Recurrence

- Given array A of size n let Q(A) be number of comparisons of randomized selection on A for selecting rank i element.
- Note that Q(A) is a random variable
- Let A_{less} and A_{greater} be the left and right arrays obtained if pivot is rank i element of A.
- **4** Algorithm recurses on \mathbf{A}_{less}^{i} if $\mathbf{j} < \mathbf{i}$ and recurses on $\mathbf{A}_{greater}^{i}$ if $\mathbf{j} > \mathbf{i}$ and terminates if $\mathbf{j} = \mathbf{i}$.

$$Q(A) = n + \sum_{i=1}^{j-1} Pr[pivot has rank i] Q(A_{greater}^{i})$$

$$+ \sum_{i=j+1}^{n} Pr[pivot has rank i] Q(A_{less}^{i})$$

Analysis via Recurrence

- Given array A of size n let Q(A) be number of comparisons of randomized selection on A for selecting rank i element.
- Note that Q(A) is a random variable
- Let Aⁱ_{less} and Aⁱ_{greater} be the left and right arrays obtained if pivot is rank i element of A.
- **4** Algorithm recurses on \mathbf{A}_{less}^{i} if $\mathbf{j} < \mathbf{i}$ and recurses on $\mathbf{A}_{greater}^{i}$ if $\mathbf{j} > \mathbf{i}$ and terminates if $\mathbf{j} = \mathbf{i}$.

$$\begin{split} Q(A) &= n + \sum_{i=1}^{j-1} Pr[\text{pivot has rank } i] \, Q(A_{\text{greater}}^i) \\ &+ \sum_{i=j+1}^{n} Pr[\text{pivot has rank } i] \, Q(A_{\text{less}}^i) \end{split}$$

Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where T(n) is the worst-case expected time.

$$\mathsf{T}(n) \leq n + \frac{1}{n} (\sum_{i=1}^{j-1} \mathsf{T}(n-i) + \sum_{i=j}^{n} \mathsf{T}(i-1)).$$

Theorem

$$\mathsf{T}(\mathsf{n}) = \mathsf{O}(\mathsf{n}).$$

Proof.

(Guess and) Verify by induction (see next slide).

Analyzing the recurrence

Theorem

$$T(n) = O(n)$$
.

Prove by induction that $T(n) \le \alpha n$ for some constant $\alpha \ge 1$ to be fixed later.

Base case: n = 1, we have T(1) = 0 since no comparisons needed and hence $T(1) \le \alpha$.

Induction step: Assume $T(k) \le \alpha k$ for $1 \le k < n$ and prove it for T(n). We have by the recurrence:

$$\begin{split} \mathsf{T}(\mathsf{n}) & \leq & \mathsf{n} + \frac{1}{\mathsf{n}} (\sum_{i=1}^{j-1} \mathsf{T}(\mathsf{n}-\mathsf{i}) + \sum_{i=\mathsf{j}^\mathsf{n}} \mathsf{T}(\mathsf{i}-1)) \\ & \leq & \mathsf{n} + \frac{\alpha}{\mathsf{n}} (\sum_{i=1}^{j-1} (\mathsf{n}-\mathsf{i}) + \sum_{i=\mathsf{j}}^\mathsf{n} (\mathsf{i}-1)) \quad \text{by applying induction} \end{split}$$

Analyzing the recurrence

$$T(n) \leq n + \frac{\alpha}{n} (\sum_{i=1}^{j-1} (n-i) + \sum_{i=j}^{n} (i-1))$$

$$\leq n + \frac{\alpha}{n} ((j-1)(2n-j)/2 + (n-j+1)(n+j-2)/2)$$

$$\leq n + \frac{\alpha}{2n} (n^2 + 2nj - 2j^2 - 3n + 4j - 2)$$
above expression maximized when $j = (n+1)/2$: calculus
$$\leq n + \frac{\alpha}{2n} (3n^2/2 - n) \quad \text{substituting } (n+1)/2 \text{ for } j$$

$$\leq n + 3\alpha n/4$$

$$\leq \alpha n \quad \text{for any constant } \alpha > 4$$

Comments on analyzing the recurrence

- Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug $\mathbf{j}=\mathbf{n}/2$ to simplify without calculus
- Analyzing recurrences comes with practice and after a while one can see things more intuitively

John Von Neumann:

Young man, in mathematics you don't understand things. You just get used to them.