CS 473: Fundamental Algorithms, Spring 2013

Randomized Algorithms: QuickSort and QuickSelect

Lecture 14
March 8, 2013

Part I

Slick analysis of QuickSort

A Slick Analysis of QuickSort

Let $\mathbf{Q}(\mathbf{A})$ be number of comparisons done on input array \mathbf{A} :
(1) For $\mathbf{1} \leq \mathbf{i}<\mathbf{j}<\mathbf{n}$ let $\mathbf{R}_{\mathbf{i j}}$ be the event that rank \mathbf{i} element is compared with rank \mathbf{j} element.
(2) \mathbf{X}_{ij} is the indicator random variable for \mathbf{R}_{ij}. That is, $\mathbf{X}_{\mathrm{ij}}=\mathbf{1}$ if rank \mathbf{i} is compared with rank \mathbf{j} element, otherwise $\mathbf{0}$.

and hence by linearity of expectation,

A Slick Analysis of QuickSort

Let $\mathbf{Q}(\mathbf{A})$ be number of comparisons done on input array \mathbf{A} :
(1) For $\mathbf{1} \leq \mathbf{i}<\mathbf{j}<\mathbf{n}$ let \mathbf{R}_{ij} be the event that rank \mathbf{i} element is compared with rank \mathbf{j} element.
(2) \mathbf{X}_{ij} is the indicator random variable for \mathbf{R}_{ij}. That is, $\mathbf{X}_{\mathrm{ij}}=\mathbf{1}$ if rank \mathbf{i} is compared with rank \mathbf{j} element, otherwise $\mathbf{0}$.

$$
Q(A)=\sum_{1 \leq i<j \leq n} X_{i j}
$$

and hence by linearity of expectation,

$$
E[Q(A)]=\sum_{1 \leq i<j \leq n} E\left[X_{i j}\right]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right] .
$$

A Slick Analysis of QuickSort

$\mathbf{R}_{\mathbf{i j}}=$ rank \mathbf{i} element is compared with rank \mathbf{j} element.
Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]$?
$\begin{array}{llllllll}7 & 5 & 9 & 1 & 3 & 4 & 8 & 6\end{array}$

A Slick Analysis of QuickSort

$\mathbf{R}_{\mathrm{ij}}=$ rank \mathbf{i} element is compared with rank \mathbf{j} element.
Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]$?

With ranks: | 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 4 | 8 | 1 | 2 | 3 | 7 | 5 |

A Slick Analysis of QuickSort

$\mathbf{R}_{\mathrm{ij}}=$ rank \mathbf{i} element is compared with rank \mathbf{j} element.
Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]$?

With ranks: | 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 4 | 8 | 1 | 2 | 3 | 7 | 5 |

As such, probability of comparing 5 to 8 is $\operatorname{Pr}\left[\mathbf{R}_{4,7}\right]$.

A Slick Analysis of QuickSort

$\mathbf{R}_{\mathrm{ij}}=$ rank \mathbf{i} element is compared with rank \mathbf{j} element.
Question: What is $\operatorname{Pr}\left[\mathbf{R}_{\mathrm{ij}}\right]$?

With ranks: | 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 4 | 8 | 1 | 2 | 3 | 7 | 5 |

(1) If pivot too small (say 3 [rank 2]). Partition and call recursively: \begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 7 \& 5 \& 9 \& 1 \& 3 \& \hline 4 \& 8 \& 6

\hline

\Longrightarrow

\hline 1 \& 3 \& 7 \& 5 \& 9 \& 4 \& 8 \& 6

\hline
\end{tabular}

Decision if to compare 5 to $\mathbf{8}$ is moved to subproblem.

A Slick Analysis of QuickSort

$\mathbf{R}_{\mathrm{ij}}=$ rank \mathbf{i} element is compared with rank \mathbf{j} element.
Question: What is $\operatorname{Pr}\left[\mathbf{R}_{\mathrm{ij}}\right]$?

With ranks: | 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 4 | 8 | 1 | 2 | 3 | 7 | 5 |

(1) If pivot too small (say 3 [rank 2]). Partition and call recursively:

| 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\Longrightarrow| 1 | 3 | 7 | 5 | 9 | 4 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Decision if to compare 5 to $\mathbf{8}$ is moved to subproblem.
(2) If pivot too large (say 9 [rank 8]):

Decision if to compare 5 to $\mathbf{8}$ moved to subproblem.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

7	5	9	1	3	4	8	6
6	4	8	1	2	3	7	5

As such, probability of comparing 5 to $\mathbf{8}$ is $\operatorname{Pr}\left[\mathbf{R}_{4,7}\right]$.
(1) If pivot is 5 (rank 4). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & \hline 9 & 1 & 3 & 4 & 8 & 6 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 4 & 5 & 7 & 9 & 8 & 6 \\
\hline
\end{array}
$$

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

7	5	9	1	3	4	8	6
6	4	8	1	2	3	7	5

As such, probability of comparing 5 to $\mathbf{8}$ is $\operatorname{Pr}\left[\mathbf{R}_{4,7}\right]$.
(1) If pivot is 5 (rank 4). Bingo!

(2) If pivot is $\mathbf{8}$ (rank 7). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 5 & 9 & 1 & 3 & 4 & 6 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 5 & 1 & 3 & 4 & 6 & 8 & 9 \\
\hline
\end{array}
$$

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

7	5	9	1	3	4	8	6
6	4	8	1	2	3	7	5

As such, probability of comparing $\mathbf{5}$ to $\mathbf{8}$ is $\operatorname{Pr}\left[\mathbf{R}_{4,7}\right]$.
(1) If pivot is 5 (rank 4). Bingo!

(2) If pivot is 8 (rank 7). Bingo!

7	5	9	1	3	4	8

(3) If pivot in between the two numbers (say 6 [rank 5]):

| 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | \Longrightarrow| 5 | 1 | 3 | 4 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5 and 8 will never be compared to each other.

A Slick Analysis of QuickSort
 Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

Conclusion:

$\mathbf{R}_{\mathrm{i}, \mathrm{j}}$ happens if and only if: ith or j th ranked element is the first pivot out of ith to jth ranked elements.

How to analyze this?

Thinking acrobatics!
(1) Assign every element in the array a random priority (say in $[0,1]$).
(2) Choose pivot to be the element with lowest priority in subproblem.
(3) Equivalent to picking pivot uniformly at random (as QuickSort do).

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right.$?

How to analyze this?
Thinking acrobatics!
(1) Assign every element in the array a random priority (say in $[0,1]$).
(2) Choose pivot to be the element with lowest priority in subproblem.
$\Longrightarrow \mathbf{R}_{\mathbf{i}, \mathbf{j}}$ happens if either \mathbf{i} or \mathbf{j} have lowest priority out of elements rank \mathbf{i} to \mathbf{j},
There are $\mathrm{k}=\mathrm{j}-\mathrm{i}+1$ relevant elements.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right.$?

How to analyze this?
Thinking acrobatics!
(1) Assign every element in the array a random priority (say in $[0,1])$.
(2) Choose pivot to be the element with lowest priority in subproblem.
$\Longrightarrow \mathbf{R}_{\mathbf{i}, \mathbf{j}}$ happens if either \mathbf{i} or \mathbf{j} have lowest priority out of elements rankito \mathbf{j},
There are $\mathbf{k}=\mathbf{j} \mathbf{- i}+\mathbf{1}$ relevant elements.

$$
\operatorname{Pr}\left[R_{i, j}\right]=\frac{2}{k}=\frac{2}{j-i+1} .
$$

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]$?
Lemma
$\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]=\frac{2}{\mathrm{j}-\mathrm{i}+1}$

Proof

Let $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{i}}, \ldots, \mathrm{a}_{\mathrm{j}}, \ldots, \mathrm{a}_{\mathrm{n}}$ be elements of A in sorted order. Let
$S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: If pivot is chosen outside S then all of S either in left array or right array.
Observation: $\mathbf{a}_{\mathbf{i}}$ and \mathbf{a}_{j} separated when a pivot is chosen from \mathbf{S} for the first time. Once separated no comparison.
Observation: a_{i} is compared with a_{j} if and only if either a_{i} or a_{j} is
chosen as a pivot from S at separation.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]$?
Lemma
$\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]=\frac{2}{\mathrm{j}-\mathrm{i}+1}$.

Proof.

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{i}}, \ldots, \mathbf{a}_{\mathrm{j}}, \ldots, \mathbf{a}_{\mathbf{n}}$ be elements of \mathbf{A} in sorted order. Let
$S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: If pivot is chosen outside S then all of S either in left array or right array.
Observation: $\mathbf{a}_{\mathbf{i}}$ and a_{j} separated when a pivot is chosen from S for the first time. Once separated no comparison.
Observation: $\mathbf{a}_{\mathbf{i}}$ is compared with $\mathbf{a}_{\mathbf{j}}$ if and only if either $\mathbf{a}_{\mathbf{i}}$ or $\mathbf{a}_{\mathbf{j}}$ is
chosen as a pivot from S at separation.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]$?

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

Proof.

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{i}}, \ldots, \mathbf{a}_{\mathbf{j}}, \ldots, \mathbf{a}_{\mathbf{n}}$ be elements of \mathbf{A} in sorted order. Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: If pivot is chosen outside \mathbf{S} then all of \mathbf{S} either in left array or right array.
Observation: $\mathbf{a}_{\mathbf{i}}$ and $\mathbf{a}_{\mathbf{j}}$ separated when a pivot is chosen from \mathbf{S} for the first time. Once separated no comparison.
Observation: $\mathbf{a}_{\mathbf{i}}$ is compared with $\mathbf{a}_{\mathbf{j}}$ if and only if either $\mathbf{a}_{\mathbf{i}}$ or $\mathbf{a}_{\mathbf{j}}$ is chosen as a pivot from \mathbf{S} at separation...

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

Proof.

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{i}}, \ldots, \mathbf{a}_{\mathbf{j}}, \ldots, \mathbf{a}_{\mathbf{n}}$ be sort of \mathbf{A}. Let
$S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: $\mathbf{a}_{\mathbf{i}}$ is compared with $\mathbf{a}_{\mathbf{j}}$ if and only if either $\mathbf{a}_{\mathbf{i}}$ or $\mathbf{a}_{\mathbf{j}}$ is chosen as a pivot from \mathbf{S} at separation.
Observation: Given that pivot is chosen from \mathbf{S} the probability that
 chosen uniformly at random from the array.

A Slick Analysis of QuickSort

Continued...

$$
E[Q(A)]=\sum_{1 \leq i<j \leq n} E\left[X_{i j}\right]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right]
$$

Lemma

$$
\operatorname{Pr}\left[R_{\mathrm{ij}}\right]=\frac{2}{\mathrm{j}-\mathrm{i}+1} .
$$

A Slick Analysis of QuickSort

 Continued...
Lemma

$\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

$$
E[Q(A)]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right]=\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}
$$

A Slick Analysis of QuickSort

Continued...

Lemma

$\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

$$
E[Q(A)]=\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}
$$

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\begin{aligned}
E[Q(A)] & =\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
\end{aligned}
$$

A Slick Analysis of QuickSort

 Continued...Lemma
$\operatorname{Pr}\left[R_{\mathrm{ij}}\right]=\frac{2}{\mathrm{j}-\mathrm{i}+1}$.
$E[Q(A)]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$

A Slick Analysis of QuickSort

 Continued...Lemma
$\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]=\frac{2}{\mathrm{j}-\mathrm{i}+1}$.
$E[Q(A)]=2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1}$

A Slick Analysis of QuickSort

 Continued...Lemma
$\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]=\frac{2}{\mathrm{j}-\mathrm{i}+1}$.
$E[Q(A)]=2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1}$

A Slick Analysis of QuickSort

 Continued...
Lemma

$\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]=\frac{2}{\mathrm{j}-\mathrm{i}+1}$.
$E[Q(A)]=2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1} \leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta}$

A Slick Analysis of QuickSort

 Continued...
Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\begin{aligned}
E[Q(A)] & =2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1} \leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \\
& \leq 2 \sum_{i=1}^{n-1}\left(H_{n-i+1}-1\right) \leq 2 \sum_{1 \leq i<n} H_{n}
\end{aligned}
$$

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\begin{aligned}
E[Q(A)] & =2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1} \leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \\
& \leq 2 \sum_{i=1}^{n-1}\left(H_{n-i+1}-1\right) \leq 2 \sum_{1 \leq i<n} H_{n} \\
& \leq 2 n H_{n}=O(n \log n)
\end{aligned}
$$

Yet another analysis of QuickSort

You should never trust a man who has only one way to spell a word

Consider element \mathbf{e} in the array.
Consider the subproblems it participates in during QuickSort execution:

$\mathbf{S}_{1}, \mathbf{S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$.

Definition

\mathbf{e} is lucky in the \mathbf{j} th iteration if $\left|\mathbf{S}_{\mathrm{j}}\right| \leq(\mathbf{3} / \mathbf{4})\left|\mathbf{S}_{\mathrm{j}-1}\right|$.

Key observation

The event \mathbf{e} is lucky in jth iteration is independent of the event that \mathbf{e} is lucky in \mathbf{k} th iteration, (If $\mathbf{j} \neq \mathrm{k}$)
$\mathbf{X}_{\mathbf{j}}=1$ iff \mathbf{e} is lucky in the \mathbf{j} th iteration.

Yet another analysis of QuickSort

 Continued...Claim

$$
\operatorname{Pr}\left[X_{j}=1\right]=1 / 2 .
$$

Proof.

(1) $\mathbf{X}_{\mathbf{j}}$ determined by \mathbf{j} recursive subproblem.
(2) Subproblem has $\mathbf{n}_{\mathbf{j}-1}=\left|\mathbf{X}_{\mathbf{j}-1}\right|$ elements.
(3) If $\mathbf{j t h}$ pivot rank $\in\left[\mathbf{n}_{\mathbf{j}-1} / 4,(3 / 4) \mathbf{n}_{\mathbf{j}-1}\right]$, then \mathbf{e} lucky in $\mathbf{j t h}$ iter.
(1) Prob. e is lucky $\geq\left|\left[n_{j-1} / 4,(3 / 4) n_{j-1}\right]\right| / n_{j-1}=1 / 2$.

Observation

If $X_{1}+X_{2}+\ldots X_{k}=\left\lceil\log _{4 / 3} n\right\rceil$ then \mathbf{e} subproblem is of size one. Done!

Yet another analysis of QuickSort

Continued...

Observation

Probability e participates in $\geq \mathbf{k}=40\left\lceil\log _{4 / 3} \mathbf{n}\right\rceil$ subproblems. Is equal to

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1}+X_{2}+\ldots+X_{k} \leq\left\lceil\log _{4 / 3} n\right\rceil\right] \\
& \\
& \quad \leq \operatorname{Pr}\left[X_{1}+X_{2}+\ldots+X_{k} \leq k / 4\right] \\
& \\
& \leq 2 \cdot 0.68^{k / 4} \leq 1 / n^{5} .
\end{aligned}
$$

Conclusion

QuickSort takes $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ time with high probability.

Because...

Theorem

Let $\mathbf{X}_{\mathbf{n}}$ be the number heads when flipping a coin indepdently \mathbf{n} times. Then

$$
\operatorname{Pr}\left[X_{n} \leq \frac{n}{4}\right] \leq 2 \cdot 0.68^{n / 4} \text { and } \operatorname{Pr}\left[X_{n} \geq \frac{3 n}{4}\right] \leq 2 \cdot 0.68^{n / 4}
$$

Randomized Quick Selection

Input Unsorted array \mathbf{A} of \mathbf{n} integers
Goal Find the $\mathbf{j} t h$ smallest number in \mathbf{A} (rank \mathbf{j} number)

Randomized Quick Selection

(1) Pick a pivot element uniformly at random from the array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Return pivot if rank of pivot is \mathbf{j}.
(4) Otherwise recurse on one of the arrays depending on \mathbf{j} and their sizes.

Algorithm for Randomized Selection

Assume for simplicity that \mathbf{A} has distinct elements.
QuickSelect(A, j):

```
    Pick pivot x uniformly at random from A
    Partition A into A}\mp@subsup{\mathbf{A}}{\mathrm{ less }}{},\mathbf{x}\mathrm{ , and }\mp@subsup{\mathbf{A}}{\mathrm{ greater using x as pivot}}{
    if ( }|\mp@subsup{A}{l\mathrm{ less }}{}|=j-1) the
    return x
    if ( }|\mp@subsup{A}{less}{}|\geq\mathbf{j})\mathrm{ then
    return QuickSelect(A}\mp@subsup{\mathbf{A}}{\mathrm{ less }}{},\mathbf{j}
    else
        return QuickSelect(A)
```


QuickSelect analysis

(1) $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$ be the subproblems considered by the algorithm. Here $\left|\mathbf{S}_{\mathbf{1}}\right|=\mathbf{n}$.
(2) S_{i} would be successful if $\left|S_{i}\right| \leq(3 / 4)\left|S_{i-1}\right|$
(3) $\mathbf{Y}_{1}=$ number of recursive calls till first successful iteration. Clearly, total work till this happens is $\mathbf{O}\left(\mathbf{Y}_{1} \mathbf{n}\right)$.
(4) $\mathbf{n}_{\mathbf{i}}=$ size of the subproblem immediately after the $\left.\mathbf{(i}-\mathbf{1}\right)$ th successful iteration.
(5) $\mathbf{Y}_{\mathbf{i}}=$ number of recursive calls after the $\left.\mathbf{(i}-\mathbf{1}\right)$ th successful call, till the ith successful iteration.
(6) Running time is $\mathbf{O}\left(\sum_{i} \mathbf{n}_{\mathbf{i}} \mathbf{Y}_{\mathbf{i}}\right)$.

QuickSelect analysis

Example

$\mathbf{S}_{\mathbf{i}}=$ subarray used in ith recursive call
$\left|\mathbf{S}_{\mathbf{i}}\right|=$ size of this subarray
Red indicates successful iteration.

Inst'	$\mathrm{S}_{1} \quad \mathrm{~S}_{2}$	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}
$\left\|\mathbf{S}_{\mathbf{i}}\right\|$	10070	60	50	40	30	25	5	2
Succ'	$\mathrm{Y}_{1}=2$	$\mathrm{Y}_{2}=4$				$\mathrm{Y}_{3}=2$		$\mathrm{Y}_{4}=1$
$\mathbf{n}_{\mathbf{i}}=$	$\mathrm{n}_{1}=100$	$\mathrm{n}_{2}=60$				$\mathrm{n}_{3}=25$		$\mathrm{n}_{4}=2$

(1) All the subproblems after $(\mathbf{i}-\mathbf{1})$ th successful iteration till ith successful iteration have size $\leq \mathbf{n}_{\mathbf{i}}$.
(2) Total work: $\mathbf{O}\left(\sum_{\mathbf{i}} \mathbf{n}_{\mathbf{i}} \mathbf{Y}_{\mathbf{i}}\right)$.

QuickSelect analysis

Total work: $\mathbf{O}\left(\sum_{\mathbf{i}} \mathbf{n}_{\mathbf{i}} \mathbf{Y}_{\mathbf{i}}\right)$. We have:
(1) $n_{i} \leq(3 / 4) n_{i-1} \leq(3 / 4)^{i-1} n$.
(2) \mathbf{Y}_{i} is a random variable with geometric distribution Probability of $\mathbf{Y}_{\mathbf{i}}=\mathbf{k}$ is $\mathbf{1 / 2} \mathbf{2}^{\mathbf{i}}$.
(3) $E\left[Y_{i}\right]=2$.

As such, expected work is proportional to

$$
\begin{aligned}
& E\left[\sum_{i} n_{i} Y_{i}\right]=\sum_{i} E\left[n_{i} Y_{i}\right] \leq \sum_{i} E\left[(3 / 4)^{i-1} n Y_{i}\right] \\
& \quad=n \sum_{i}(3 / 4)^{i-1} E\left[Y_{i}\right]=n \sum_{i=1}(3 / 4)^{i-1} 2 \leq 8 n
\end{aligned}
$$

QuickSelect analysis

Theorem
 The expected running time of QuickSelect is $\mathbf{O (n)}$.

QuickSelect analysis

Analysis via Recurrence

(1) Given array \mathbf{A} of size \mathbf{n} let $\mathbf{Q}(\mathbf{A})$ be number of comparisons of randomized selection on \mathbf{A} for selecting rank \mathbf{j} element.
(2) Note that $\mathbf{Q}(\mathbf{A})$ is a random variable
(3) Let $\mathbf{A}_{\text {less }}^{i}$ and $\mathbf{A}_{\text {greater }}^{i}$ be the left and right arrays obtained if pivot is rank \mathbf{i} element of \mathbf{A}.
(9) Algorithm recurses on $\mathbf{A}_{\text {less }}^{i}$ if $\mathbf{j}<\mathbf{i}$ and recurses on $\mathbf{A}_{\text {greater }}^{\mathbf{i}}$ if $\mathbf{j}>\mathbf{i}$ and terminates if $\mathbf{j}=\mathbf{i}$.

QuickSelect analysis

Analysis via Recurrence

(1) Given array \mathbf{A} of size \mathbf{n} let $\mathbf{Q}(\mathbf{A})$ be number of comparisons of randomized selection on \mathbf{A} for selecting rank \mathbf{j} element.
(2) Note that $\mathbf{Q}(\mathbf{A})$ is a random variable
(Let $\mathbf{A}_{\text {less }}^{i}$ and $\mathbf{A}_{\text {greater }}^{i}$ be the left and right arrays obtained if pivot is rank \mathbf{i} element of \mathbf{A}.
(- Algorithm recurses on $\mathbf{A}_{\text {less }}^{i}$ if $\mathbf{j}<\mathbf{i}$ and recurses on $\mathbf{A}_{\text {greater }}^{\mathbf{i}}$ if $\mathbf{j}>\mathbf{i}$ and terminates if $\mathbf{j}=\mathbf{i}$.

$$
\begin{aligned}
\mathbf{Q}(\mathbf{A})=\mathrm{n} & +\sum_{i=1}^{j-1} \operatorname{Pr}[\text { pivot has rank } \mathbf{i}] \mathbf{Q}\left(\mathbf{A}_{\text {greater }}^{i}\right) \\
& +\sum_{i=j+1}^{n} \operatorname{Pr}[\text { pivot has rank } i] \mathbf{Q}\left(\mathbf{A}_{\text {less }}^{i}\right)
\end{aligned}
$$

Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where $\mathbf{T}(\mathbf{n})$ is the worst-case expected time.

$$
T(n) \leq n+\frac{1}{n}\left(\sum_{i=1}^{j-1} T(n-i)+\sum_{i=j}^{n} T(i-1)\right) .
$$

Theorem

$$
T(n)=O(n) .
$$

Proof.

(Guess and) Verify by induction (see next slide).

Analyzing the recurrence

Theorem

$T(n)=O(n)$.
Prove by induction that $\mathbf{T}(\mathbf{n}) \leq \boldsymbol{n}$ for some constant $\alpha \geq \mathbf{1}$ to be fixed later.
Base case: $\mathbf{n}=1$, we have $\mathbf{T}(1)=0$ since no comparisons needed and hence $\mathbf{T}(1) \leq \alpha$.
Induction step: Assume $\mathbf{T}(\mathbf{k}) \leq \boldsymbol{\alpha} \mathbf{k}$ for $\mathbf{1} \leq \mathbf{k}<\mathbf{n}$ and prove it for $\mathbf{T}(\mathbf{n})$. We have by the recurrence:
$T(n) \leq n+\frac{1}{n}\left(\sum_{i=1}^{j-1} T(n-i)+\sum_{i=j n} T(i-1)\right)$
$\leq n+\frac{\alpha}{n}\left(\sum_{i=1}^{j-1}(n-i)+\sum_{i=j}^{n}(i-1)\right) \quad$ by applying induction

Analyzing the recurrence

$T(n) \leq n+\frac{\alpha}{n}\left(\sum_{i=1}^{j-1}(n-i)+\sum_{i=j}^{n}(i-1)\right)$
$\left.\leq n+\frac{\alpha}{n}(j-1)(2 n-j) / 2+(n-j+1)(n+j-2) / 2\right)$
$\leq n+\frac{\alpha}{2 n}\left(n^{2}+2 n j-2 j^{2}-3 n+4 j-2\right)$
above expression maximized when $\mathbf{j}=(\mathbf{n}+\mathbf{1}) / \mathbf{2}$: calculus
$\leq n+\frac{\alpha}{2 n}\left(3 n^{2} / 2-n\right)$ substituting $(n+1) / 2$ for j
$\leq n+3 \alpha n / 4$
$\leq \alpha n$ for any constant $\alpha \geq 4$

Comments on analyzing the recurrence

(1) Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug $\mathbf{j}=\mathbf{n} / \mathbf{2}$ to simplify without calculus
(2) Analyzing recurrences comes with practice and after a while one can see things more intuitively

John Von Neumann:

Young man, in mathematics you don't understand things. You just get used to them.

Notes

Notes

Notes

Notes

