Randomized Algorithms: QuickSort and QuickSelect

Lecture 14
March 8, 2013

A Slick Analysis of QuickSort

Let $\mathbf{Q}(\mathbf{A})$ be number of comparisons done on input array \mathbf{A} :
(1) For $\mathbf{1} \leq \mathbf{i}<\mathbf{j}<\mathbf{n}$ let \mathbf{R}_{ij} be the event that rank \mathbf{i} element is compared with rank \mathbf{j} element.
(2) \mathbf{X}_{ij} is the indicator random variable for \mathbf{R}_{ij}. That is, $\mathbf{X}_{\mathrm{ij}}=\mathbf{1}$ if rank \mathbf{i} is compared with rank \mathbf{j} element, otherwise $\mathbf{0}$.

$$
Q(A)=\sum_{1 \leq i<j \leq n} X_{i j}
$$

and hence by linearity of expectation,

$$
E[Q(A)]=\sum_{1 \leq i<j \leq n} E\left[X_{i j}\right]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right] .
$$

Part I

Slick analysis of QuickSort

A Slick Analysis of QuickSort

$$
\mathbf{R}_{\mathrm{ij}}=\text { rank } \mathbf{i} \text { element is compared with rank } \mathbf{j} \text { element. }
$$

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]$?

As such, probability of comparing 5 to $\mathbf{8}$ is $\operatorname{Pr}\left[\mathbf{R}_{4,7}\right]$.
(1) If pivot too small (say 3 [rank 2]). Partition and call recursively:

$$
\begin{array}{|l|l|l|l|}
\hline 7 & 5 & 9 & 1 \\
\hline 3 & \hline 4 & 8 & 6 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 7 & 5 & 9 & 4 & 8 & 6 \\
\hline
\end{array}
$$

$$
\text { Decision if to compare } \mathbf{5} \text { to } \mathbf{8} \text { is moved to subproblem. }
$$

(2) If pivot too large (say 9 [rank 8]):

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 5 & 9 & 1 & 3 & 4 & 8 & 6 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 5 & 1 & 3 & 4 & 8 & 6 & 9 \\
\hline
\end{array}
$$

[^0]
A Slick Analvsis of QuickSort

$\begin{array}{llllllll}6 & 4 & 8 & 1 & 2 & 3 & 7 & 5\end{array} \quad$ paring $\mathbf{5}$ to $\mathbf{8}$ is $\operatorname{Pr}\left[\mathbf{R}_{4,7}\right]$.

- If pivot is 5 (rank 4). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & \hline 5 & 9 & 1 & 3 & 4 & 8 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 3 & 4 & 5 & 7 & 9 & 8 \\
\hline
\end{array}
$$

- If pivot is $\mathbf{8}$ (rank 7). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 5 & 9 & 1 & 3 & 4 & 8 \\
\hline 6 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 5 & 1 & 3 & 4 & 6 & 8 & 9 \\
\hline
\end{array}
$$

- If pivot in between the two numbers (say 6 [rank 5]):

5 and $\mathbf{8}$ will never be compared to each other.

A Slick Analysis of QuickSort

How to analyze this?

Thinking acrobatics!
(1) Assign every element in the array a random priority (say in $[0,1]$).
(2) Choose pivot to be the element with lowest priority in subproblem.
$\Longrightarrow \mathbf{R}_{\mathbf{i}, \mathrm{j}}$ happens if either \mathbf{i} or \mathbf{j} have lowest priority out of elements rank \mathbf{i} to \mathbf{j},
There are $\mathbf{k}=\mathbf{j} \mathbf{- i + 1} \mathbf{1}$ relevant elements.

$$
\operatorname{Pr}\left[R_{i, j}\right]=\frac{2}{k}=\frac{2}{j-i+1} .
$$

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right.$?

Conclusion:

$\mathbf{R}_{\mathrm{i}, \mathrm{j}}$ happens if and only if:
ith or \mathbf{j} th ranked element is the first pivot out of ith to j th ranked elements.

How to analyze this?

Thinking acrobatics!
(1) Assign every element in the array a random priority (say in $[0,1]$).
(2) Choose pivot to be the element with lowest priority in subproblem.
(3) Equivalent to picking pivot uniformly at random (as QuickSort do).

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]$?

Lemma

$\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]=\frac{2}{\mathrm{j}-\mathrm{i}+1}$.

Proof.

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{i}}, \ldots, \mathbf{a}_{\mathbf{j}}, \ldots, \mathbf{a}_{\mathbf{n}}$ be elements of \mathbf{A} in sorted order. Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: If pivot is chosen outside \mathbf{S} then all of \mathbf{S} either in left array or right array.
Observation: $\mathbf{a}_{\mathbf{i}}$ and $\mathbf{a}_{\mathbf{j}}$ separated when a pivot is chosen from \mathbf{S} for the first time. Once separated no comparison.
Observation: $\mathbf{a}_{\mathbf{i}}$ is compared with $\mathbf{a}_{\mathbf{j}}$ if and only if either $\mathbf{a}_{\mathbf{i}}$ or $\mathbf{a}_{\mathbf{j}}$ is chosen as a pivot from \mathbf{S} at separation...

A Slick Analysis of QuickSort

Lemma

$\operatorname{Pr}\left[\mathrm{R}_{\mathrm{ij}}\right]=\frac{2}{\mathrm{j}-\mathrm{i}+1}$.

Proof.

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{i}}, \ldots, \mathbf{a}_{\mathbf{j}}, \ldots, \mathbf{a}_{\mathrm{n}}$ be sort of \mathbf{A}. Let
$S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: $\mathbf{a}_{\mathbf{i}}$ is compared with $\mathbf{a}_{\mathbf{j}}$ if and only if either $\mathbf{a}_{\mathbf{i}}$ or $\mathbf{a}_{\mathbf{j}}$ is chosen as a pivot from \mathbf{S} at separation.
Observation: Given that pivot is chosen from \mathbf{S} the probability that
 chosen uniformly at random from the array.

A Slick Analysis of QuickSort

$$
E[Q(A)]=\sum_{1 \leq i<j \leq n} E\left[X_{i j}\right]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right] .
$$

Lemma

$$
\begin{aligned}
\operatorname{Pr}\left[R_{i j}\right] & =\frac{2}{j-i+1} . \\
E[Q(A)] & =\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right]=\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& \leq 2 \sum_{i=1}^{n-1}\left(H_{n-i+1}-1\right) \leq 2 \sum_{1 \leq i<n} H_{n}
\end{aligned}
$$

Yet another analysis of QuickSort

Claim

$\operatorname{Pr}\left[X_{j}=1\right]=1 / 2$.

Proof.

(1) $\mathbf{X}_{\mathbf{j}}$ determined by \mathbf{j} recursive subproblem.
(2) Subproblem has $\mathbf{n}_{\mathbf{j}-\mathbf{1}}=\left|\mathbf{X}_{\mathbf{j}-\mathbf{1}}\right|$ elements.
(3) If jth pivot rank $\in\left[\mathbf{n}_{\mathbf{j}-1} / \mathbf{4},(\mathbf{3} / 4) \mathbf{n}_{\mathbf{j}-1}\right]$, then \mathbf{e} lucky in \mathbf{j} th iter.
(9) Prob. e is lucky $\geq\left|\left[n_{j-1} / 4,(3 / 4) n_{j-1}\right]\right| / n_{j-1}=1 / 2$.

Observation

If $X_{1}+X_{2}+\ldots X_{k}=\left\lceil\log _{4 / 3} \mathbf{n}\right\rceil$ then \mathbf{e} subproblem is of size one. Done!
$\mathbf{X}_{\mathbf{j}}=\mathbf{1}$ iff \mathbf{e} is lucky in the \mathbf{j} th iteration.

Yet another analysis of QuickSort

Observation

Probability e participates in $\geq \mathbf{k}=\mathbf{4 0}\left\lceil\log _{4 / 3} \mathbf{n}\right\rceil$ subproblems. Is equal to

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1}+X_{2}+\ldots+X_{k} \leq\left\lceil\log _{4 / 3} n\right\rceil\right] \\
& \\
& \quad \leq \operatorname{Pr}\left[X_{1}+X_{2}+\ldots+X_{k} \leq k / 4\right] \\
& \quad \leq 2 \cdot 0.68^{k / 4} \leq \mathbf{1} / \mathbf{n}^{5} .
\end{aligned}
$$

Conclusion

QuickSort takes $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ time with high probability.

QuickSelect analysis

(1) $\mathbf{S}_{1}, \mathbf{S}_{2}, \ldots, \mathbf{S}_{\mathrm{k}}$ be the subproblems considered by the algorithm. Here $\left|\mathbf{S}_{\mathbf{1}}\right|=\mathbf{n}$
(2) $\mathbf{S}_{\boldsymbol{i}}$ would be successful if $\left|\mathbf{S}_{\mathrm{i}}\right| \leq(\mathbf{3} / 4)\left|\mathbf{S}_{\mathrm{i}-1}\right|$
(3) $\mathbf{Y}_{1}=$ number of recursive calls till first successful iteration.

Clearly, total work till this happens is $\mathbf{O}\left(\mathbf{Y}_{\mathbf{1}} \mathbf{n}\right)$.
(1) $\mathbf{n}_{\mathbf{i}}=$ size of the subproblem immediately after the $(\mathbf{i}-\mathbf{1})$ th successful iteration.
(0 $\mathbf{Y}_{\mathbf{i}}=$ number of recursive calls after the $(\mathbf{i}-\mathbf{1})$ th successful call, till the ith successful iteration.
(0) Running time is $\mathbf{O}\left(\sum_{i} \mathbf{n}_{\mathbf{i}} \mathbf{Y}_{\mathbf{i}}\right)$.

QuickSelect analysis

Example

$\mathbf{S}_{\mathbf{i}}=$ subarray used in ith recursive call
$\left|\mathbf{S}_{\mathbf{i}}\right|=$ size of this subarray
Red indicates successful iteration

Inst'	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}
$\left\|\mathbf{S}_{\mathrm{i}}\right\|$	100	70	60	50	40	30	25	5	2
Succ'	$\mathrm{Y}_{1}=2$		$\mathrm{Y}_{2}=4$				$\mathrm{Y}_{3}=2$		$\mathrm{Y}_{4}=1$
$\mathbf{n}_{\mathbf{i}}=$	$\mathrm{n}_{1}=100$		$\mathrm{n}_{2}=60$				$\mathrm{n}_{3}=25$		$\mathrm{n}_{4}=2$

(1) All the subproblems after ($\mathbf{i} \mathbf{- 1}$)th successful iteration till ith successful iteration have size $\leq \mathbf{n}_{\mathbf{i}}$.
(2) Total work: $\mathbf{O}\left(\sum_{\mathbf{i}} \mathbf{n}_{\mathbf{i}} \mathbf{Y}_{\mathbf{i}}\right)$.

QuickSelect analysis

Theorem

The expected running time of QuickSelect is $\mathbf{O (n)}$.

QuickSelect analysis

Total work: $\mathbf{O}\left(\sum_{\mathbf{i}} \mathbf{n}_{\mathbf{i}} \mathbf{Y}_{\mathbf{i}}\right)$.
We have:
(1) $n_{i} \leq(3 / 4) n_{i-1} \leq(3 / 4)^{i-1} n$.
(2) Y_{i} is a random variable with geometric distribution Probability of $\mathbf{Y}_{\mathbf{i}}=\mathbf{k}$ is $\mathbf{1 / 2}$.
(3) $\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}\right]=2$.

As such, expected work is proportional to

$$
\begin{aligned}
& E\left[\sum_{i} n_{i} Y_{i}\right]=\sum_{i} E\left[n_{i} Y_{i}\right] \leq \sum_{i} E\left[(3 / 4)^{i-1} n Y_{i}\right] \\
& =n \sum_{i}(3 / 4)^{i-1} E\left[Y_{i}\right]=n \sum_{i=1}(3 / 4)^{i-1} 2 \leq 8 n .
\end{aligned}
$$

QuickSelect analysis

(1) Given array \mathbf{A} of size \mathbf{n} let $\mathbf{Q}(\mathbf{A})$ be number of comparisons of randomized selection on \mathbf{A} for selecting rank \mathbf{j} element.
(2) Note that $\mathbf{Q}(\mathbf{A})$ is a random variable
(Let $\mathbf{A}_{\text {less }}^{i}$ and $\mathbf{A}_{\text {greater }}^{i}$ be the left and right arrays obtained if pivot is rank \mathbf{i} element of \mathbf{A}.
(1) Algorithm recurses on $\mathbf{A}_{\text {less }}^{\mathbf{i}}$ if $\mathbf{j}<\mathbf{i}$ and recurses on $\mathbf{A}_{\text {greater }}^{\mathbf{i}}$ if $\mathbf{j}>\mathbf{i}$ and terminates if $\mathbf{j}=\mathbf{i}$.

$$
\begin{aligned}
\mathbf{Q}(\mathbf{A})=\mathbf{n} & +\sum_{i=1}^{j-1} \operatorname{Pr}[\text { pivot has rank } i] \mathbf{Q}\left(\mathbf{A}_{\text {greater }}^{i}\right) \\
& +\sum_{i=j+1}^{n} \operatorname{Pr}[\text { pivot has rank } i] \mathbf{Q}\left(\mathbf{A}_{\text {less }}^{i}\right)
\end{aligned}
$$

Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where $\mathbf{T}(\mathbf{n})$ is the worst-case expected time.

$$
T(n) \leq n+\frac{1}{n}\left(\sum_{i=1}^{j-1} T(n-i)+\sum_{i=j}^{n} T(i-1)\right)
$$

Theorem

$T(n)=O(n)$.

Proof.

(Guess and) Verify by induction (see next slide).

Analyzing the recurrence

$$
\begin{aligned}
\mathbf{T}(\mathrm{n}) \leq & n+\frac{\alpha}{\mathrm{n}}\left(\sum_{i=1}^{j-1}(n-i)+\sum_{i=j}^{n}(i-1)\right) \\
\leq & n+\frac{\alpha}{n}((j-1)(2 n-j) / 2+(n-j+1)(n+j-2) / 2) \\
\leq & n+\frac{\alpha}{2 n}\left(n^{2}+2 n j-2 j^{2}-3 n+4 j-2\right) \\
& \text { above expression maximized when } j=(n+1) / \mathbf{2} \text { : calculus } \\
\leq & n+\frac{\alpha}{2 n}\left(3 n^{2} / \mathbf{2}-n\right) \quad \text { substituting }(n+1) / \mathbf{n} \text { for } j \\
\leq & n+3 \alpha n / 4 \\
\leq & \alpha n \text { for any constant } \alpha \geq 4
\end{aligned}
$$

Analyzing the recurrence

Theorem

$$
T(n)=O(n)
$$

Prove by induction that $\mathbf{T}(\mathbf{n}) \leq \boldsymbol{\alpha}$ for some constant $\boldsymbol{\alpha} \geq \mathbf{1}$ to be fixed later.
Base case: $\mathbf{n}=\mathbf{1}$, we have $\mathbf{T}(\mathbf{1})=\mathbf{0}$ since no comparisons needed and hence $\mathbf{T}(1) \leq \alpha$.
Induction step: Assume $\mathbf{T}(\mathbf{k}) \leq \boldsymbol{\alpha}$ for $\mathbf{1} \leq \mathbf{k}<\mathbf{n}$ and prove it
for $\mathbf{T}(\mathbf{n})$. We have by the recurrence:
$T(n) \leq n+\frac{1}{n}\left(\sum_{i=1}^{j-1} T(n-i)+\sum_{i=j^{n}} T(i-1)\right)$
$\leq n+\frac{\alpha}{n}\left(\sum_{i=1}^{j-1}(n-i)+\sum_{i=j}^{n}(i-1)\right) \quad$ by applying induction

Comments on analyzing the recurrence

(1) Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug $\mathbf{j}=\mathbf{n} / \mathbf{2}$ to simplify without calculus
(2) Analyzing recurrences comes with practice and after a while one can see things more intuitively

John Von Neumann:

Young man, in mathematics you don't understand things. You just get used to them.

[^0]: Decision if to compare 5 to $\mathbf{8}$ moved to subproblem.

