CS 473: Fundamental Algorithms, Spring 2013

Randomized Algorithms:
QuickSort and QuickSelect

Lecture 14
March 8, 2013

Sariel, Alexandra (UIUC) CS473 1 Spring 2013 1/32

Part |

Slick analysis of QuickSort

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2/32

A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:

© For1 <i < j < nlet R be the event that rank i element is
compared with rank j element.

@ Xjj is the indicator random variable for R;. That is, X = 1 if
rank i is compared with rank j element, otherwise 0.

QA) =) X

1<i<j<n

and hence by linearity of expectation,

EQA) = > Elxg|= X Prlry.

1<i<j<n 1<i<j<n

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3/32

A Slick Analysis of QuickSort

R;j = rank i element is compared with rank j element.

Question: What is Pr[R;]?

[7[5[9]1]3]4]8]6]
‘7|5|9|1|3|4|8|6‘Withranks: 6 4 8 1 2 3 75
As such, probability of comparing 5 to 8 is Pr[R47].

@ |If pivot too small (say 3 [rank 2]). Partition and call recursively:

(71519111314[816)_ [[T][3][7]5]9]4]8]6]
Decision if to compare 5 to 8 is moved to subproblem.
@ If pivot too large (say 9 [rank 8]):

(7151911]3[4[8]6]__ |[7][5]1]3[4][8]6][9]

Decision if to compare 5 to 8 moved to subproblem.

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4/32

W[A?a]’xﬁ' s_?% ui A Slick Analysis of QuickSort
71519111314 Q %s suc probability of com- 5 y Q S
6 4 8 1 2 3 paring 5 to 8 is Pr[Ry 7] Conclus
oncilusion:
o |
o If pl\it is 5 (rank 4). Bingo! o s I) iy B
E| 519 | 1 |3 |4 |8 |6 ‘ 1 4 ith or jth ranked element is the first pivot out of
— = ‘ | > | “ i | e | s | & ‘ ith to jth ranked elements.

@ If pivot is 8 (rank 7). Bingo!

71519]1[3[4(816 How to analyze this?
‘ | | | | | _j = ‘7|5|1|3|4|6‘@ Thinking acrobatics!
© If pivot in between the two numbers (say 6 [rank 5]): @ Assign every element in the array a random priority (say in
715719]1]374[8(6 [0, 1]).
‘ | | | | | | I_’ = ‘ e | L | S |4 ‘@‘ ! | 8 |) ‘ @ Choose pivot to be the element with lowest priority in
5 and 8 will never be compared to each other. o

© Equivalent to picking pivot uniformly at random
(as QuickSort do).

v

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5/32 Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 /32

A Slick Analysis of QuickSort A Slick Analysis of QuickSort
Question: What is Pr[R;]?

How to analyze this?
Thinking acrobatics! Lemma
@ Assign every element in the array a random priority (say in Pr {Rij] = J_%
[0,1]). ’
@ Choose pivot to be the element with lowest priority in Proof.
subproblem. | Let @zy...,@y...,Qj,...,a, be elements of A in sorted order. Let

S = {ai, CIES R aj}
Observation: If pivot is chosen outside S then all of S either in left
array or right array.
Observation: a; and a; separated when a pivot is chosen from S for
the first time. Once separated no comparison.
Pr[Rij] — 2 — 2 _ Observation: a; is compared with a; if and only if either a; or a; is

’ k j—i+1 chosen as a pivot from S at separation... O

= R;; happens if either i or j have lowest priority out of elements
rank i to J,
There are k = j — i + 1 relevant elements.

4

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7/32 Sariel, Alexandra (UIUC) CS473 8 Spring 2013 8 /32

A Slick Analysis of QuickSort

Lemma
_ 2
Proof.

Let a;,...,@,...,4j,...,ay be sort of A. Let

S = {aia Aitly ey aj}

Observation: a; is compared with a; if and only if either a; or aj is
chosen as a pivot from S at separation.

Observation: Given that pivot is chosen from S the probability that
it is &; or a; is exactly 2/|S| = 2/(j — i + 1) since the pivot is
chosen uniformly at random from the array.]

v

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 /32

A Slick Analysis of QuickSort

E[Q(A)]= Z E[X;] = Z Pr[Ry] .

1<i<i<n 1<i<i<n
Lemma
2
2
1<i<j<n 1<i<j<n
i=1 j=it1]
n—1
<2 (Hnoizi—1) < 2) H,
i=1 1<i<n
Sariel, Alexaa (UIuC) CS473 10 Spring 2013 10 / 32

Yet another analysis of QuickSort

Consider element e in the array.
Consider the subproblems it participates in during QuickSort
execution:

S1,S2,..., Sk
Definition
e is lucky in the jth iteration if |S;| < (3/4) |S;j-1].

Key observation

The event e is lucky in jth iteration
is independent of
the event that e is lucky in kth iteration,

(If j # k)

X; = 1 iff e is lucky in the jth iteration.

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 /32

Yet another analysis of QuickSort

Claim
Pr[X; =1] =1/2.

Proof.
© X, determined by j recursive subproblem.
@ Subproblem has nj_; = |Xj_1| elements.
@ If jth pivot rank € [n;_1/4, (3/4)n;_1], then e lucky in jth iter.
Q Prob. e is lucky > |[nj_1/4, (3/4)n;_1]| /nj_1 = 1/2. O

o’

Observation

If X1 + Xz + ... Xk = [log,,3 n] then e subproblem is of size one.
Done!

v

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12/

32

Yet another analysis of QuickSort

Observation

Probability e participates in > k = 40[log, 3 n] subproblems. Is
equal to

Pr[X: +Xo + ... + X < nog4/3n1]
< Pr[X1+Xo + ... + Xe < k/4]
< 2.0.68<* < 1/n’.

Conclusion
QuickSort takes O(nlog n) time with high probability.

Randomized Quick Selection

Input Unsorted array A of n integers
Goal Find the jth smallest number in A (rank j number)

Randomized Quick Selection
© Pick a pivot element uniformly at random from the array

@ Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Return pivot if rank of pivot is j.

© Otherwise recurse on one of the arrays depending on j and their
sizes.

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 32

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 /32
Algorithm for Randomized Selection
Assume for simplicity that A has distinct elements.
QuickSelect (A, j):
Pick pivot x uniformly at random from A
Partition A into Ajess, X, and Ageater USing x as pivot
if (JAess| =j— 1) then
return x
if (lAlessl ZJ) then
return QuickSelect (Ajess, j)
else
return QuickSelect (Agreater, j — |Aress| — 1)
Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 32

QuickSelect analysis

Q@ S1,S,,...,Sk be the subproblems considered by the algorithm.
Here |S1| = n.
@ S; would be successful if |S;| < (3/4) |Si—1]

© Y1 = number of recursive calls till first successful iteration.
Clearly, total work till this happens is O(Y1n).

@ n; = size of the subproblem immediately after the (i — 1)th
successful iteration.

@ Y; = number of recursive calls after the (i — 1)th successful
call, till the ith successful iteration.

@ Running time is O(D_; mjY;).

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 32

QuickSelect analysis

Example

S; = subarray used in ith recursive call
|Si| = size of this subarray

Red indicates successful iteration.
Inst’

|Si]
Succ’
n =

@ All the subproblems after (i — 1)th successful iteration till ith

successful iteration have size < n;.
@ Total work: O(D>_; mY3).

QuickSelect analysis

Total work: O(>; m;Y;).
We have:
QO n S (3/4)I’Ii_1 S (3/4)i_1l’l.
© Y, is a random variable with geometric distribution
Probability of Y; = k is 1/2.
Q E[Yi] =2
As such, expected work is proportional to

E [Z nY;| = Z E [niYi} < Z E [(3/4)i_lnYi]
=n) (3/4)7" E[Yi] =n) (3/4)"'2 < 8n.
i i=1

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 32

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 32
QuickSelect analysis
Theorem
The expected running time of QuickSelect is O(n).
Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 32

QuickSelect analysis

@ Given array A of size n let Q(A) be number of comparisons of
randomized selection on A for selecting rank j element.

@ Note that Q(A) is a random variable

@ Let Ai__and A be the left and right arrays obtained if

less greater

pivot is rank i element of A.
© Algorithm recurses on Ai__ if j < i and recurses on Aigreater if
j > iand terminates if j = i.
i-1
Q(A) = n+ Z Pr[pivot has rank i] Q(A;reater)
i=1
n
+ Z Pr[pivot has rank i] Q(A,_..)
i=j+1
Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20/ 32

Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where T(n) is
the worst-case expected time.

T(n) <n+ %(i T(n—i)+ Z T(i — 1)).

Theorem

T(n) = O(n).

Proof.

(Guess and) Verify by induction (see next slide). O
Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 /32

Analyzing the recurrence

j—1 n
a
T < nt SO —0)+ > G- 1)
i=1 i=j
a . - . .
< ntA(G-D@n—j)/2+ (0 -i+ 1) +i-2)/2)
o 2 - 2 -
< n+2—(n + 2nj — 2j° — 3n + 4j — 2)
n
above expression maximized when j = (n + 1)/2: calculus
< n+ 23(3n2/2 — n) substituting (n 4+ 1) /2 for j
n
< n+4+3an/4
< an for any constant a« > 4
Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 /32

Analyzing the recurrence

Theorem
T(n) = O(n). J

Prove by induction that T(n) < an for some constant & > 1 to be
fixed later.

Base case: n = 1, we have T(1) = 0 since no comparisons needed
and hence T(1) < a.

Induction step: Assume T(k) < ak for 1 < k < n and prove it
for T(n). We have by the recurrence:

o) <t (U T-)+ Y TG -1)

i=j"

j—1 n
(81
< n+ —(Z(n —i)+ Z(I — 1)) by applying induction
n
i=1 i=j
Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 /32

Comments on analyzing the recurrence

@ Algebra looks messy but intuition suggest that the median is the
hardest case and hence can plug j = n/2 to simplify without
calculus

@ Analyzing recurrences comes with practice and after a while one
can see things more intuitively

John Von Neumann:
Young man, in mathematics you don't understand things. You just
get used to them.

Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 /32

http://en.wikipedia.org/wiki/John_von_Neumann

	Randomized Algorithms: QuickSort and QuickSelect
	Slick analysis of QuickSort
	A Slick Analysis of QuickSort
	A Slick Analysis of QuickSort
	A Slick Analysis of QuickSort
	A Slick Analysis of QuickSort
	A Slick Analysis of QuickSort

	QuickSelect with high probability
	Yet another analysis of QuickSort
	Yet another analysis of QuickSort
	Yet another analysis of QuickSort

	Randomized Selection
	QuickSelect analysis

