CS 473: Fundamental Algorithms, Spring 2013

Randomized Algorithms: QuickSort and QuickSelect

Lecture 14 March 8, 2013

Part I

Slick analysis of QuickSort

A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:

- For $1 \le i < j < n$ let R_{ii} be the event that rank i element is compared with rank i element.
- ② X_{ii} is the indicator random variable for R_{ii} . That is, $X_{ii} = 1$ if rank i is compared with rank i element, otherwise 0.

$$Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$$

and hence by linearity of expectation,

$$E\Big[Q(A)\Big] = \sum_{1 \leq i < j \leq n} E\Big[X_{ij}\Big] = \sum_{1 \leq i < j \leq n} Pr\Big[R_{ij}\Big]\,.$$

A Slick Analysis of QuickSort

 R_{ii} = rank i element is compared with rank j element.

Question: What is $Pr[R_{ii}]$?

With ranks: $6 \quad 4 \quad 8 \quad 1 \quad 2 \quad 3 \quad 7$

As such, probability of comparing 5 to 8 is $Pr[R_{4,7}]$.

• If pivot too small (say **3** [rank 2]). Partition and call recursively:

Decision if to compare **5** to **8** is moved to subproblem.

2 If pivot too large (say 9 [rank 8]):

Decision if to compare 5 to 8 moved to subproblem.

A Slick Analysis of QuickSort 7 5 9 1 3 4 8 6 As such, probability of com-

paring 5 to 8 is $Pr[R_{4,7}]$.

• If pivot is 5 (rank 4). Bingo!

② If pivot is 8 (rank 7). Bingo!

3 If pivot in between the two numbers (say **6** [rank 5]):

$$7 | 5 | 9 | 1 | 3 | 4 | 8 | 6$$
 \Rightarrow
$$\boxed{5 | 1 | 3 | 4 | 6 | 7 | 8 | 9}$$

5 and 8 will never be compared to each other.

A Slick Analysis of QuickSort

Conclusion:

R_{i,i} happens if and only if:

ith or ith ranked element is the first pivot out of ith to ith ranked elements.

How to analyze this?

Thinking acrobatics!

- Assign every element in the array a random priority (say in [0, 1]).
- 2 Choose pivot to be the element with lowest priority in subproblem.
- 3 Equivalent to picking pivot uniformly at random (as QuickSort do).

A Slick Analysis of **QuickSort**

How to analyze this?

Thinking acrobatics!

- Assign every element in the array a random priority (say in [0, 1]).
- 2 Choose pivot to be the element with lowest priority in subproblem.

 \implies $R_{i,i}$ happens if either i or j have lowest priority out of elements rank i to i,

There are k = j - i + 1 relevant elements.

$$Pr\Big[R_{i,j}\Big] = \frac{2}{k} = \frac{2}{j-i+1}.$$

A Slick Analysis of QuickSort

Question: What is Pr[Rii]?

Lemma

$$Pr\Big[R_{ij}\Big] = \frac{2}{j-i+1}.$$

Proof

Let $a_1, \ldots, a_i, \ldots, a_n$ be elements of **A** in sorted order. Let $S = \{a_i, a_{i+1}, \dots, a_i\}$

Observation: If pivot is chosen outside **S** then all of **S** either in left array or right array.

Observation: a_i and a_i separated when a pivot is chosen from **S** for the first time. Once separated no comparison.

Observation: a_i is compared with a_i if and only if either a_i or a_i is chosen as a pivot from **S** at separation...

A Slick Analysis of QuickSort

Lemma

$$\Pr\Big[\mathsf{R}_{\mathsf{i}\mathsf{j}}\Big] = \tfrac{2}{\mathsf{j}-\mathsf{i}+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_n$ be sort of **A**. Let

 $S = \{a_i, a_{i+1}, \dots, a_i\}$

Observation: a_i is compared with a_i if and only if either a_i or a_i is chosen as a pivot from **S** at separation.

Observation: Given that pivot is chosen from **S** the probability that it is a_i or a_i is exactly 2/|S| = 2/(i - i + 1) since the pivot is chosen uniformly at random from the array.

A Slick Analysis of QuickSort

$$\label{eq:epsilon} E\Big[Q(A)\Big] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} Pr[R_{ij}]\,.$$

Lemma

$$\text{Pr}[R_{ij}] = \tfrac{2}{j-i+1}.$$

$$\begin{split} E\Big[Q(A)\Big] &= \sum_{1 \leq i < j \leq n} Pr\Big[R_{ij}\Big] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1} \\ &= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\ &\leq 2 \sum_{i=1}^{n-1} (H_{n-i+1}-1) \ \leq \ 2 \sum_{1 \leq i < n} H_{n} \end{split}$$

Yet another analysis of QuickSort

Consider element **e** in the array.

Consider the subproblems it participates in during QuickSort execution:

 S_1, S_2, \ldots, S_k

Definition

e is lucky in the **i**th iteration if $|S_i| \leq (3/4) |S_{i-1}|$.

Key observation

The event **e** is lucky in **i**th iteration is independent of the event that **e** is lucky in **k**th iteration, (If $\mathbf{i} \neq \mathbf{k}$)

 $X_i = 1$ iff e is lucky in the jth iteration.

Yet another analysis of QuickSort

Claim

$$Pr[X_j = 1] = 1/2$$

Proof.

- **1** X_i determined by **i** recursive subproblem.
- 2 Subproblem has $\mathbf{n}_{i-1} = |\mathbf{X}_{i-1}|$ elements.
- 3 If jth pivot rank $\in [n_{i-1}/4, (3/4)n_{i-1}]$, then e lucky in jth iter.
- **1** Prob. **e** is lucky $> |[n_{i-1}/4, (3/4)n_{i-1}]| / n_{i-1} = 1/2$.

Observation

If $X_1 + X_2 + ... X_k = \lceil \log_{4/3} n \rceil$ then **e** subproblem is of size one. Done!

Yet another analysis of QuickSort

Continued..

Observation

Probability e participates in $\geq k = 40 \lceil log_{4/3} \, n \rceil$ subproblems. Is equal to

$$\begin{split} \text{Pr}\Big[\textbf{X}_1 + \textbf{X}_2 + \ldots + \textbf{X}_k &\leq \lceil \log_{4/3} n \rceil \Big] \\ &\leq \text{Pr}[\textbf{X}_1 + \textbf{X}_2 + \ldots + \textbf{X}_k \leq k/4] \\ &\leq 2 \cdot 0.68^{k/4} \leq 1/n^5. \end{split}$$

Conclusion

QuickSort takes O(n log n) time with high probability.

Sariel, Alexandra (UIUC)

CS473

13

Spring 2013

13 / 32

Randomized Quick Selection

Input Unsorted array **A** of **n** integers

Goal Find the **j**th smallest number in **A** (*rank* **j** number)

Randomized Quick Selection

- Pick a pivot element *uniformly at random* from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- 3 Return pivot if rank of pivot is j.
- **1** Otherwise recurse on one of the arrays depending on **j** and their sizes.

Sariel, Alexandra (UIUC

CS473

1/

Algorithm for Randomized Selection

Assume for simplicity that A has distinct elements.

QuickSelect analysis

- \P S_1,S_2,\ldots,S_k be the subproblems considered by the algorithm. Here $|S_1|=n.$
- ② S_i would be successful if $|S_i| \le (3/4) |S_{i-1}|$
- § Y_1 = number of recursive calls till first successful iteration. Clearly, total work till this happens is $O(Y_1n)$.
- $\mathbf{0}$ $\mathbf{n_i} = \text{size}$ of the subproblem immediately after the $(\mathbf{i} \mathbf{1})$ th successful iteration.
- \mathbf{Y}_{i} = number of recursive calls after the (i-1)th successful call, till the ith successful iteration.
- **1** Running time is $O(\sum_i n_i Y_i)$.

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 32

Sariel Alexandra (IIIIIC)

CS473

pring 2013

QuickSelect analysis

Example

 S_i = subarray used in ith recursive call

 $|S_i| = \text{size of this subarray}$

Red indicates successful iteration.

Inst'	S_1	S_2	S_3	S_4	S_5	S_6	S ₇	S ₈	S_9
$ S_i $	100	70	60	50	40	30	25	5	2
Succ'	$Y_1 = 2$		$Y_2 = 4$				$Y_3 = 2$		$Y_4 = 1$
n _i =	$n_1 =$	100	$n_2 = 60$				$n_3 = 25$		$n_4 = 2$

- \bullet All the subproblems after (i-1)th successful iteration till ith successful iteration have size $< n_i$.
- ② Total work: $O(\sum_i n_i Y_i)$.

QuickSelect analysis

Total work: $O(\sum_i n_i Y_i)$.

We have:

- $\mathbf{0} \ \mathbf{n_i} < (3/4)\mathbf{n_{i-1}} < (3/4)^{i-1}\mathbf{n_i}$
- 2 Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- **3** $E[Y_i] = 2$.

As such, expected work is proportional to

$$\begin{split} & E \Bigg[\sum_i n_i Y_i \Bigg] = \sum_i E \Big[n_i Y_i \Big] \leq \sum_i E \Big[(3/4)^{i-1} n Y_i \Big] \\ & = n \sum_i (3/4)^{i-1} \, E \Big[Y_i \Big] = n \sum_{i=1} (3/4)^{i-1} 2 \leq 8n. \end{split}$$

QuickSelect analysis

Theorem

The expected running time of QuickSelect is O(n).

QuickSelect analysis

- Given array **A** of size **n** let Q(A) be number of comparisons of randomized selection on **A** for selecting rank **i** element.
- 2 Note that **Q(A)** is a random variable
- lacktriangle Let $oldsymbol{A}_{less}^{i}$ and $oldsymbol{A}_{greater}^{i}$ be the left and right arrays obtained if pivot is rank i element of A.
- ${\color{red} \bullet}$ Algorithm recurses on ${\textbf A}^i_{\text{less}}$ if j < i and recurses on ${\textbf A}^i_{\text{greater}}$ if i > i and terminates if i = i.

$$Q(A) = n + \sum_{i=1}^{j-1} Pr[pivot has rank i] Q(A_{greater}^{i})$$

$$+ \sum_{i=j+1}^{n} Pr[pivot has rank i] Q(A_{less}^{i})$$

Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where **T(n)** is the worst-case expected time.

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{n} + \frac{1}{\mathsf{n}} (\sum_{i=1}^{\mathsf{j}-1} \mathsf{T}(\mathsf{n}-\mathsf{i}) + \sum_{i=\mathsf{j}}^{\mathsf{n}} \mathsf{T}(\mathsf{i}-1)).$$

Theorem

T(n) = O(n)

Proof.

(Guess and) Verify by induction (see next slide).

Analyzing the recurrence

Theorem

$$T(n) = O(n)$$
.

Prove by induction that $T(n) \leq \alpha n$ for some constant $\alpha \geq 1$ to be fixed later.

Base case: n = 1, we have T(1) = 0 since no comparisons needed and hence $T(1) < \alpha$.

Induction step: Assume $T(k) \le \alpha k$ for $1 \le k < n$ and prove it for T(n). We have by the recurrence:

$$\begin{split} \mathsf{T}(\mathsf{n}) & \leq \mathsf{n} + \frac{1}{\mathsf{n}} (\sum_{i=1}^{\mathsf{j}-1} \mathsf{T}(\mathsf{n}-\mathsf{i}) + \sum_{i=\mathsf{j}^\mathsf{n}} \mathsf{T}(\mathsf{i}-1)) \\ & \leq \mathsf{n} + \frac{\alpha}{\mathsf{n}} (\sum_{i=1}^{\mathsf{j}-1} (\mathsf{n}-\mathsf{i}) + \sum_{i=\mathsf{j}}^\mathsf{n} (\mathsf{i}-1)) \quad \text{by applying induction} \end{split}$$

Comments on analyzing the recurrence

- Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug j = n/2 to simplify without calculus
- Analyzing recurrences comes with practice and after a while one can see things more intuitively

John Von Neumann:

Young man, in mathematics you don't understand things. You just get used to them.

Analyzing the recurrence

$$\begin{split} \mathsf{T}(\mathsf{n}) & \leq \ \mathsf{n} + \frac{\alpha}{\mathsf{n}} (\sum_{i=1}^{\mathsf{j}-1} (\mathsf{n}-\mathsf{i}) + \sum_{i=\mathsf{j}}^{\mathsf{n}} (\mathsf{i}-1)) \\ & \leq \ \mathsf{n} + \frac{\alpha}{\mathsf{n}} ((\mathsf{j}-1)(2\mathsf{n}-\mathsf{j})/2 + (\mathsf{n}-\mathsf{j}+1)(\mathsf{n}+\mathsf{j}-2)/2) \\ & \leq \ \mathsf{n} + \frac{\alpha}{2\mathsf{n}} (\mathsf{n}^2 + 2\mathsf{n}\mathsf{j} - 2\mathsf{j}^2 - 3\mathsf{n} + 4\mathsf{j} - 2) \\ & \text{above expression maximized when } \mathsf{j} = (\mathsf{n}+1)/2 \text{: calculus} \\ & \leq \ \mathsf{n} + \frac{\alpha}{2\mathsf{n}} (3\mathsf{n}^2/2 - \mathsf{n}) \quad \text{substituting } (\mathsf{n}+1)/2 \text{ for } \mathsf{j} \\ & \leq \ \mathsf{n} + 3\alpha\mathsf{n}/4 \\ & \leq \ \alpha\mathsf{n} \quad \text{for any constant } \alpha \geq 4 \end{split}$$