
CS 473: Fundamental Algorithms, Spring 2013

Introduction to Randomized
Algorithms: QuickSort and
QuickSelect
Lecture 13
March 6, 2013

Sariel, Alexandra (UIUC) CS473 1 Spring 2013 1 / 42

Part I
.

......

Introduction to Randomized
Algorithms

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2 / 42

Randomized Algorithms

Input x Output y
Deterministic Algorithm

Input x Output yr
Randomized Algorithm

random bits r

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3 / 42

Randomized Algorithms

Input x Output y
Deterministic Algorithm

Input x Output yr
Randomized Algorithm

random bits r

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3 / 42

Example: Randomized QuickSort

.
QuickSort Hoare [1962]
..

......

...1 Pick a pivot element from array

...2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

...3 Recursively sort the subarrays, and concatenate them.

.
Randomized QuickSort
..

......

...1 Pick a pivot element uniformly at random from the array

...2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

...3 Recursively sort the subarrays, and concatenate them.

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 / 42

Example: Randomized Quicksort

Recall: QuickSort can take Ω(n2) time to sort array of size n.
.
Theorem
..

......

Randomized QuickSort sorts a given array of length n in O(n log n)
expected time.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 42

Example: Randomized Quicksort

Recall: QuickSort can take Ω(n2) time to sort array of size n.
.
Theorem
..

......

Randomized QuickSort sorts a given array of length n in O(n log n)
expected time.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 42

Example: Randomized Quicksort

Recall: QuickSort can take Ω(n2) time to sort array of size n.
.
Theorem
..

......

Randomized QuickSort sorts a given array of length n in O(n log n)
expected time.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 42

Example: Verifying Matrix Multiplication

.
Problem
..
......Given three n × n matrices A,B,C is AB = C?

Deterministic algorithm:
...1 Multiply A and B and check if equal to C.
...2 Running time? O(n3) by straight forward approach. O(n2.37)
with fast matrix multiplication (complicated and impractical).

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 / 42

Example: Verifying Matrix Multiplication

.
Problem
..
......Given three n × n matrices A,B,C is AB = C?

Deterministic algorithm:
...1 Multiply A and B and check if equal to C.
...2 Running time? O(n3) by straight forward approach. O(n2.37)
with fast matrix multiplication (complicated and impractical).

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 / 42

Example: Verifying Matrix Multiplication

.
Problem
..
......Given three n × n matrices A,B,C is AB = C?

Deterministic algorithm:
...1 Multiply A and B and check if equal to C.
...2 Running time? O(n3) by straight forward approach. O(n2.37)
with fast matrix multiplication (complicated and impractical).

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 / 42

Example: Verifying Matrix Multiplication

.
Problem
..
......Given three n × n matrices A,B,C is AB = C?

Randomized algorithm:
...1 Pick a random n × 1 vector r.
...2 Return the answer of the equality ABr = Cr.
...3 Running time? O(n2)!

.
Theorem
..

......

If AB = C then the algorithm will always say YES. If AB ̸= C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a
false positive to 1/2100.

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 42

Example: Verifying Matrix Multiplication

.
Problem
..
......Given three n × n matrices A,B,C is AB = C?

Randomized algorithm:
...1 Pick a random n × 1 vector r.
...2 Return the answer of the equality ABr = Cr.
...3 Running time? O(n2)!

.
Theorem
..

......

If AB = C then the algorithm will always say YES. If AB ̸= C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a
false positive to 1/2100.

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 42

Example: Verifying Matrix Multiplication

.
Problem
..
......Given three n × n matrices A,B,C is AB = C?

Randomized algorithm:
...1 Pick a random n × 1 vector r.
...2 Return the answer of the equality ABr = Cr.
...3 Running time? O(n2)!

.
Theorem
..

......

If AB = C then the algorithm will always say YES. If AB ̸= C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a
false positive to 1/2100.

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 42

Example: Verifying Matrix Multiplication

.
Problem
..
......Given three n × n matrices A,B,C is AB = C?

Randomized algorithm:
...1 Pick a random n × 1 vector r.
...2 Return the answer of the equality ABr = Cr.
...3 Running time? O(n2)!

.
Theorem
..

......

If AB = C then the algorithm will always say YES. If AB ̸= C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a
false positive to 1/2100.

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 42

Why randomized algorithms?

...1 Many many applications in algorithms, data structures and
computer science!

...2 In some cases only known algorithms are randomized or
randomness is provably necessary.

...3 Often randomized algorithms are (much) simpler and/or more
efficient.

...4 Several deep connections to mathematics, physics etc.

...5 . . .

...6 Lots of fun!

Sariel, Alexandra (UIUC) CS473 8 Spring 2013 8 / 42

Where do I get random bits?

Question: Are true random bits available in practice?
...1 Buy them!
...2 CPUs use physical phenomena to generate random bits.
...3 Can use pseudo-random bits or semi-random bits from nature.
Several fundamental unresolved questions in complexity theory
on this topic. Beyond the scope of this course.

...4 In practice pseudo-random generators work quite well in many
applications.

...5 The model is interesting to think in the abstract and is very
useful even as a theoretical construct. One can derandomize
randomized algorithms to obtain deterministic algorithms.

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 42

Average case analysis vs Randomized algorithms

Average case analysis:
...1 Fix a deterministic algorithm.
...2 Assume inputs comes from a probability distribution.
...3 Analyze the algorithm’s average performance over the
distribution over inputs.

Randomized algorithms:
...1 Algorithm uses random bits in addition to input.
...2 Analyze algorithms average performance over the given input
where the average is over the random bits that the algorithm
uses.

...3 On each input behaviour of algorithm is random. Analyze
worst-case over all inputs of the (average) performance.

Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 42

Discrete Probability

We restrict attention to finite probability spaces.
.
Definition
..

......

A discrete probability space is a pair (Ω,Pr) consists of finite set Ω
of elementary events and function p : Ω → [0, 1] which assigns a
probability Pr[ω] for each ω ∈ Ω such that

∑
ω∈Ω Pr[ω] = 1.

.
Example
..
......An unbiased coin. Ω = {H,T} and Pr[H] = Pr[T] = 1/2.

.
Example
..

......

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 42

Discrete Probability

We restrict attention to finite probability spaces.
.
Definition
..

......

A discrete probability space is a pair (Ω,Pr) consists of finite set Ω
of elementary events and function p : Ω → [0, 1] which assigns a
probability Pr[ω] for each ω ∈ Ω such that

∑
ω∈Ω Pr[ω] = 1.

.
Example
..
......An unbiased coin. Ω = {H,T} and Pr[H] = Pr[T] = 1/2.

.
Example
..

......

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 42

Discrete Probability
And more examples

.
Example
..
......A biased coin. Ω = {H,T} and Pr[H] = 2/3,Pr[T] = 1/3.

.
Example
..

......

Two independent unbiased coins. Ω = {HH,TT,HT,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

.
Example
..

......

A pair of (highly) correlated dice.
Ω = {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
Pr[i, i] = 1/6 for 1 ≤ i ≤ 6 and Pr[i, j] = 0 if i ̸= j.

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 / 42

Events

.
Definition
..

......

Given a probability space (Ω,Pr) an event is a subset of Ω. In other
words an event is a collection of elementary events. The probability
of an event A, denoted by Pr[A], is

∑
ω∈A Pr[ω].

The complement event of an event A ⊆ Ω is the event Ω \ A
frequently denoted by Ā.

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 / 42

Events
Examples

.
Example
..

......

A pair of independent dice. Ω = {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
...1 Let A be the event that the sum of the two numbers on the dice
is even.
Then A =

{
(i, j) ∈ Ω

∣∣∣ (i + j) is even
}
.

Pr[A] = |A|/36 = 1/2.

...2 Let B be the event that the first die has 1. Then
B =

{
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)

}
.

Pr[B] = 6/36 = 1/6.

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 42

Independent Events

.
Definition
..

......

Given a probability space (Ω,Pr) and two events A,B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A,B independent implies one
does not affect the other.

.
Example
..

......

Two coins. Ω = {HH,TT,HT,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

...1 A is the event that the first coin is heads and B is the event
that second coin is tails. A,B are independent.

...2 A is the event that the two coins are different. B is the event
that the second coin is heads. A,B independent.

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 42

Independent Events

.
Definition
..

......

Given a probability space (Ω,Pr) and two events A,B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A,B independent implies one
does not affect the other.

.
Example
..

......

Two coins. Ω = {HH,TT,HT,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

...1 A is the event that the first coin is heads and B is the event
that second coin is tails. A,B are independent.

...2 A is the event that the two coins are different. B is the event
that the second coin is heads. A,B independent.

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 42

Independent Events
Examples

.
Example
..

......

A is the event that both are not tails and B is event that second coin
is heads. A,B are dependent.

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 42

Union bound
The probability of the union of two events, is no bigger than the probability of the
sum of their probabilities.

.
Lemma
..

......

For any two events E and F, we have that

Pr
[
E ∪ F

]
≤ Pr

[
E
]
+ Pr

[
F
]
.

.
Proof.
..

......

Consider E and F to be a collection of elmentery events (which they
are). We have

Pr
[
E ∪ F

]
=

∑
x∈E∪F

Pr[x]

≤
∑
x∈E

Pr[x] +
∑
x∈F

Pr[x] = Pr
[
E
]
+ Pr

[
F
]
.

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 42

Random Variables

.
Definition
..

......

Given a probability space (Ω,Pr) a (real-valued) random variable X
over Ω is a function that maps each elementary event to a real
number. In other words X : Ω → R.
.
Example
..

......

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

...1 X : Ω → R where X(i) = i mod 2.

...2 Y : Ω → R where Y(i) = i2.

.
Definition
..
......A binary random variable is one that takes on values in {0, 1}.

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 42

Random Variables

.
Definition
..

......

Given a probability space (Ω,Pr) a (real-valued) random variable X
over Ω is a function that maps each elementary event to a real
number. In other words X : Ω → R.
.
Example
..

......

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

...1 X : Ω → R where X(i) = i mod 2.

...2 Y : Ω → R where Y(i) = i2.

.
Definition
..
......A binary random variable is one that takes on values in {0, 1}.

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 42

Random Variables

.
Definition
..

......

Given a probability space (Ω,Pr) a (real-valued) random variable X
over Ω is a function that maps each elementary event to a real
number. In other words X : Ω → R.
.
Example
..

......

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

...1 X : Ω → R where X(i) = i mod 2.

...2 Y : Ω → R where Y(i) = i2.

.
Definition
..
......A binary random variable is one that takes on values in {0, 1}.

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 42

Indicator Random Variables

Special type of random variables that are quite useful.
.
Definition
..

......

Given a probability space (Ω,Pr) and an event A ⊆ Ω the indicator
random variable XA is a binary random variable where XA(ω) = 1 if
ω ∈ A and XA(ω) = 0 if ω ̸∈ A.

.
Example
..

......

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6. Let A be the even that i is divisible by 3. Then
XA(i) = 1 if i = 3, 6 and 0 otherwise.

Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 42

Indicator Random Variables

Special type of random variables that are quite useful.
.
Definition
..

......

Given a probability space (Ω,Pr) and an event A ⊆ Ω the indicator
random variable XA is a binary random variable where XA(ω) = 1 if
ω ∈ A and XA(ω) = 0 if ω ̸∈ A.

.
Example
..

......

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6. Let A be the even that i is divisible by 3. Then
XA(i) = 1 if i = 3, 6 and 0 otherwise.

Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 42

Expectation

.
Definition
..

......

For a random variable X over a probability space (Ω,Pr) the
expectation of X is defined as

∑
ω∈Ω Pr[ω] X(ω). In other words,

the expectation is the average value of X according to the
probabilities given by Pr[·].

.
Example
..

......

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

...1 X : Ω → R where X(i) = i mod 2. Then E[X] = 1/2.

...2 Y : Ω → R where Y(i) = i2. Then

E[Y] =
∑6

i=1
1
6
· i2 = 91/6.

Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20 / 42

Expectation

.
Definition
..

......

For a random variable X over a probability space (Ω,Pr) the
expectation of X is defined as

∑
ω∈Ω Pr[ω] X(ω). In other words,

the expectation is the average value of X according to the
probabilities given by Pr[·].

.
Example
..

......

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

...1 X : Ω → R where X(i) = i mod 2. Then E[X] = 1/2.

...2 Y : Ω → R where Y(i) = i2. Then

E[Y] =
∑6

i=1
1
6
· i2 = 91/6.

Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20 / 42

Expectation

.
Proposition
..
......For an indicator variable XA, E[XA] = Pr[A].

.
Proof.
..

......

E[XA] =
∑
y∈Ω

XA(y) Pr[y]

=
∑
y∈A

1 · Pr[y] +
∑

y∈Ω\A

0 · Pr[y]

=
∑
y∈A

Pr[y]

= Pr[A] .

Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 / 42

Linearity of Expectation

.
Lemma
..

......

Let X,Y be two random variables (not necessarily independent) over
a probability space (Ω,Pr). Then E[X + Y] = E[X] + E[Y].

.
Proof.
..

......

E[X + Y] =
∑
ω∈Ω

Pr[ω] (X(ω) + Y(ω))

=
∑
ω∈Ω

Pr[ω] X(ω) +
∑
ω∈Ω

Pr[ω] Y(ω) = E[X] + E[Y] .

.
Corollary
..

......E[a1X1 + a2X2 + . . . + anXn] =
∑n

i=1 ai E[Xi].

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 / 42

Linearity of Expectation

.
Lemma
..

......

Let X,Y be two random variables (not necessarily independent) over
a probability space (Ω,Pr). Then E[X + Y] = E[X] + E[Y].

.
Proof.
..

......

E[X + Y] =
∑
ω∈Ω

Pr[ω] (X(ω) + Y(ω))

=
∑
ω∈Ω

Pr[ω] X(ω) +
∑
ω∈Ω

Pr[ω] Y(ω) = E[X] + E[Y] .

.
Corollary
..

......E[a1X1 + a2X2 + . . . + anXn] =
∑n

i=1 ai E[Xi].

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 / 42

Types of Randomized Algorithms

Typically one encounters the following types:
...1 Las Vegas randomized algorithms: for a given input x
output of algorithm is always correct but the running time is a
random variable. In this case we are interested in analyzing the
expected running time.

...2 Monte Carlo randomized algorithms: for a given input x the
running time is deterministic but the output is random; correct
with some probability. In this case we are interested in analyzing
the probability of the correct output (and also the running time).

...3 Algorithms whose running time and output may both be random.

Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 / 42

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π:
...1 Let Q(x) be the time for Q to run on input x of length |x|.
...2 Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max
x:|x|=n

Q(x).

Randomized algorithm R for a problem Π:
...1 Let R(x) be the time for Q to run on input x of length |x|.
...2 R(x) is a random variable: depends on random bits used by R.
...3 E[R(x)] is the expected running time for R on x
...4 Worst-case analysis: expected time on worst input of size n

Trand−wc(n) = max
x:|x|=n

E[Q(x)] .

Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 42

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π:
...1 Let Q(x) be the time for Q to run on input x of length |x|.
...2 Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max
x:|x|=n

Q(x).

Randomized algorithm R for a problem Π:
...1 Let R(x) be the time for Q to run on input x of length |x|.
...2 R(x) is a random variable: depends on random bits used by R.
...3 E[R(x)] is the expected running time for R on x
...4 Worst-case analysis: expected time on worst input of size n

Trand−wc(n) = max
x:|x|=n

E[Q(x)] .

Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 42

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π:
...1 Let M(x) be the time for M to run on input x of length |x|. For
Monte Carlo, assumption is that run time is deterministic.

...2 Let Pr[x] be the probability that M is correct on x.

...3 Pr[x] is a random variable: depends on random bits used by M.

...4 Worst-case analysis: success probability on worst input

Prand−wc(n) = min
x:|x|=n

Pr[x] .

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 42

Part II
.

......

Why does randomization help?

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 42

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 42

Massive randomness.. Is not that random.

This is known as concentration of mass.
This is a very special case of the law of large numbers.

Sariel, Alexandra (UIUC) CS473 28 Spring 2013 28 / 42

Side note...
Law of large numbers (weakest form)...

.
Informal statement of law of large numbers
..

......

For n large enough, the middle portion of the binomial distribution
looks like (converges to) the normal/Gaussian distribution.

Sariel, Alexandra (UIUC) CS473 29 Spring 2013 29 / 42

Massive randomness.. Is not that random.

.
Intuitive conclusion
..

......

Randomized algorithm are unpredictable in the tactical level, but very
predictable in the strategic level.

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 / 42

Binomial distribution

Xn = numbers of heads when flipping a coin n times.
.
Claim
..

......
Pr

[
Xn = i

]
=

(ni)
2n

.

Where:
(n
k

)
= n!

(n−k)!k!
.

Indeed,
(n
i

)
is the number of ways to choose i elements out of n

elements (i.e., pick which i coin flip come up heads).
Each specific such possibility (say 0100010...) had probability 1/2n.
We are interested in the bad event Pr[Xn ≤ n/4] (way too few
heads). We are going to prove this probability is tiny.

Sariel, Alexandra (UIUC) CS473 31 Spring 2013 31 / 42

Binomial distribution
Playing around with binomial coefficients

.
Lemma
..
......n! ≥ (n/e)n.

.
Proof.
..

......

nn

n!
≤

∞∑
i=0

ni

i!
= en,

by the Taylor expansion of ex =
∑∞

i=0
xi

i!
. This implies that

(n/e)n ≤ n!, as required.

Sariel, Alexandra (UIUC) CS473 32 Spring 2013 32 / 42

Binomial distribution
Playing around with binomial coefficients

.
Lemma
..

......For any k ≤ n, we have
(n
k

)
≤

(
ne
k

)k
.

.
Proof.
..

......

(
n

k

)
=

n!

(n − k)!k!
=

n(n − 1)(n − 2) . . . (n − k + 1)

k!

≤
nk

k!
≤

nk(
k
e

)k =

(
ne

k

)k

.

since k! ≥ (k/e)k (by previous lemma).

Sariel, Alexandra (UIUC) CS473 33 Spring 2013 33 / 42

Binomial distribution
Playing around with binomial coefficients

Pr

[
Xn ≤

n

4

]
=

n/4∑
k=0

1

2n

(
n

k

)
≤

1

2n
2 ·

(
n

n/4

)

For k ≤ n/4 the above sequence behave like a geometric variable.(
n

k + 1

)
/

(
n

k

)
=

n!

(k + 1)!(n − k − 1)!
/

n!

(k)!(n − k)!

=
n − k

k + 1
≥

(3/4)n

n/4 + 1
≥ 2.

Sariel, Alexandra (UIUC) CS473 34 Spring 2013 34 / 42

Binomial distribution
Playing around with binomial coefficients

Pr

[
Xn ≤

n

4

]
≤

1

2n
2 ·

(
n

n/4

)
≤

1

2n
2 ·

(
ne

n/4

)n/4

≤ 2 ·
(
4e

24

)n/4

≤ 2 · 0.68n/4.

We just proved the following theorem.
.
Theorem
..

......

Let Xn be the random variable which is the number of heads when
flipping an unbiased coin independently n times. Then

Pr

[
Xn ≤

n

4

]
≤ 2 · 0.68n/4 and Pr

[
Xn ≥

3n

4

]
≤ 2 · 0.68n/4.

Sariel, Alexandra (UIUC) CS473 35 Spring 2013 35 / 42

Part III
.

......
Randomized Quick Sort and Selection

Sariel, Alexandra (UIUC) CS473 36 Spring 2013 36 / 42

Randomized QuickSort

.
Randomized QuickSort
..

......

...1 Pick a pivot element uniformly at random from the array.

...2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

...3 Recursively sort the subarrays, and concatenate them.

Sariel, Alexandra (UIUC) CS473 37 Spring 2013 37 / 42

Example

...1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1

Sariel, Alexandra (UIUC) CS473 38 Spring 2013 38 / 42

Analysis via Recurrence

...1 Given array A of size n, let Q(A) be number of comparisons of
randomized QuickSort on A.

...2 Note that Q(A) is a random variable.

...3 Let Ai
left and Ai

right be the left and right arrays obtained if:

pivot is of rank i in A.

Q(A) = n +
n∑

i=1

Pr
[
pivot has rank i

] (
Q(Ai

left) + Q(Ai
right)

)
.

Since each element of A has probability exactly of 1/n of being
chosen:

Q(A) = n +
n∑

i=1

1

n

(
Q(Ai

left) + Q(Ai
right)

)
.

Sariel, Alexandra (UIUC) CS473 39 Spring 2013 39 / 42

Analysis via Recurrence

...1 Given array A of size n, let Q(A) be number of comparisons of
randomized QuickSort on A.

...2 Note that Q(A) is a random variable.

...3 Let Ai
left and Ai

right be the left and right arrays obtained if:

pivot is of rank i in A.

Q(A) = n +
n∑

i=1

Pr
[
pivot has rank i

] (
Q(Ai

left) + Q(Ai
right)

)
.

Since each element of A has probability exactly of 1/n of being
chosen:

Q(A) = n +
n∑

i=1

1

n

(
Q(Ai

left) + Q(Ai
right)

)
.

Sariel, Alexandra (UIUC) CS473 39 Spring 2013 39 / 42

Analysis via Recurrence

Let T(n) = maxA:|A|=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Pr
[
pivot has rank i

] (
Q(Ai

left) + Q(Ai
right)

)
Therefore, by linearity of expectation:

E
[
Q(A)

]
= n +

n∑
i=1

Pr

[
pivot is
of rank i

](
E
[
Q(Ai

left)
]
+ E

[
Q(Ai

right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T(i − 1) + T(n − i)) .

Sariel, Alexandra (UIUC) CS473 40 Spring 2013 40 / 42

Analysis via Recurrence

Let T(n) = maxA:|A|=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Pr
[
pivot has rank i

] (
Q(Ai

left) + Q(Ai
right)

)
Therefore, by linearity of expectation:

E
[
Q(A)

]
= n +

n∑
i=1

Pr

[
pivot is
of rank i

](
E
[
Q(Ai

left)
]
+ E

[
Q(Ai

right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T(i − 1) + T(n − i)) .

Sariel, Alexandra (UIUC) CS473 40 Spring 2013 40 / 42

Analysis via Recurrence

Let T(n) = maxA:|A|=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Pr
[
pivot has rank i

] (
Q(Ai

left) + Q(Ai
right)

)
Therefore, by linearity of expectation:

E
[
Q(A)

]
= n +

n∑
i=1

Pr

[
pivot is
of rank i

](
E
[
Q(Ai

left)
]
+ E

[
Q(Ai

right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T(i − 1) + T(n − i)) .

Sariel, Alexandra (UIUC) CS473 40 Spring 2013 40 / 42

Analysis via Recurrence

Let T(n) = maxA:|A|=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Pr
[
pivot has rank i

] (
Q(Ai

left) + Q(Ai
right)

)
Therefore, by linearity of expectation:

E
[
Q(A)

]
= n +

n∑
i=1

Pr

[
pivot is
of rank i

](
E
[
Q(Ai

left)
]
+ E

[
Q(Ai

right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T(i − 1) + T(n − i)) .

Sariel, Alexandra (UIUC) CS473 40 Spring 2013 40 / 42

Analysis via Recurrence

Let T(n) = maxA:|A|=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.
We derived:

E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T(i − 1) + T(n − i)) .

Note that above holds for any A of size n. Therefore

max
A:|A|=n

E[Q(A)] = T(n) ≤ n +
n∑

i=1

1

n
(T(i − 1) + T(n − i)) .

Sariel, Alexandra (UIUC) CS473 41 Spring 2013 41 / 42

Analysis via Recurrence

Let T(n) = maxA:|A|=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.
We derived:

E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T(i − 1) + T(n − i)) .

Note that above holds for any A of size n. Therefore

max
A:|A|=n

E[Q(A)] = T(n) ≤ n +
n∑

i=1

1

n
(T(i − 1) + T(n − i)) .

Sariel, Alexandra (UIUC) CS473 41 Spring 2013 41 / 42

Solving the Recurrence

T(n) ≤ n +
n∑

i=1

1

n
(T(i − 1) + T(n − i))

with base case T(1) = 0.
.
Lemma
..
......T(n) = O(n log n).

.
Proof.
..
......(Guess and) Verify by induction.

Sariel, Alexandra (UIUC) CS473 42 Spring 2013 42 / 42

Solving the Recurrence

T(n) ≤ n +
n∑

i=1

1

n
(T(i − 1) + T(n − i))

with base case T(1) = 0.
.
Lemma
..
......T(n) = O(n log n).

.
Proof.
..
......(Guess and) Verify by induction.

Sariel, Alexandra (UIUC) CS473 42 Spring 2013 42 / 42

Solving the Recurrence

T(n) ≤ n +
n∑

i=1

1

n
(T(i − 1) + T(n − i))

with base case T(1) = 0.
.
Lemma
..
......T(n) = O(n log n).

.
Proof.
..
......(Guess and) Verify by induction.

Sariel, Alexandra (UIUC) CS473 42 Spring 2013 42 / 42

Notes

Sariel, Alexandra (UIUC) CS473 43 Spring 2013 43 / 42

Notes

Sariel, Alexandra (UIUC) CS473 44 Spring 2013 44 / 42

Notes

Sariel, Alexandra (UIUC) CS473 45 Spring 2013 45 / 42

Notes

Sariel, Alexandra (UIUC) CS473 46 Spring 2013 46 / 42

Hoare, C. A. R. (1962). Quicksort. Comput. J., 5(1):10–15.

Sariel, Alexandra (UIUC) CS473 46 Spring 2013 46 / 42

	Introduction to Randomized Algorithms
	Introduction
	Basics of Discrete Probability
	Analyzing Randomized Algorithms

	Why does randomization help?
	Randomized Quick Sort and Selection
	Randomized Quick Sort

