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Example: Randomized QuickSort

QuickSort Hoare [1962]

© Pick a pivot element from array

@ Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.
© Recursively sort the subarrays, and concatenate them.

v
. .

Randomized QuickSort

© Pick a pivot element uniformly at random from the array

@ Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.
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Example: Randomized Quicksort

Recall: QuickSort can take ©(n?) time to sort array of size n.
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Example: Randomized Quicksort

Recall: QuickSort can take ©(n?) time to sort array of size n.

Randomized QuickSort sorts a given array of length n in O(n log n)
expected time.
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Example: Randomized Quicksort

Recall: QuickSort can take ©(n?) time to sort array of size n.

Randomized QuickSort sorts a given array of length n in O(n log n)
expected time.

Note: On every input randomized QuickSort takes O(nlogn) time
in expectation. On every input it may take ©(n?) time with some
small probability.
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Example: Verifying Matrix Multiplication

Problem

Given three n X n matrices A,B,C is AB = C?
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Example: Verifying Matrix Multiplication

Problem

Given three n X n matrices A,B,C is AB = C?

Deterministic algorithm:
© Multiply A and B and check if equal to C.
@ Running time?
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Example: Verifying Matrix Multiplication

Problem

Given three n X n matrices A,B,C is AB = C?

Deterministic algorithm:
© Multiply A and B and check if equal to C.

@ Running time? O(n3) by straight forward approach. O(n
with fast matrix multiplication (complicated and impractical).

2.37)
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Example: Verifying Matrix Multiplication

Given three n X n matrices A,B,C is AB = C?
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Example: Verifying Matrix Multiplication

Given three n X n matrices A,B,C is AB = C?

Randomized algorithm:
@ Pick a random n X 1 vector r.
@ Return the answer of the equality ABr = Cr.
© Running time?
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Example: Verifying Matrix Multiplication

Given three n X n matrices A,B,C is AB = C?

Randomized algorithm:
@ Pick a random n X 1 vector r.
@ Return the answer of the equality ABr = Cr.
@ Running time? O(n?)!

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7/ 42



Example: Verifying Matrix Multiplication

Given three n X n matrices A,B,C is AB = C?

Randomized algorithm:
@ Pick a random n X 1 vector r.
@ Return the answer of the equality ABr = Cr.
© Running time? O(n?)!

If AB = C then the algorithm will always say YES. If AB # C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a

false positive to 1,/2190.
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Why randomized algorithms?

©@ Many many applications in algorithms, data structures and
computer science!

© In some cases only known algorithms are randomized or
randomness is provably necessary.

@ Often randomized algorithms are (much) simpler and/or more
efficient.

@ Several deep connections to mathematics, physics etc.

Q...

O Lots of fun!
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Where do | get random bits?

Question: Are true random bits available in practice?
© Buy them!
© CPUs use physical phenomena to generate random bits.

© Can use pseudo-random bits or semi-random bits from nature.
Several fundamental unresolved questions in complexity theory
on this topic. Beyond the scope of this course.

© In practice pseudo-random generators work quite well in many
applications.

© The model is interesting to think in the abstract and is very
useful even as a theoretical construct. One can derandomize
randomized algorithms to obtain deterministic algorithms.
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Average case analysis vs Randomized algorithms

Average case analysis:
© Fix a deterministic algorithm.
© Assume inputs comes from a probability distribution.

© Analyze the algorithm’s average performance over the
distribution over inputs.

Randomized algorithms:
© Algorithm uses random bits in addition to input.

© Analyze algorithms average performance over the given input
where the average is over the random bits that the algorithm
uses.

© On each input behaviour of algorithm is random. Analyze
worst-case over all inputs of the (average) performance.
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Discrete Probability

We restrict attention to finite probability spaces.

Definition

A discrete probability space is a pair (€2, Pr) consists of finite set Q
of elementary events and function p : 2 — [0, 1] which assigns a
probability Pr[w] for each w € Q such that ) o Pr[w] = 1.
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Discrete Probability

We restrict attention to finite probability spaces.

Definition
A discrete probability space is a pair (€2, Pr) consists of finite set Q

of elementary events and function p : 2 — [0, 1] which assigns a
probability Pr[w] for each w € Q such that ) o Pr[w] = 1.

An unbiased coin. 2 = {H, T} and Pr[H] = Pr[T] = 1/2.

A 6-sided unbiased die. 2 = {1,2,3,4,5,6} and Pr[i] = 1/6 for
1<i<6.
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Discrete Probability

And more examples

A biased coin. Q = {H, T} and Pr[H] = 2/3, Pr[T] =1/3.

Two independent unbiased coins. 2 = {HH, TT,HT, TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

A pair of (highly) correlated dice.
Q={(i,j) [1<i<61<j<6}.
Prfi,i] = 1/6 for 1 < i < 6 and Pr[i,j] = 0 if i # j.
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Events

Definition
Given a probability space (€2, Pr) an event is a subset of 2. In other

words an event is a collection of elementary events. The probability
of an event A, denoted by Pr[A], is > _A Pr[w].

wEA

The complement event of an event A C Q is the event \ A
frequently denoted by A.
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Events

Examples

A pair of independent dice. 2 = {(i,j) |1 <i<6,1 <j<6}.
© Let A be the event that the sum of the two numbers on the dice
is even.
Then A = {(i,j) € Q ‘ (i+1]j)is even}.
Pr[A] = |A|/36 =1/2.

@ Let B be the event that the first die has 1. Then
B ={(1,1),(1,2),(1,3),(1,4), (1,5), (1,6) }.
Pr[B] =6/36 = 1/6.
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Independent Events

Definition

Given a probability space (€2, Pr) and two events A, B are
independent if and only if Pr[A N B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A, B independent implies one
does not affect the other.

Spring 2013 15 / 42
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Independent Events

Given a probability space (€2, Pr) and two events A, B are
independent if and only if Pr[A N B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A, B independent implies one
does not affect the other.

Example
Two coins. = {HH, TT,HT, TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.
@ A is the event that the first coin is heads and B is the event
that second coin is tails. A, B are independent.

@ A is the event that the two coins are different. B is the event
that the second coin is heads. A, B independent.

4

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 42



Independent Events

Examples

A is the event that both are not tails and B is event that second coin
is heads. A, B are dependent.
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Union bound
The probability of the union of two events, is no bigger than the probability of the

sum of their probabilities.

For any two events & and F, we have that

Pr[a u.ﬂ < Pr[e} + Pr[ﬂ.

Proof.

Consider € and F to be a collection of elmentery events (which they
are). We have

Pr[SUEF] = Y Prix]

x€EEUF
<Y PrIx]+ > Prix] = Pr[e] + Pr[ff} :
x€& xXEF
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Random Variables

Definition

Given a probability space (€2, Pr) a (real-valued) random variable X
over € is a function that maps each elementary event to a real
number. In other words X : 2 — R.
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Random Variables

Given a probability space (€2, Pr) a (real-valued) random variable X
over € is a function that maps each elementary event to a real
number. In other words X : 2 — R.

Example
A 6-sided unbiased die. 2 = {1,2,3,4,5,6} and Pr[i] = 1/6 for
1<i<e6.

QO X:Q — R where X(i) =i mod 2.

Q Y : Q — R where Y(i) = i2.
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Random Variables

Given a probability space (€2, Pr) a (real-valued) random variable X

over € is a function that maps each elementary event to a real
number. In other words X : 2 — R.

A 6-sided unbiased die. 2 = {1,2,3,4,5,6} and Pr[i] = 1/6 for
1<i<e6.

QO X:Q — R where X(i) =i mod 2.
Q Y : Q — R where Y(i) = i2.

A

Definition
A binary random variable is one that takes on values in {0, 1}.
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Indicator Random Variables

Special type of random variables that are quite useful.

Definition
Given a probability space (€2, Pr) and an event A C 2 the indicator
random variable Xp is a binary random variable where Xa(w) = 1 if

w € Aand Xa(w) =0ifw & A.
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Indicator Random Variables

Special type of random variables that are quite useful.

Given a probability space (€2, Pr) and an event A C 2 the indicator
random variable Xp is a binary random variable where Xa(w) = 1 if

w € Aand Xa(w) =0ifw & A.

o’

Example
A 6-sided unbiased die. 2 = {1,2,3,4,5,6} and Pr[i] = 1/6 for
1 <i < 6. Let A be the even that i is divisible by 3. Then

Xa(i) = 1if i = 3,6 and 0 otherwise.
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Expectation

Definition
For a random variable X over a probability space (€2, Pr) the

expectation of X is defined as ) g Pr[w] X(w). In other words,
the expectation is the average value of X according to the

probabilities given by Pr][-].
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Expectation

For a random variable X over a probability space (€2, Pr) the
expectation of X is defined as ) g Pr[w] X(w). In other words,
the expectation is the average value of X according to the
probabilities given by Pr[:].

Example
A 6-sided unbiased die. 2 = {1,2,3,4,5,6} and Pr[i] = 1/6 for
1<i<6.
Q@ X:Q — R where X(i) =i mod 2. Then E[X] =1/2.
QY: Q—)RwhereY()_l2 Then
E[Y] =Y, +-i?=91/6.

v
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Expectation

Proposition
For an indicator variable Xa, E[Xa] = Pr[A].

E[Xa]l =) Xa(y) Prly]

yeQ

=) 1-Pryl+ > 0-Prly]

yEA yEQ\A

=> Prly]

yeA
= Pr[A].
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Linearity of Expectation

Let X, Y be two random variables (not necessarily independent) over
a probability space (2, Pr). Then E[X + Y] = E[X] + E[Y].

EIX + Y] = ) Prlw] (X(w) + Y(w))
=) Prlw]X(w) + ) Prlw] Y(w) = E[X] + E[Y].
O

v
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Linearity of Expectation

Let X, Y be two random variables (not necessarily independent) over
a probability space (2, Pr). Then E[X + Y] = E[X] + E[Y].

EIX + Y] = ) Prlw] (X(w) + Y(w))
= Z Prlw] X(w) + Z Priw] Y(w) = E[X] + E[Y].
O

v

E[aiX;: + a2 X, + ... + a.X,] = >, a E[Xi].
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Types of Randomized Algorithms

Typically one encounters the following types:

@ Las Vegas randomized algorithms: for a given input x
output of algorithm is always correct but the running time is a
random variable. In this case we are interested in analyzing the
expected running time.

© Monte Carlo randomized algorithms: for a given input x the
running time is deterministic but the output is random; correct
with some probability. In this case we are interested in analyzing
the probability of the correct output (and also the running time).

© Algorithms whose running time and output may both be random.
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Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem I:
Q Let Q(x) be the time for Q to run on input x of length |x|.
© Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max Q(x).

x:|x|=n
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Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem I:
Q Let Q(x) be the time for Q to run on input x of length |x|.
© Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max Q(x).

x:|x|=n

Randomized algorithm R for a problem IM:
Q Let R(x) be the time for Q to run on input x of length |x|.
@ R(x) is a random variable: depends on random bits used by R.
@ E[R(x)] is the expected running time for R on x
© Worst-case analysis: expected time on worst input of size n

Trand—wc(n) = xﬂl?:xn E[Q(X)] .
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Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem IM:

Q Let M(x) be the time for M to run on input x of length |x|. For
Monte Carlo, assumption is that run time is deterministic.

@ Let Pr[x] be the probability that M is correct on x.
© Pr[x] is a random variable: depends on random bits used by M.
© Worst-case analysis: success probability on worst input

Prand—wc(n) = min PI’[X] .

x:|x|=n

Sariel, Alexandra (UIUC) Spring 2013 25/ 42



Part 1l

Why does randomization help?
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

05

probablity

0 0.5 1 1.5
n=2
CS473
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.
04 T I I \

0.35
0.3
0.25

02

probablity

0.15

0.1

0.05

n=4
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

03 I \ I I
0.25
0.2
=
2 015
o
e
o
0.1
0.05
0
0 1 2 3 4 5 6 7 8
n=38
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

02 \ I \ 7

0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04

probablity

0.02
0

n=16
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.
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n=232
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

0.1 I T I I -
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probablity

0.03
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0

n=64

Sariel, Alexandra (UIUC) Spring 2013 27 / 42



Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.
005 -
0.045

0.04 -
0.035 |-
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0.025
0.02
0.015
0.01
0.005 |~
0

probablity

0 50 100 150 200 250
n=256

Sariel, Alexandra (UIUC) Spring 2013 27 / 42



Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.

0.035 —
0.03 |- —
0.025 =

0.02 |

probablity

0.015 |- =

0.01 |- -

0.005

0 100 200 300 400 500
n=>512

Sariel, Alexandra (UIUC) Spring 2013 27 / 42



Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.
0025 -

0.015 —

probablity

o

=]

=
I

|

0.005 |- -

0 200 400 600 800 1000
n=1024
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.
0018 - ! [ -

0.016 |- —
0.014 - =
0.012 —

0.01 |~ -

probablity

0.008 - —

0.006 — —

0.004 — —

0.002 —

0 500 1000 1500 2000
n=2048
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.
0014

I I

0.012
0.01 |- -

0.008 — |

probablity

0.006 — —

0.004 — =

0.002 |~ =

0 | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000

n = 4096
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.
0.009 - \ I \ { I M

0.008 |- -
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0.004 — =

probablity
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n=_8192

0
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Massive randomness.. Is not that

0.009

0.008

0.007 -

0.006

0.005

0.004 —

probablity

0.003 -

0.002

0.001

0 | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

n=_8192

This is known as concentration of mass.
This is a very special case of the law of large numbers.
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Side note...

Law of large numbers (weakest form)...

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution
looks like (converges to) the normal/Gaussian distribution.

0.009
0.008
0.007
0.006

0.005

probabliy

0.004
0.003
0.002

0.001

o
3800 3850 3900 3950 4000 4050 4100 4150 4200
n = 8000
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Massive randomness.. Is not that random.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very
predictable in the strategic level.
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Binomial distribution

X, = numbers of heads when flipping a coin n times.

Pr[x,, = i} =

Where: (:) = (n_"—k'),k,

Indeed, (':) is the number of ways to choose i elements out of n
elements (i.e., pick which i coin flip come up heads).

Each specific such possibility (say 0100010...) had probability 1/2".
We are interested in the bad event Pr[X, < n/4] (way too few

heads). We are going to prove this probability is tiny.
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Binomial distribution

Playing around with binomial coefficients

n! > (n/e)". \

oo i
n n N
—SE i
i=0l'

n

n!

by the Taylor expansion of e* = >~ ’Iil This implies that
(n/e)" < nl, as required.
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Binomial distribution

Playing around with binomial coefficients

Lemma

For any k < n, we have (}) < (T)k.

v

<n)_ n! _nn—1)(n—-2)...(n—k+1)

k) (n—k)Ik! k!
nk nk ne\
(2
k! (E k
since k! > (k/e)* (by previous lemma). O
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Binomial distribution

Playing around with binomial coefficients
n/4
1 1
e = Lol <22 ()
4 27 \k 2n n/4

For k < n/4 the above sequence behave like a geometric variable.

<k i 1)/<:) ~ (k+ 1)|(:!— k — 1)'/(k)!(:!— k)!
_n—k_ (3/4)n

k+1—n/4+1—
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Binomial distribution

Playing around with binomial coefficients
n 1 n 1 ne \"/* 4e\ "4
PriX,<-—-| <—2. < —2.(— <2 —
4 2" n/4 2n n/4 24
< 2.0.68"4.

We just proved the following theorem.

Theorem

Let X,, be the random variable which is the number of heads when
flipping an unbiased coin independently n times. Then

3
Pr {xn < ﬂ < 2.0.68"* and Pr[x,, > T"] < 2.0.68"4,
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Part |11

Randomized Quick Sort and Selection
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Randomized QuickSort

Randomized QuickSort

@ Pick a pivot element uniformly at random from the array.

@ Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.
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Q@ array: 16, 12, 14, 20, 5, 3, 18, 19, 1
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Analysis via Recurrence

@ Given array A of size n, let Q(A) be number of comparisons of
randomized QuickSort on A.

@ Note that Q(A) is a random variable.

Q Let Al and Al be the left and right arrays obtained if:

pivot is of rank i in A.

Q(A)=n+ Z Pr |pivot has rank i| (Q(Al,) + Q(AY,,)) -

i
i=1
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Analysis via Recurrence

@ Given array A of size n, let Q(A) be number of comparisons of
randomized QuickSort on A.

@ Note that Q(A) is a random variable.

Q Let Al and Al be the left and right arrays obtained if:

pivot is of rank i in A.

Q(A)=n+ Z Pr |pivot has rank i| (Q(Al,) + Q(AY,,)) -

Since each element of A has probability exactly of 1/n of being
chosen:

Q(A) =n+ i% (Q(A:eft) + Q(Airight)> °
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Analysis via Recurrence

Let T(n) = maxa;jaj=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.
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Analysis via Recurrence

Let T(n) = maxa;jaj=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) =n+ z": Pr [pivot has rank i] (Q(A:eft) + Q(Airight)>

i=1
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Analysis via Recurrence

Let T(n) = maxa;jaj=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) =n+ Z Pr [pivot has rank i] (Q(A:eft) + Q(Airight)>
i=1
Therefore, by linearity of expectation:

E[Q(A)} =n+ E_n: Pr{ inOt ’ } <E [Q(A:eft)] + E[Q(Airight)]> .

of rank i
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Analysis via Recurrence

Let T(n) = maxa;jaj=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) =n+ Z Pr [pivot has rank i] (Q(A:eft) + Q(Airight)>
i=1
Therefore, by linearity of expectation:

E[Q(A)} =n+ E_n: Pr{ inOt ’ } <E [Q(A:eft)] + E[Q(Airight)]> .

of rank i

= E[Q(A)] §n+§j%(T(i—l)+T(n—i))-
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Analysis via Recurrence

Let T(n) = maxa;jaj=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.
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Analysis via Recurrence

Let T(n) = maxa;jaj=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.
We derived:

E[Q(A)} < n+Z%(T(i—1)+T(n—i)).

Note that above holds for any A of size n. Therefore

max E[Q(A)] =T(n) <n+ Z % (TG —1)+T(n—1i)).

A:|A|=n
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Solving the Recurrence

T(n)§n+Z%(T(i—1)+T(n—i))

with base case T(1) = 0.
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with base case T(1) = 0.

T(n) = O(nlogn). \
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Solving the Recurrence

T(n)§n+Z%(T(i—1)+T(n—i))

with base case T(1) = 0.

T(n) = O(nlogn). l

(Guess and) Verify by induction.
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