
Chapter 11

Greedy Algorithms

CS 473: Fundamental Algorithms, Spring 2013
February 26, 2013

11.1 Problems and Terminology

11.2 Problem Types
11.2.0.1 Problem Types

(A) Decision Problem: Is the input a YES or NO input?
Example: Given graph G, nodes s, t, is there a path from s to t in G?

(B) Search Problem: Find a solution if input is a YES input.
Example: Given graph G, nodes s, t, find an s-t path.

(C) Optimization Problem: Find a best solution among all solutions for the input.
Example: Given graph G, nodes s, t, find a shortest s-t path.

11.2.0.2 Terminology

(A) A problem Π consists of an infinite collection of inputs {I1, I2, . . . , }. Each input is
referred to as an instance.

(B) The size of an instance I is the number of bits in its representation.
(C) For an instance I, sol(I) is a set of feasible solutions to I. Typical implicit assumption:

given instance I and y ∈ Σ∗, there is a way to check (efficiently!) if y ∈ sol(I). In other
words, problem is in NP.

(D) For optimization problems each solution s ∈ sol(I) has an associated value. Typical
implicit assumption: given s, can compute value efficiently.

11.2.0.3 Problem Types

(A) Decision Problem: Given I output whether sol(I) = ∅ or not.
(B) Search Problem: Given I, find a solution s ∈ sol(I) if sol(I) ̸= ∅.
(C) Optimization Problem: Given I,

1

(A) Minimization problem. Find a solution s ∈ sol(I) of minimum value
(B) Maximization problem. Find a solution s ∈ sol(I) of maximum value
(C) Notation: opt(I): interchangeably (when there is no confusion) used to denote the

value of an optimum solution or some fixed optimum solution.

11.3 Greedy Algorithms: Tools and Techniques
11.3.0.4 What is a Greedy Algorithm?

No real consensus on a universal definition.
Greedy algorithms:

(A) make decision incrementally in small steps without backtracking
(B) decision at each step is based on improving local or current state in a myopic fashion

without paying attention to the global situation
(C) decisions often based on some fixed and simple priority rules

11.3.0.5 Pros and Cons of Greedy Algorithms

Pros:
(A) Usually (too) easy to design greedy algorithms
(B) Easy to implement and often run fast since they are simple
(C) Several important cases where they are effective/optimal
(D) Lead to a first-cut heuristic when problem not well understood

Cons:
(A) Very often greedy algorithms don’t work. Easy to lull oneself into believing they work
(B) Many greedy algorithms possible for a problem and no structured way to find effective

ones
CS 473: Every greedy algorithm needs a proof of correctness

11.3.0.6 Greedy Algorithm Types

Crude classification:
(A) Non-adaptive: fix some ordering of decisions a priori and stick with the order
(B) Adaptive: make decisions adaptively but greedily/locally at each step

Plan:
(A) See several examples
(B) Pick up some proof techniques

11.4 Interval Scheduling

11.4.1 Interval Scheduling

11.4.1.1

Problem 11.4.1 (Interval Scheduling).

2

Input: A set of jobs with start and finish times to be scheduled on a resource (example:
classes and class rooms).

Goal: Schedule as many jobs as possible
(A) Two jobs with overlapping intervals cannot both be scheduled!

11.4.2 The Algorithm
11.4.2.1 Greedy Template

R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty do
<2->choose i ∈ R
add i to X
remove from R all requests that overlap with i

return the set X

Main task: Decide the order in which to process requests in R

11.4.2.2 Earliest Start Time

Process jobs in the order of their starting times, beginning with those that start earliest.

11.4.2.3 Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest
processing.

11.4.2.4 Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

11.4.2.5 Earliest Finish Time

Process jobs in the order of their finishing times, beginning with those that finish earliest.

3

11.4.3 Correctness
11.4.3.1 Optimal Greedy Algorithm

R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

add i to X
remove from R all requests that overlap with i

return X

Theorem 11.4.2. The greedy algorithm that picks jobs in the order of their finishing times
is optimal.

11.4.3.2 Proving Optimality

(A) Correctness: Clearly the algorithm returns a set of jobs that does not have any con-
flicts

(B) For a set of requests R, let O be an optimal set and let X be the set returned by the
greedy algorithm. Then O = X? Not likely! Instead we will show that |O| = |X|

4

f(i1) f(j1)

i1

j1

j2

f(j2) time

Figure 11.1: Since i1 has the earliest finish time, any interval that conflicts with it does so
at f(i1). This implies j1 and j2 conflict.

11.4.3.3 Proof of Optimality: Key Lemma

Lemma 11.4.3. Let i1 be first interval picked by Greedy. There exists an optimum solution
that contains i1.

Proof : Let O be an arbitrary optimum solution. If i1 ∈ O we are done.
Claim: If i1 ̸∈ O then there is exactly one interval j1 ∈ O that conflicts with i1. (proof

later)
(A) Form a new set O′ by removing j1 from O and adding i1, that is O

′ = (O−{j1})∪{i1}.
(B) From claim, O′ is a feasible solution (no conflicts).
(C) Since |O′| = |O|, O′ is also an optimum solution and it contains i1.

11.4.3.4 Proof of Claim

Claim 11.4.4. If i1 ̸∈ O then there is exactly one interval j1 ∈ O that conflicts with i1.

Proof :
(A) Suppose j1, j2 ∈ O such that j1 ̸= j2 and both j1 and j2 conflict with i1.
(B) Since i1 has earliest finish time, j1 and i1 overlap at f(i1).
(C) For same reason j2 also overlaps with i1 at f(i1).
(D) Implies that j1, j2 overlap at f(i1) contradicting the feasibility of O.
See figure in next slide.

11.4.3.5 Figure for proof of Claim
11.4.3.6 Proof of Optimality of Earliest Finish Time First

Proof :[Proof by Induction on number of intervals] Base Case: n = 1. Trivial since Greedy
picks one interval.
Induction Step: Assume theorem holds for i < n.

5

Let I be an instance with n intervals
I ′: I with i1 and all intervals that overlap with i1 removed
G(I), G(I ′): Solution produced by Greedy on I and I ′

From Lemma, there is an optimum solution O to I and i1 ∈ O.
Let O′ = O − {i1}. O′ is a solution to I ′.

|G(I)| = 1 + |G(I ′)| (from Greedy description)

≤ 1 + |O′| (By induction, G(I ′) is optimum for I ′)

= |O|

11.4.4 Running Time
11.4.4.1 Implementation and Running Time

Initially R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty

<3>choose i ∈ R such that finishing time of i is least

<4>if i does not overlap with requests in X
add i to X

<5>remove i from R
return the set X

(A) Presort all requests based on finishing time. O(n log n) time
(B) Now choosing least finishing time is O(1)
(C) Keep track of the finishing time of the last request added to A. Then check if starting

time of i later than that
(D) Thus, checking non-overlapping is O(1)
(E) Total time O(n log n+ n) = O(n log n)

11.4.5 Extensions and Comments
11.4.5.1 Comments

(A) Interesting Exercise: smallest interval first picks at least half the optimum number of
intervals.

(B) All requests need not be known at the beginning. Such online algorithms are a subject
of research

11.4.6 Interval Partitioning

11.4.7 The Problem
11.4.7.1 Scheduling all Requests

Input A set of lectures, with start and end times

6

Goal Find the minimum number of classrooms, needed to schedule all the lectures such two
lectures do not occur at the same time in the same room.

a
b
c d

e

f

g

h
i

j

Figure 11.2: A schedule requiring 4 class-
rooms

a
b
c d

e

f
g

h
i

j

a
b
c d

e

f
g

h
i

j

Figure 11.3: A schedule requiring 3 class-
rooms

11.4.8 The Algorithm

11.4.8.1 Greedy Algorithm

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty do
choose i ∈ R such that start time of i is earliest

if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d+ 1

and schedule lecture i in d+ 1
d = d+ 1

What order should we process requests in? According to start times (breaking ties arbitrar-
ily)

7

11.4.9 Example of algorithm execution

11.4.9.1 “Few things are harder to put up with than a good example.” – Mark
Twain

a
b
c d

e
f

g

h

i
j

a

a
b
a

a
b

a

c

a
b

aa
b
c d

a
b
c

8

a
b
c d

e

a
b
c d

a
b
c d

e

f

a
b
c d

e

a
b
c d

e
f

g

a
b
c d

e
f

a
b
c d

e
f

g

h
a
b
c d

e
f

g

9

.

.a

.b

.c .d

.e

.f

.g

.h
.i
.j

a
b
c d

e
f

g

h

i

a
b
c d

e
f

g

h

a
b
c d

e
f

g

h
i

j

a
b
c d

e
f

g

h
i

a
b
c d

e
f

g

h
i

j

11.4.10 Correctness
11.4.10.1 Depth of Lectures

Definition 11.4.5. (A) For a set of lectures R, k are said to be in conflict if there is
some time t such that there are k lectures going on at time t.

(B) The depth of a set of lectures R is the maximum number of lectures in conflict at any
time.

10

s(j)

j

no such job
scheduled before j

11.4.10.2 Depth and Number of Class-rooms

Lemma 11.4.6. For any set R of lectures, the number of class-rooms required is at least the
depth of R.

Proof : All lectures that are in conflict must be scheduled in different rooms.

11.4.10.3 Number of Class-rooms used by Greedy Algorithm

Lemma 11.4.7. Let d be the depth of the set of lectures R. The number of class-rooms used
by the greedy algorithm is d.

Proof :

(A) Suppose the greedy algorithm uses more that d rooms. Let j be the first lecture that is
scheduled in room d+ 1.

(B) Since we process lectures according to start times, there are d lectures that start (at or)
before j and which are in conflict with j.

(C) Thus, at the start time of j, there are at least d+1 lectures in conflict, which contradicts
the fact that the depth is d.

11.4.10.4 Figure
11.4.10.5 Correctness

Observation 11.4.8. The greedy algorithm does not schedule two overlapping lectures in
the same room.

Theorem 11.4.9. The greedy algorithm is correct and uses the optimal number of class-
rooms.

11

1 2 3 4 5 6
ti 3 2 1 4 3 2
di 6 8 9 9 14 15

..0 .
1

.
2

.
3

.
4

.
5

.
6

.
7

.
8

.
9

.
10

.
11

.
12

.
13

.
14

.
15

.3 .2 .6 .1 .5 .4

.l1 = 2 .l5 = 0 .l4 = 6

11.4.11 Running Time
11.4.11.1 Implementation and Running Time

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty

<1-2>choose i ∈ R such that start time of i is earliest

<3->if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d+ 1 and schedule lecture i in d+ 1
d = d+ 1

(A) Presort according to start times. Picking lecture with earliest start time can be done
in O(1) time.

(B) Keep track of the finish time of last lecture in each room.
(C) ¡4¿Checking conflict takes O(d) time.¡5¿With priority queues, checking conflict takes

O(log d) time.
(D) Total time ¡4¿= O(n log n+ nd)¡5¿= O(n log n+ n log d) = O(n log n)

11.5 Scheduling to Minimize Lateness

11.5.1 The Problem
11.5.1.1 Scheduling to Minimize Lateness

(A) Given jobs with deadlines and processing times to be scheduled on a single resource.
(B) If a job i starts at time si then it will finish at time fi = si+ ti, where ti is its processing

time. di: deadline.
(C) The lateness of a job is li = max(0, fi − di).
(D) Schedule all jobs such that L = max li is minimized.

11.5.1.2 A Simpler Feasibility Problem

(A) Given jobs with deadlines and processing times to be scheduled on a single resource.
(B) If a job i starts at time si then it will finish at time fi = si+ ti, where ti is its processing

time.

12

(C) Schedule all jobs such that each of them completes before its deadline (in other words
L = maxi li = 0).

Definition 11.5.1. A schedule is feasible if all jobs finish before their deadline.

11.5.2 The Algorithm
11.5.2.1 Greedy Template

Initially R is the set of all requests

curr time = 0
while R is not empty do

<2->choose i ∈ R
curr time = curr time+ ti
if (curr time > di) then

return ‘‘no feasible schedule’’

return ‘‘found feasible schedule’’

Main task: Decide the order in which to process jobs in R

11.5.2.2 Three Algorithms

(A) Shortest job first — sort according to ti.
(B) Shortest slack first — sort according to di − ti.
(C) EDF = Earliest deadline first — sort according to di.
Counter examples for first two: exercise

11.5.2.3 Earliest Deadline First

Theorem 11.5.2. Greedy with EDF rule for picking requests correctly decides if there is a
feasible schedule.

Proof via an exchange argument.
Idle time: time during which machine is not working.

Lemma 11.5.3. If there is a feasible schedule then there is one with no idle time before all
jobs are finished.

11.5.2.4 Inversions

Definition 11.5.4. A schedule S is said to have an inversion if there are jobs i and j
such that S schedules i before j, but di > dj.

Claim 11.5.5. If a schedule S has an inversion then there is an inversion between two
adjacently scheduled jobs.

Proof: exercise.

13

11.5.2.5 Main Lemma

Lemma 11.5.6. If there is a feasible schedule, then there is one with no inversions.

Proof :[Proof Sketch] Let S be a schedule with minimum number of inversions.

(A) If S has 0 inversions, done.
(B) Suppose S has one or more inversions. By claim there are two adjacent jobs i and j

that define an inversion.
(C) Swap positions of i and j.
(D) New schedule is still feasible. (Why?)
(E) New schedule has one fewer inversion — contradiction!

11.5.2.6 Back to Minimizing Lateness

Goal: schedule to minimize L = maxi li.

How can we use algorithm for simpler feasibility problem?

Given a lateness bound L, can we check if there is a schedule such that maxi li ≤ L?

Yes! Set d′i = di + L for each job i. Use feasibility algorithm with new deadlines.

How can we find minimum L? Binary search!

11.5.2.7 Binary search for finding minimum lateness

L = Lmin = 0
Lmax =

∑
i ti // why is this sufficient?

While Lmin < Lmax do

L = ⌊(Lmax + Lmin)/2⌋
check if there is a feasible schedule with lateness L
if ‘‘yes’’ then Lmax = L
else Lmin = L+ 1

end while

return L

Running time: O(n log n · log T) where T =
∑

i ti
(A) O(n log n) for feasibility test (sort by deadlines)
(B) O(log T) calls to feasibility test in binary search

11.5.2.8 Do we need binary search?

What happens in each call?
EDF algorithm with deadlines d′i = di + L.

Greedy with EDF schedules the jobs in the same order for all L!!!

Maybe there is a direct greedy algorithm for minimizing maximum lateness?

14

11.5.2.9 Greedy Algorithm for Minimizing Lateness

Initially R is the set of all requests

curr time = 0
curr late = 0
while R is not empty

choose i ∈ R with earliest deadline

curr time = curr time+ ti
late = curr time− di
curr late = max(late, curr late)

return curr late

Exercise: argue directly that above algorithm is correct
Can be easily implemented in O(n log n) time after sorting jobs.

11.5.2.10 Greedy Analysis: Overview

(A) Greedy’s first step leads to an optimum solution. Show that there is an optimum
solution leading from the first step of Greedy and then use induction. Example, Interval
Scheduling.

(B) Greedy algorithm stays ahead. Show that after each step the solution of the greedy
algorithm is at least as good as the solution of any other algorithm. Example, Interval
scheduling.

(C) Structural property of solution. Observe some structural bound of every solution
to the problem, and show that greedy algorithm achieves this bound. Example, Interval
Partitioning.

(D) Exchange argument. Gradually transform any optimal solution to the one produced
by the greedy algorithm, without hurting its optimality. Example, Minimizing lateness.

11.5.2.11 Takeaway Points

(A) Greedy algorithms come naturally but often are incorrect. A proof of correctness is an
absolute necessity.

(B) Exchange arguments are often the key proof ingredient. Focus on why the first step of
the algorithm is correct: need to show that there is an optimum/correct solution with
the first step of the algorithm.

(C) Thinking about correctness is also a good way to figure out which of the many greedy
strategies is likely to work.

15

16

Bibliography

17

	Problems and Terminology
	Problem Types

	Greedy Algorithms: Tools and Techniques
	Interval Scheduling
	The Algorithm
	Correctness
	Running Time
	Extensions and Comments

	Interval Partitioning
	The Problem
	The Algorithm
	Correctness
	Running Time

	Scheduling to Minimize Lateness
	The Problem
	The Algorithm

