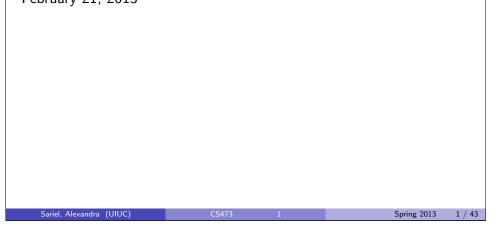
CS 473: Fundamental Algorithms, Spring 2013

More Dynamic Programming

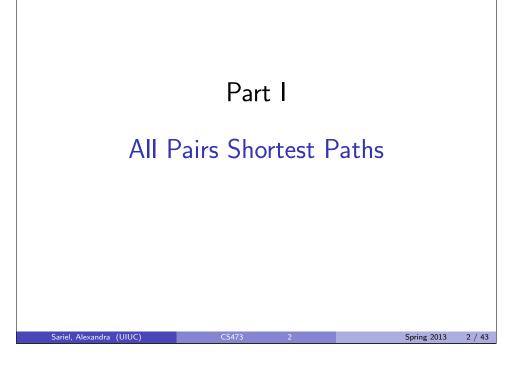
Lecture 10 February 21, 2013



Shortest Path Problems

Shortest Path Problems

- Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.
- **(**) Given nodes **s**, **t** find shortest path from **s** to **t**.
- **②** Given node **s** find shortest path from **s** to all other nodes.
- Find shortest paths for all pairs of nodes.



Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes \mathbf{s}, \mathbf{t} find shortest path from \mathbf{s} to \mathbf{t} .
- **②** Given node **s** find shortest path from **s** to all other nodes.

Dijkstra's algorithm for non-negative edge lengths. Running time: $O((m + n) \log n)$ with heaps and $O(m + n \log n)$ with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: **O(nm)**.

3

All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Find shortest paths for all pairs of nodes.

Apply single-source algorithms **n** times, once for each vertex.

- Non-negative lengths. O(nm log n) with heaps and O(nm + n² log n) using advanced priority queues.
- Arbitrary edge lengths: $O(n^2m)$. $\Theta(n^4) \text{ if } m = \Omega(n^2).$

Can we do better?

Hop-based Recur': Single-Source Shortest Paths

Spring 2013

Spring 2013

Single-source problem: fix source **s**.

OPT(v, k): shortest path dist. from s to v using at most k edges. Note: dist(s, v) = OPT(v, n - 1). Recursion for OPT(v, k):

$$OPT(v,k) = \min \begin{cases} \min_{u \in V} (OPT(u,k-1) + c(u,v)).\\ OPT(v,k-1) \end{cases}$$

Base case: OPT(v, 1) = c(s, v) if $(s, v) \in E$ otherwise ∞ Leads to Bellman-Ford algorithm — see text book.

 $\mathsf{OPT}(\mathsf{v},\mathsf{k})$ values are also of independent interest: shortest paths with at most k hops

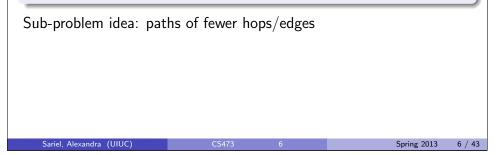
Shortest Paths and Recursion

- **Oracle Section** Compute the shortest path distance from **s** to **t** recursively?
- What are the smaller sub-problems?

Lemma

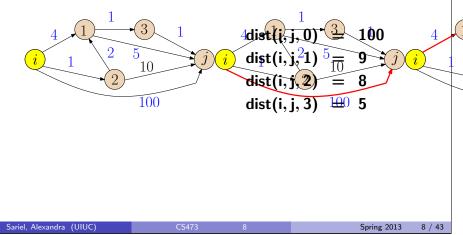
Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

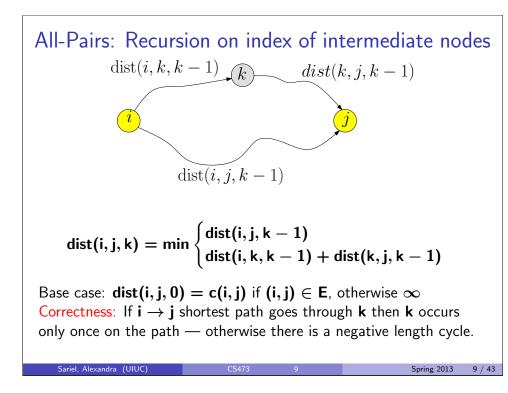
 $\textcircled{0}\ s=v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i



All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- dist(i, j, k): shortest path distance between v_i and v_j among all paths in which the largest index of an *intermediate node* is at most k





Floyd-Warshall Algorithm Do we need a separate algorithm to check if there is negative cycle? for i = 1 to n do for i = 1 to n do dist(i, j, 0) = c(i, j) (* c(i, j) = ∞ if (i, j) $\notin E$, 0 if i = j *) not edge, 0 if i = i *for k = 1 to n do for i = 1 to n do for i = 1 to n do dist(i, j, k) = min(dist(i, j, k - 1), dist(i, k, k - 1) + dist(k, j, k - 1))for i = 1 to n do if (dist(i, i, n) < 0) then Output that there is a negative length cycle in ${f G}$ Correctness: exercise Sariel, Alexandra (UIUC) Spring 2013 11 / 43

Floyd-Warshall Algorithm

Check if **G** has a negative cycle // Bellman-Ford: **O(mn)** time if there is a negative cycle then return ''Negative cycle'' for i = 1 to n do for j = 1 to n do dist(i,j,0) = c(i,j) (* c(i,j) = ∞ if (i,j) \notin E, 0 if i = j *) for k = 1 to n do for i = 1 to n do dist(i,j,k) = min $\begin{cases} dist(i,j,k-1), \\ dist(i,k,k-1) + dist(k,j,k-1) \end{cases}$ Correctness: Recursion works under the assumption that all shortest paths are defined (no negative length cycle). Running Time: $\Theta(n^3)$, Space: $\Theta(n^3)$.

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

- Create a n × n array Next that stores the next vertex on shortest path for each pair of vertices
- With array Next, for any pair of given vertices i, j can compute a shortest path in O(n) time.

CS473

Spring 2013

Floyd-Warshall Algorithm

Next(i, j) = -1 for k = 1 to n do for i = 1 to n do for j = 1 to n c if (dist(i, j, k))	lo $(x-1)>{ m dist}$ k) = dist(i, l	(i, k, k — 1)	j) not edge, 0 if $i = j *$ + dist(k,j,k - 1)) then list(k,j,k - 1))
for $i = 1$ to n do				
if (dist(i, i, n) $<$ 0) th	en			
Output that the	re is a neg	gative leng	th cycle in ${f G}$	
Exercise: Given Next a O(n) algorithm to find a	5		ces i, j describe an	
Sariel, Alexandra (UIUC)	CS473	13	Spring 2013 13 / 43	

Summary of results on shortest paths

Single vertex		
No negative edges	Dijkstra	$O(n \log n + m)$
Edges cost might be negative But no negative cycles	Bellman Ford	O(nm)

All Pairs Shortest Paths

Sariel, Alexandra (UIUC)

No negative edges	n * Dijkstra	$O(n^2 \log n + nm)$
No negative cycles	n * Bellman Ford	$\mathbf{O}(\mathbf{n}^2\mathbf{m}) = \mathbf{O}(\mathbf{n}^4)$
No negative cycles	Floyd-Warshall	$O(n^3)$
	·	

Knapsack Problem Input Given a Knapsack of capacity W lbs. and n objects with ith object having weight \mathbf{w}_i and value \mathbf{v}_i ; assume W, w_i, v_i are all positive integers Goal Fill the Knapsack without exceeding weight limit while maximizing value. Basic problem that arises in many applications as a sub-problem.

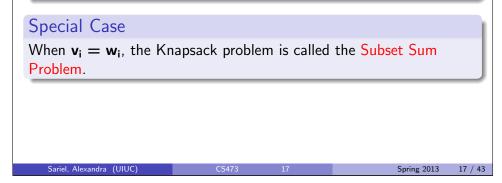
Spring 2013

Knapsack Example

Example

Item	I_1	I ₂	I ₃	I ₄	I_5
Value	1	6	18	22	28
Weight	1	2	5	6	7

If W = 11, the best is $\{I_3, I_4\}$ giving value 40.



Towards a Recursive Solution

First guess: Opt(i) is the optimum solution value for items $1, \ldots, i$.

Observation

Consider an optimal solution \mathcal{O} for $1, \ldots, i$

Case item $\mathbf{i} \not\in \mathcal{O}$ \mathcal{O} is an optimal solution to items $\mathbf{1}$ to $\mathbf{i} - \mathbf{1}$

Case item $i \in \mathcal{O}$ Then $\mathcal{O} - \{i\}$ is an optimum solution for items 1 to n - 1 in knapsack of capacity $W - w_i$. Subproblems depend also on remaining capacity. Cannot write subproblem only in terms of $Opt(1), \dots, Opt(i - 1)$.

Opt(i, w): optimum profit for items 1 to i in knapsack of size w Goal: compute Opt(n, W)

Greedy Approach

- Pick objects with greatest value
 - Let W = 2, $w_1 = w_2 = 1$, $w_3 = 2$, $v_1 = v_2 = 2$ and $v_3 = 3$; greedy strategy will pick $\{3\}$, but the optimal is $\{1, 2\}$
- Pick objects with smallest weight
 - Let W=2, $w_1=1,$ $w_2=2,$ $v_1=1$ and $v_2=3;$ greedy strategy will pick {1}, but the optimal is {2}
- **③** Pick objects with largest v_i/w_i ratio
 - Let W = 4, $w_1 = w_2 = 2$, $w_3 = 3$, $v_1 = v_2 = 3$ and $v_3 = 5$; greedy strategy will pick $\{3\}$, but the optimal is $\{1, 2\}$
 - Can show that a slight modification always gives half the optimum profit: pick the better of the output of this algorithm and the largest value item. Also, the algorithms gives better approximations when all item weights are small when compared to W.

Dynamic Programming Solution

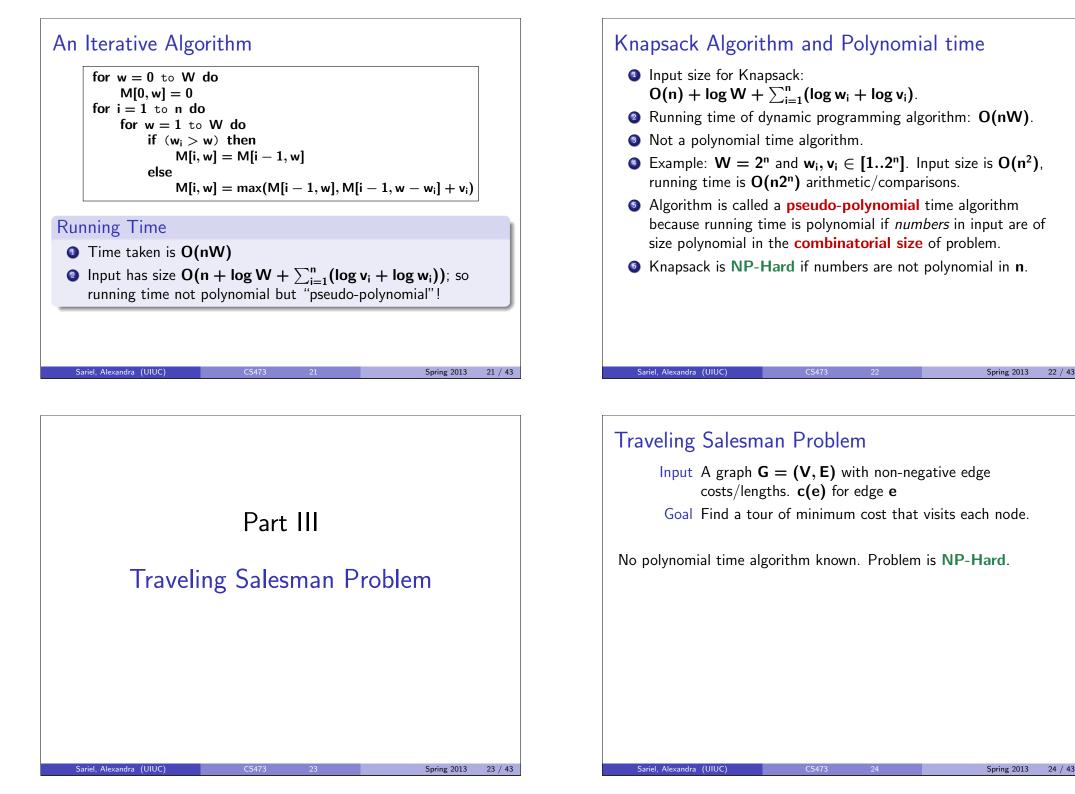
Definition

Let Opt(i, w) be the optimal way of picking items from 1 to i, with total weight not exceeding w.

$$\label{eq:opt_state} \mathrm{Opt}(i,w) = \left\{ \begin{array}{ll} 0 & \text{if } i = 0 \\ \mathrm{Opt}(i-1,w) & \text{if } w_i > w \\ \max \begin{cases} \mathrm{Opt}(i-1,w) & \text{otherwise} \\ \mathrm{Opt}(i-1,w-w_i) + v_i & \end{array} \right.$$

CS473

Spring 2013



Drawings using TSP		
Sariel, Alexandra (UIUC) CS473 25	Spring 2013	25 / 43

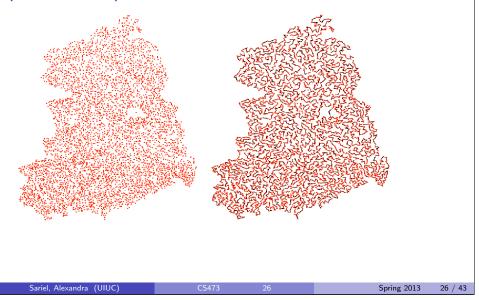
An Exponential Time Algorithm

How many different tours are there? n!

Stirling's formula: $n!\simeq \sqrt{n}(n/e)^n$ which is $\Theta(2^{cn\log n})$ for some constant c>1

Can we do better? Can we get a $2^{O(n)}$ time algorithm?

Example: optimal tour for cities of a country (which one?)



Towards a Recursive Solution

- **Order vertices as** v_1, v_2, \ldots, v_n
- **OPT(S)**: optimum TSP tour for the vertices $S \subseteq V$ in the graph restricted to **S**. Want **OPT(V)**.

Can we compute **OPT(S)** recursively?

- Say v ∈ S. What are the two neighbors of v in optimum tour in S?
- If u, w are neighbors of v in an optimum tour of S then removing v gives an optimum *path* from u to w visiting all nodes in S - {v}.

Path from \mathbf{u} to \mathbf{w} is not a recursive subproblem! Need to find a more general problem to allow recursion.

CS473

A More General Problem: TSP Path

Input A graph G = (V, E) with non-negative edge costs/lengths(c(e) for edge e) and two nodes s, t

Goal Find a path from **s** to **t** of minimum cost that visits each node exactly once.

Can solve TSP using above. Do you see how?

Recursion for optimum TSP Path problem:

• **OPT**(u, v, S): optimum TSP Path from u to v in the graph restricted to S (here $u, v \in S$).

Sariel, Alexandra (UIUC)

A Recursive Solution $OPT(u, v, S) = min_{w \in S, w \neq u,v} (c(u, w) + OPT(w, v, S - \{u\}))$ What are the subproblems for the original problem OPT(s, t, V)? OPT(u, v, S) for $u, v \in S$, $S \subset V$.

How many subproblems?

- 0 number of distinct subsets ${\boldsymbol{S}}$ of ${\boldsymbol{V}}$ is at most 2^n
- **2** number of pairs of nodes in a set ${\boldsymbol{\mathsf{S}}}$ is at most ${\boldsymbol{\mathsf{n}}}^2$
- (a) hence number of subproblems is $O(n^2 2^n)$

Exercise: Show that one can compute TSP using above dynamic program in $O(n^32^n)$ time and $O(n^22^n)$ space.

Disadvantage of dynamic programming solution: memory!

A More General Problem: TSP Path

What is the next node in the optimum path from \mathbf{u} to \mathbf{v} ? Suppose it is \mathbf{w} . Then what is $OPT(\mathbf{u}, \mathbf{v}, \mathbf{S})$?

$$OPT(u, v, S) = c(u, w) + OPT(w, v, S - \{u\})$$

We do not know \mathbf{w} ! So try all possibilities for \mathbf{w} .

Dynamic Programming: Postscript Dynamic Programming = Smart Recursion + Memoization How to come up with the recursion? How to recognize that dynamic programming may apply?

Spring 2013

Spring 2013

Some Tips

- Problems where there is a *natural* linear ordering: sequences, paths, intervals, DAGs etc. Recursion based on ordering (left to right or right to left or topological sort) usually works.
- Problems involving trees: recursion based on subtrees.
- More generally:
 - Problem admits a natural recursive divide and conquer
 - If optimal solution for whole problem can be simply composed from optimal solution for each separate pieces then plain divide and conquer works directly
 - If optimal solution depends on all pieces then can apply dynamic programming if *interface/interaction* between pieces is *limited*. Augment recursion to not simply find an optimum solution but also an optimum solution for each possible way to interact with the other pieces.

Sariel, Alexandra (UIUC)

Spring 2013

33 / 43

Examples

Sariel, Alexandra (UIUC

- Longest Increasing Subsequence: break sequence in the middle say. What is the interaction between the two pieces in a solution?
- Sequence Alignment: break both sequences in two pieces each. What is the interaction between the two sets of pieces?
- Independent Set in a Tree: break tree at root into subtrees. What is the interaction between the sutrees?
- Independent Set in an graph: break graph into two graphs.
 What is the interaction? Very high!
- So Knapsack: Split items into two sets of half each. What is the interaction?

Spring 2013