
CS 473: Fundamental Algorithms, Spring 2013

More Dynamic Programming
Lecture 10
February 21, 2013

Sariel, Alexandra (UIUC) CS473 1 Spring 2013 1 / 43

Part I

All Pairs Shortest Paths

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2 / 43

Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge

lengths (or costs). For edge e = (u, v), `(e) = `(u, v)
is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

3 Find shortest paths for all pairs of nodes.

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3 / 43

Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge
lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m + n) log n) with heaps and O(m + n log n) with
advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time:
O(nm).

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 / 43



All-Pairs Shortest Paths

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V, E) with edge

lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

1 Non-negative lengths. O(nm log n) with heaps and
O(nm + n2 log n) using advanced priority queues.

2 Arbitrary edge lengths: O(n2m).
Θ
(
n4
)

if m = Ω
(
n2
)
.

Can we do better?

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 43

Shortest Paths and Recursion
1 Compute the shortest path distance from s to t recursively?

2 What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk

then for 1 ≤ i < k:

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 / 43

Hop-based Recur’: Single-Source Shortest Paths

Single-source problem: fix source s.

OPT(v, k): shortest path dist. from s to v using at most k edges.

Note: dist(s, v) = OPT(v, n− 1). Recursion for OPT(v, k):

OPT(v, k) = min

{
minu∈V(OPT(u, k− 1) + c(u, v)).

OPT(v, k− 1)

Base case: OPT(v, 1) = c(s, v) if (s, v) ∈ E otherwise∞
Leads to Bellman-Ford algorithm — see text book.

OPT(v, k) values are also of independent interest: shortest paths
with at most k hops

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 43

All-Pairs: Recursion on index of intermediate nodes
1 Number vertices arbitrarily as v1, v2, . . . , vn

2 dist(i, j, k): shortest path distance between vi and vj among all
paths in which the largest index of an intermediate node is at
most k

i

4

1

100

1

10
2 j

3

5

1
1

2

i

4

1

100

1

10
2 j

3

5

1
1

2

i

4

1

100

1

10
2 j

3

5

1
1

2

i

4

1

100

1

10
2 j

3

5

1
1

2

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i, j, 0) = 100

dist(i, j, 1) = 9

dist(i, j, 2) = 8

dist(i, j, 3) = 5

Sariel, Alexandra (UIUC) CS473 8 Spring 2013 8 / 43



All-Pairs: Recursion on index of intermediate nodes

i j

kdist(i, k, k − 1) dist(k, j, k − 1)

dist(i, j, k − 1)

dist(i, j, k) = min

{
dist(i, j, k− 1)

dist(i, k, k− 1) + dist(k, j, k− 1)

Base case: dist(i, j, 0) = c(i, j) if (i, j) ∈ E, otherwise∞
Correctness: If i→ j shortest path goes through k then k occurs
only once on the path — otherwise there is a negative length cycle.

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 43

Floyd-Warshall Algorithm
for All-Pairs Shortest Paths

Check if G has a negative cycle // Bellman-Ford: O(mn) time

if there is a negative cycle then return ‘‘Negative cycle’’

for i = 1 to n do
for j = 1 to n do

dist(i, j, 0) = c(i, j) (* c(i, j) =∞ if (i, j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

dist(i, j, k) = min

{
dist(i, j, k− 1),

dist(i, k, k− 1) + dist(k, j, k− 1)

Correctness: Recursion works under the assumption that all shortest
paths are defined (no negative length cycle).
Running Time: Θ(n3), Space: Θ(n3).

Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 43

Floyd-Warshall Algorithm
for All-Pairs Shortest Paths

Do we need a separate algorithm to check if there is negative cycle?

for i = 1 to n do
for j = 1 to n do

dist(i, j, 0) = c(i, j) (* c(i, j) =∞ if (i, j) /∈ E, 0 if i = j *)

not edge, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
dist(i, j, k) = min(dist(i, j, k− 1), dist(i, k, k− 1) + dist(k, j, k− 1))

for i = 1 to n do
if (dist(i, i, n) < 0) then

Output that there is a negative length cycle in G

Correctness: exercise
Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 43

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

1 Create a n× n array Next that stores the next vertex on
shortest path for each pair of vertices

2 With array Next, for any pair of given vertices i, j can compute a
shortest path in O(n) time.

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 / 43



Floyd-Warshall Algorithm
Finding the Paths

for i = 1 to n do
for j = 1 to n do

dist(i, j, 0) = c(i, j) (* c(i, j) =∞ if (i, j) not edge, 0 if i = j *)

Next(i, j) = −1
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (dist(i, j, k− 1) > dist(i, k, k− 1) + dist(k, j, k− 1)) then
dist(i, j, k) = dist(i, k, k− 1) + dist(k, j, k− 1)
Next(i, j) = k

for i = 1 to n do
if (dist(i, i, n) < 0) then

Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i, j describe an
O(n) algorithm to find a i-j shortest path.

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 / 43

Summary of results on shortest paths
Single vertex
No negative edges Dijkstra O(n log n + m)

Edges cost might be negative
But no negative cycles

Bellman Ford O(nm)

All Pairs Shortest Paths

No negative edges n * Dijkstra O
(
n2 log n + nm

)
No negative cycles n * Bellman Ford O

(
n2m

)
= O

(
n4
)

No negative cycles Floyd-Warshall O
(
n3
)

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 43

Part II

Knapsack

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 43

Knapsack Problem

Input Given a Knapsack of capacity W lbs. and n objects with
ith object having weight wi and value vi; assume
W, wi, vi are all positive integers

Goal Fill the Knapsack without exceeding weight limit while
maximizing value.

Basic problem that arises in many applications as a sub-problem.

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 43



Knapsack Example

Example

Item I1 I2 I3 I4 I5

Value 1 6 18 22 28
Weight 1 2 5 6 7

If W = 11, the best is {I3, I4} giving value 40.

Special Case
When vi = wi, the Knapsack problem is called the Subset Sum
Problem.

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 43

Greedy Approach
1 Pick objects with greatest value

1 Let W = 2, w1 = w2 = 1, w3 = 2, v1 = v2 = 2 and v3 = 3;
greedy strategy will pick {3}, but the optimal is {1, 2}

2 Pick objects with smallest weight
1 Let W = 2, w1 = 1, w2 = 2, v1 = 1 and v2 = 3; greedy

strategy will pick {1}, but the optimal is {2}
3 Pick objects with largest vi/wi ratio

1 Let W = 4, w1 = w2 = 2, w3 = 3, v1 = v2 = 3 and v3 = 5;
greedy strategy will pick {3}, but the optimal is {1, 2}

2 Can show that a slight modification always gives half the
optimum profit: pick the better of the output of this algorithm
and the largest value item. Also, the algorithms gives better
approximations when all item weights are small when compared
to W.

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 43

Towards a Recursive Solution

First guess: Opt(i) is the optimum solution value for items 1, . . . , i.

Observation
Consider an optimal solution O for 1, . . . , i

Case item i 6∈ O O is an optimal solution to items 1 to i− 1

Case item i ∈ O Then O − {i} is an optimum solution for items 1
to n− 1 in knapsack of capacity W − wi.
Subproblems depend also on remaining capacity. Cannot
write subproblem only in terms of
Opt(1), . . . ,Opt(i− 1).

Opt(i, w): optimum profit for items 1 to i in knapsack of size w
Goal: compute Opt(n, W)

Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 43

Dynamic Programming Solution

Definition
Let Opt(i, w) be the optimal way of picking items from 1 to i, with
total weight not exceeding w.

Opt(i, w) =


0 if i = 0
Opt(i− 1, w) if wi > w

max

{
Opt(i− 1, w)

Opt(i− 1, w − wi) + vi

otherwise

Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20 / 43



An Iterative Algorithm

for w = 0 to W do
M[0, w] = 0

for i = 1 to n do
for w = 1 to W do

if (wi > w) then
M[i, w] = M[i− 1, w]

else
M[i, w] = max(M[i− 1, w], M[i− 1, w − wi] + vi)

Running Time
1 Time taken is O(nW)

2 Input has size O(n + log W +
∑n

i=1(log vi + log wi)); so
running time not polynomial but “pseudo-polynomial”!

Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 / 43

Knapsack Algorithm and Polynomial time
1 Input size for Knapsack:

O(n) + log W +
∑n

i=1(log wi + log vi).

2 Running time of dynamic programming algorithm: O(nW).

3 Not a polynomial time algorithm.

4 Example: W = 2n and wi, vi ∈ [1..2n]. Input size is O(n2),
running time is O(n2n) arithmetic/comparisons.

5 Algorithm is called a pseudo-polynomial time algorithm
because running time is polynomial if numbers in input are of
size polynomial in the combinatorial size of problem.

6 Knapsack is NP-Hard if numbers are not polynomial in n.

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 / 43

Part III

Traveling Salesman Problem

Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 / 43

Traveling Salesman Problem

Input A graph G = (V, E) with non-negative edge
costs/lengths. c(e) for edge e

Goal Find a tour of minimum cost that visits each node.

No polynomial time algorithm known. Problem is NP-Hard.

Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 43



Drawings using TSP

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 43

Example: optimal tour for cities of a country

(which one?)

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 43

An Exponential Time Algorithm

How many different tours are there? n!

Stirling’s formula: n! '
√

n(n/e)n which is Θ(2cn log n) for some
constant c > 1

Can we do better? Can we get a 2O(n) time algorithm?

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 43

Towards a Recursive Solution
1 Order vertices as v1, v2, . . . , vn

2 OPT(S): optimum TSP tour for the vertices S ⊆ V in the
graph restricted to S. Want OPT(V).

Can we compute OPT(S) recursively?

1 Say v ∈ S. What are the two neighbors of v in optimum tour in
S?

2 If u, w are neighbors of v in an optimum tour of S then
removing v gives an optimum path from u to w visiting all
nodes in S− {v}.

Path from u to w is not a recursive subproblem! Need to find a more
general problem to allow recursion.

Sariel, Alexandra (UIUC) CS473 28 Spring 2013 28 / 43



A More General Problem: TSP Path

Input A graph G = (V, E) with non-negative edge
costs/lengths(c(e) for edge e) and two nodes s, t

Goal Find a path from s to t of minimum cost that visits each
node exactly once.

Can solve TSP using above. Do you see how?

Recursion for optimum TSP Path problem:

1 OPT(u, v, S): optimum TSP Path from u to v in the graph
restricted to S (here u, v ∈ S).

Sariel, Alexandra (UIUC) CS473 29 Spring 2013 29 / 43

A More General Problem: TSP Path
Continued...

What is the next node in the optimum path from u to v? Suppose it
is w. Then what is OPT(u, v, S)?

OPT(u, v, S) = c(u, w) + OPT(w, v, S− {u})

We do not know w! So try all possibilities for w.

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 / 43

A Recursive Solution

OPT(u, v, S) = minw∈S,w 6=u,v

(
c(u, w) + OPT(w, v, S− {u})

)
What are the subproblems for the original problem OPT(s, t, V)?
OPT(u, v, S) for u, v ∈ S, S ⊆ V.

How many subproblems?

1 number of distinct subsets S of V is at most 2n

2 number of pairs of nodes in a set S is at most n2

3 hence number of subproblems is O(n22n)

Exercise: Show that one can compute TSP using above dynamic
program in O(n32n) time and O(n22n) space.

Disadvantage of dynamic programming solution: memory!

Sariel, Alexandra (UIUC) CS473 31 Spring 2013 31 / 43

Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization

1 How to come up with the recursion?

2 How to recognize that dynamic programming may apply?

Sariel, Alexandra (UIUC) CS473 32 Spring 2013 32 / 43



Some Tips
1 Problems where there is a natural linear ordering: sequences,

paths, intervals, DAGs etc. Recursion based on ordering (left to
right or right to left or topological sort) usually works.

2 Problems involving trees: recursion based on subtrees.
3 More generally:

1 Problem admits a natural recursive divide and conquer
2 If optimal solution for whole problem can be simply composed

from optimal solution for each separate pieces then plain divide
and conquer works directly

3 If optimal solution depends on all pieces then can apply
dynamic programming if interface/interaction between pieces is
limited. Augment recursion to not simply find an optimum
solution but also an optimum solution for each possible way to
interact with the other pieces.

Sariel, Alexandra (UIUC) CS473 33 Spring 2013 33 / 43

Examples
1 Longest Increasing Subsequence: break sequence in the middle

say. What is the interaction between the two pieces in a
solution?

2 Sequence Alignment: break both sequences in two pieces each.
What is the interaction between the two sets of pieces?

3 Independent Set in a Tree: break tree at root into subtrees.
What is the interaction between the sutrees?

4 Independent Set in an graph: break graph into two graphs.
What is the interaction? Very high!

5 Knapsack: Split items into two sets of half each. What is the
interaction?

Sariel, Alexandra (UIUC) CS473 34 Spring 2013 34 / 43


	More Dynamic Programming
	All Pairs Shortest Paths
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm

	Knapsack
	Traveling Salesman Problem
	A More General Problem: TSP Path



