
Chapter 9

More Dynamic Programming

CS 473: Fundamental Algorithms, Spring 2013
February 16, 2013

9.1 Maximum Weighted Independent Set in Trees
9.1.0.1 Maximum Weight Independent Set Problem

Input Graph G = (V,E) and weights w(v) ≥ 0 for each v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

9.1.0.2 Maximum Weight Independent Set in a Tree

Input Tree T = (V,E) and weights w(v) ≥ 0 for each v ∈ V

Goal Find maximum weight independent set in T

Maximum weight independent set in above tree: ??

9.1.0.3 Towards a Recursive Solution

For an arbitrary graph G:
(A) Number vertices as v1, v2, . . . , vn
(B) Find recursively optimum solutions without vn (recurse on G−vn) and with vn (recurse

on G− vn −N(vn) & include vn).

1



r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

(C) Saw that if graph G is arbitrary there was no good ordering that resulted in a small
number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

9.1.0.4 Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum solution to the whole problem.

Case r ̸∈ O : Then O contains an optimum solution for each subtree of T hanging at a
child of r.

Case r ∈ O : None of the children of r can be in O. O−{r} contains an optimum solution
for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of T hanging at nodes in T .

9.1.0.5 A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) = max

{∑
v child of uOPT (v),

w(u) +
∑

v grandchild of uOPT (v)

9.1.0.6 Iterative Algorithm

(A) Compute OPT (u) bottom up. To evaluate OPT (u) need to have computed values of
all children and grandchildren of u

(B) What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a
tree.

2



9.1.0.7 Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M [vi] = max

( ∑
vj child of vi

M [vj ],

w(vi) +
∑

vj grandchild of vi
M [vj ]

)
return M [vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

(A) Naive bound: O(n2) since each M [vi] evaluation may take O(n) time and there are n
evaluations.

(B) Better bound: O(n). A value M [vj] is accessed only by its parent and grand parent.

9.1.0.8 Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

9.1.0.9 Dominating set

Definition 9.1.1. G = (V,E). The set X ⊆ V is a dominating set, if any vertex v ∈ V is
either in X or is adjacent to a vertex in X.

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Problem 9.1.2. Given weights
on vertices, compute the mini-
mum weight dominating set in
G.

Dominating Set is NP-Hard!

3



9.2 DAGs and Dynamic Programming
9.2.0.10 Recursion and DAGs

Observation 9.2.1. Let A be a recursive algorithm for problem Π. For each instance I of
Π there is an associated DAG G(I).

(A) Create directed graph G(I) as follows...
(B) For each sub-problem in the execution of A on I create a node.
(C) If sub-problem v depends on or recursively calls sub-problem u add directed edge (u, v)

to graph.
(D) G(I) is a DAG. Why? If G(I) has a cycle then A will not terminate on I.

9.2.1 Iterative Algorithm for...

9.2.1.1 Dynamic Programming and DAGs

Observation 9.2.2. An iterative algorithm B obtained from a recursive algorithm A for a
problem Π does the following:

For each instance I of Π, it computes a topological sort of G(I) and eval-
uates sub-problems according to the topological ordering.

(A) Sometimes theDAG G(I) can be obtained directly without thinking about the recursive
algorithm A

(B) In some cases (not all) the computation of an optimal solution reduces to a short-
est/longest path in DAG G(I)

(C) Topological sort based shortest/longest path computation is dynamic programming!

9.2.2 A quick reminder...

9.2.2.1 A Recursive Algorithm for weighted interval scheduling

Let Oi be value of an optimal schedule for the first i jobs.

Schedule(n):
if n = 0 then return 0
if n = 1 then return w(v1)
Op(n) ←Schedule(p(n))
On−1 ←Schedule(n− 1)
if (Op(n) + w(vn) < On−1) then

On = On−1

else
On = Op(n) + w(vn)

return On

4



9.2.3 Weighted Interval Scheduling via...

9.2.3.1 Longest Path in a DAG

Given intervals, create a DAG as follows:
(A) Create one node for each interval, plus a dummy sink node 0 for interval 0, plus a

dummy source node s.
(B) For each interval i add edge (i, p(i)) of the length/weight of vi.
(C) Add an edge from s to n of length 0.
(D) For each interval i add edge (i, i− 1) of length 0.

9.2.3.2 Example

30

70

80

20 10

1

2

3

4

5

p(5) = 2, p(4) = 1, p(3) = 1, p(2) = 0, p(1) = 0

0 1

2

3
4

5

s30

20

70
80

10

9.2.3.3 Relating Optimum Solution

Given interval problem instance I let G(I) denote the DAG constructed as described.

Claim 9.2.3. Optimum solution to weighted interval scheduling instance I is given by longest
path from s to 0 in G(I).

Assuming claim is true,
(A) If I has n intervals, DAG G(I) has n + 2 nodes and O(n) edges. Creating G(I) takes

O(n log n) time: to find p(i) for each i. How?
(B) Longest path can be computed in O(n) time — recall O(m + n) algorithm for short-

est/longest paths in DAGs.

9.2.3.4 DAG for Longest Increasing Sequence

Given sequence a1, a2, . . . , an create DAG as follows:
(A) add sentinel a0 to sequence where a0 is less than smallest element in sequence
(B) for each i there is a node vi
(C) if i < j and ai < aj add an edge (vi, vj)
(D) find longest path from v0

5



6 3 5 2 7 8 1a0

6 3 5 2 7 8 1a0

9.3 Edit Distance and Sequence Alignment
9.3.0.5 Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker suggest a
nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a distance between them?

Edit Distance: minimum number of “edits” to transform x into y.

9.3.0.6 Edit Distance

Definition 9.3.1. Edit distance between two words X and Y is the number of letter in-
sertions, letter deletions and letter substitutions required to obtain Y from X.

Example 9.3.2. The edit distance between FOOD and MONEY is at most 4:

FOOD→ MOOD→ MONOD→ MONED→ MONEY

9.3.0.7 Edit Distance: Alternate View

Alignment Place words one on top of the other, with gaps in the first word indicating
insertions, and gaps in the second word indicating deletions.

F O O D
M O N E Y

6



Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once,
and there is no “crossing”: i < i′ and i is matched to j implies i′ is matched to j′ > j. In the
above example, this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an alignment is the number
of mismatched columns plus number of unmatched indices in both strings.

9.3.0.8 Edit Distance Problem

Problem Given two words, find the edit distance between them, i.e., an alignment of smallest
cost.

9.3.0.9 Applications

(A) Spell-checkers and Dictionaries
(B) Unix diff

(C) DNA sequence alignment . . . but, we need a new metric

9.3.0.10 Similarity Metric

Definition 9.3.3. For two strings X and Y , the cost of alignment M is
(A) [Gap penalty] For each gap in the alignment, we incur a cost δ.
(B) [Mismatch cost] For each pair p and q that have been matched in M , we incur cost

αpq; typically αpp = 0.
Edit distance is special case when δ = αpq = 1.

9.3.0.11 An Example

Example 9.3.4.

o c u r r a n c e
o c c u r r e n c e Cost = δ + αae

Alternative:
o c u r r a n c e
o c c u r r e n c e Cost = 3δ

Or a really stupid solution (delete string, insert other string):

o c u r r a n c e
o c c u r r e n c e

Cost = 19δ.

9.3.0.12 Sequence Alignment

Input Given two words X and Y , and gap penalty δ and mismatch costs αpq

Goal Find alignment of minimum cost

7



9.3.1 Edit distance

9.3.1.1 Basic observation

Let X = αx and Y = βy
α, β: strings.
x and y single characters.

Think about optimal edit distance between X and Y as alignment, and consider last
column of alignment of the two strings:

α x
β y

or
α x
βy

or
αx
β y

Observation 9.3.5. Prefixes must have optimal alignment!

9.3.1.2 Problem Structure

Observation 9.3.6. Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (m,n) are not matched
then either the mth position of X remains unmatched or the nth position of Y remains
unmatched.

(A) Case xm and yn are matched.
(A) Pay mismatch cost αxmyn plus cost of aligning strings x1 · · · xm−1 and y1 · · · yn−1

(B) Case xm is unmatched.
(A) Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn

(C) Case yn is unmatched.
(A) Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1

9.3.1.3 Subproblems and Recurrence

Optimal Costs Let Opt(i, j) be optimal cost of aligning x1 · · · xi and y1 · · · yj. Then

Opt(i, j) = min


αxiyj +Opt(i− 1, j − 1),

δ +Opt(i− 1, j),

δ +Opt(i, j − 1)

Base Cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j

9.3.1.4 Dynamic Programming Solution

for all i do M [i, 0] = iδ
for all j do M [0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M [i, j] = min


αxiyj +M [i− 1, j − 1],

δ +M [i− 1, j],

δ +M [i, j − 1]

8



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j
δ

δ

0, 0

Figure 9.1: Iterative algorithm in previous slide computes values in row order. Optimal value
is a shortest path from (0, 0) to (m,n) in DAG.

Analysis

(A) Running time is O(mn).
(B) Space used is O(mn).

9.3.1.5 Matrix and DAG of Computation

9.3.1.6 Sequence Alignment in Practice

(A) Typically the DNA sequences that are aligned are about 105 letters long!
(B) So about 1010 operations and 1010 bytes needed
(C) The killer is the 10GB storage
(D) Can we reduce space requirements?

9.3.1.7 Optimizing Space

(A) Recall

M(i, j) = min


αxiyj +M(i− 1, j − 1),

δ +M(i− 1, j),

δ +M(i, j − 1)

(B) Entries in jth column only depend on (j−1)st column and earlier entries in jth column
(C) Only store the current column and the previous column reusing space; N(i, 0) stores

M(i, j − 1) and N(i, 1) stores M(i, j)

9



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j
δ

δ

0, 0

Figure 9.2: M(i, j) only depends on previous column values. Keep only two columns and
compute in column order.

9.3.1.8 Computing in column order to save space
9.3.1.9 Space Efficient Algorithm

for all i do N [i, 0] = iδ
for j = 1 to n do

N [0, 1] = jδ (* corresponds to M(0, j) *)

for i = 1 to m do

N [i, 1] = min


αxiyj +N [i− 1, 0]

δ +N [i− 1, 1]

δ +N [i, 0]

for i = 1 to m do
Copy N [i, 0] = N [i, 1]

Analysis Running time is O(mn) and space used is O(2m) = O(m)

9.3.1.10 Analyzing Space Efficiency

(A) From the m× n matrix M we can construct the actual alignment (exercise)
(B) Matrix N computes cost of optimal alignment but no way to construct the actual

alignment
(C) Space efficient computation of alignment? More complicated algorithm— see text book.

9.3.1.11 Takeaway Points

(A) Dynamic programming is based on finding a recursive way to solve the problem. Need
a recursion that generates a small number of subproblems.

(B) Given a recursive algorithm there is a natural DAG associated with the subproblems
that are generated for given instance; this is the dependency graph. An iterative algo-
rithm simply evaluates the subproblems in some topological sort of this DAG.

10



(C) The space required to evaluate the answer can be reduced in some cases by a careful
examination of that dependency DAG of the subproblems and keeping only a subset of
the DAG at any time.

11


	Maximum Weighted Independent Set in Trees
	DAGs and Dynamic Programming
	Edit Distance and Sequence Alignment

