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Maximum Weight Independent Set Problem

Input Graph G = (V, E) and weights w(v) > 0 for each
veV

Goal Find maximum weight independent set in G
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Maximum Weight Independent Set Problem

Input Graph G = (V, E) and weights w(v) > 0 for each
veV

Goal Find maximum weight independent set in G

Maximum weight independent set in above graph: {B,D}
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Maximum Weight Independent Set in a Tree

Input Tree T = (V, E) and weights w(v) > 0 for each v € V

Goal Find maximum weight independent set in T

Maximum weight independent set in above tree: 77
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Towards a Recursive Solution

For an arbitrary graph G:
© Number vertices as Vi1, V2, ..., V,

@ Find recursively optimum solutions without v,, (recurse on
G — v,,) and with v, (recurse on G — v,, — N(v,,) & include v,,).

© Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.
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© Number vertices as Vi1, V2, ..., V,

@ Find recursively optimum solutions without v,, (recurse on
G — v,) and with v,, (recurse on G — v, — N(v,) & include v,,).
© Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree?
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Towards a Recursive Solution

For an arbitrary graph G:
© Number vertices as Vi1, V2, ..., V,

@ Find recursively optimum solutions without v,, (recurse on
G — v,) and with v,, (recurse on G — v, — N(v,) & include v,,).
© Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for v,, is root r of T?
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Towards a Recursive Solution

Natural candidate for v, is root r of T? Let O be an optimum
solution to the whole problem.

Caser € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.
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Towards a Recursive Solution

Natural candidate for v, is root r of T? Let O be an optimum
solution to the whole problem.

Caser € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.
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Towards a Recursive Solution

Natural candidate for v, is root r of T? Let O be an optimum
solution to the whole problem.

Caser € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T hanging at nodes in T.
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A Recursive Solution

T(u): subtree of T hanging at node u
OPT(u): max weighted independent set value in T(u)

OPT(u) =
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A Recursive Solution

T(u): subtree of T hanging at node u
OPT(u): max weighted independent set value in T(u)

OPT(u) = max D v child of u OPT(v),
W(U) + Zv grandchild of u OPT(V)
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lterative Algorithm

© Compute OPT(u) bottom up. To evaluate OPT(u) need to
have computed values of all children and grandchildren of u

© What is an ordering of nodes of a tree T to achieve above?
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lterative Algorithm

© Compute OPT(u) bottom up. To evaluate OPT(u) need to
have computed values of all children and grandchildren of u

© What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.
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lterative Algorithm
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lterative Algorithm

MIS-Tree(T) :
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

fori=1 to n do
. M Vi ,
M[Vi] = max ZVJ' child of v; [ J] )

w(vi) + Zvj grandchild of v; Mlv;]
return M[v,] (* Note: v, is the root of T *)
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lterative Algorithm

MIS-Tree(T) :
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

fori=1 to n do
2y enita o w MIvils
M|v;] = max J '
[vi w(vi) + Zvj grandchild of v; Mlv;]

return M[v,] (* Note: v, is the root of T *)

Space:
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lterative Algorithm

MIS-Tree(T) :
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

fori=1 to n do
. M Vi ,
M[Vi] = max ZVJ' child of v; [ J] )

w(vi) + Zvj grandchild of v; Mlv;]
return M[v,] (* Note: v, is the root of T *)

Space: O(n) to store the value at each node of T
Running time:
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lterative Algorithm

MIS-Tree(T) :
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
Zv,- chitd of v MIVil, )

w(vi) + Zvj grandchild of v; Mlv;]
return M[v,] (* Note: v, is the root of T *)

M[v;] = max

Space: O(n) to store the value at each node of T
Running time:

@ Naive bound: O(n?) since each M[v;] evaluation may take
O(n) time and there are n evaluations.
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lterative Algorithm

MIS-Tree(T) :
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
Zv,- chitd of v MIVil, )

w(vi) + Zvj grandchild of v; Mlv;]
return M[v,] (* Note: v, is the root of T *)

M[v;] = max

Space: O(n) to store the value at each node of T
Running time:

@ Naive bound: O(n?) since each M[v;] evaluation may take
O(n) time and there are n evaluations.

@ Better bound: O(n). A value Ml[yv;] is accessed only by its
parent and grand parent.

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 /39



Sariel, Alexandra (UIUC) Spring 2013



Dominating set

Definition
G = (V,E). The set X C V is a dominating set, if any vertex
v € Vs either in X or is adjacent to a vertex in X.
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Dominating set

Definition
G = (V,E). The set X C V is a dominating set, if any vertex
v € Vs either in X or is adjacent to a vertex in X.

Given weights on
vertices, compute the
minimum weight
dominating set in G.

Spring 2013 11/ 39
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Dominating set

Definition
G = (V,E). The set X C V is a dominating set, if any vertex
v € Vs either in X or is adjacent to a vertex in X.

Problem

Given weights on
vertices, compute the
minimum weight
dominating set in G.

Dominating Set s
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Part 1l

DAGs and Dynamic Programming
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Recursion and DAGs

Observation

Let A be a recursive algorithm for problem . For each instance | of
M there is an associated DAG G(I).

@ Create directed graph G(I) as follows...
© For each sub-problem in the execution of A on | create a node.

© If sub-problem v depends on or recursively calls sub-problem u
add directed edge (u,v) to graph.

O G(l) is a DAG. Why?
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Recursion and DAGs

Observation

Let A be a recursive algorithm for problem . For each instance | of
M there is an associated DAG G(I).

@ Create directed graph G(I) as follows...
© For each sub-problem in the execution of A on | create a node.

© If sub-problem v depends on or recursively calls sub-problem u
add directed edge (u,v) to graph.

© G(I) is a DAG. Why? If G(1) has a cycle then A will not
terminate on |.

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 /39



lterative Algorithm for...
Dynamic Programming and DAGs

An iterative algorithm B obtained from a recursive algorithm A for a
problem N does the following:
For each instance | of I, it computes a topological sort
of G(I) and evaluates sub-problems according to the
topological ordering.

@ Sometimes the DAG G(I) can be obtained directly without
thinking about the recursive algorithm A

@ In some cases (not all) the computation of an optimal solution
reduces to a shortest/longest path in DAG G(I)

© Topological sort based shortest/longest path computation is
dynamic programming!
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A quick reminder...

A Recursive Algorithm for weighted interval scheduling

Let O; be value of an optimal schedule for the first i jobs.

Schedule(n) :
if n=0 then return 0
if n =1 then return w(v;)
Op(n) (—Schedule(p(n))
0,_1 +Schedule(n — 1)
if (Op(n) + W(V") < On—l) then

n — On—l
else
0, = Op(n) + w(vn)
return O,
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Weighted Interval Scheduling via...

Longest Path in a DAG

Given intervals, create a DAG as follows:

@ Create one node for each interval, plus a dummy sink node 0 for
interval 0, plus a dummy source node s.

@ For each interval i add edge (i, p(i)) of the length/weight of v;.
© Add an edge from s to n of length 0.
@ For each interval i add edge (i,i — 1) of length 0.
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Example
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Relating Optimum Solution

Given interval problem instance I let G(I) denote the DAG
constructed as described.

Optimum solution to weighted interval scheduling instance | is given
by longest path from's to 0 in G(1).
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Relating Optimum Solution

Given interval problem instance I let G(I) denote the DAG
constructed as described.

Optimum solution to weighted interval scheduling instance | is given
by longest path from's to 0 in G(1).

Assuming claim is true,
@ If | has n intervals, DAG G(I) has n + 2 nodes and O(n)
edges. Creating G(I) takes O(nlog n) time: to find p(i) for
each i. How?

@ Longest path can be computed in O(n) time — recall
O(m + n) algorithm for shortest/longest paths in DAGs.
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DAG for Longest Increasing Sequence

Given sequence a, as, ..., a, create DAG as follows:

© add sentinel ag to sequence where ag is less than smallest
element in sequence

@ for each i there is a node v;
@ ifi < jand a < aj add an edge (vi, v;)
Q find longest path from vq
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Part |11

Edit Distance and Sequence Alignment
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Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?
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Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings X1Xa . . . X, and y1y¥2 .. .Yym What is a
distance between them?
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Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings X1Xa . . . X, and y1y¥2 .. .Yym What is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y.
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Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X.

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD — MOOD — MONOD — MONED — MONEY

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 /39



Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word

indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M ONZEY
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Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M ONZEY

Formally, an alignment is a set M of pairs (i, j) such that each index
appears at most once, and there is no “crossing”: i < i’ and i is
matched to j implies i’ is matched to j’ > j. In the above example,

this is M = {(1,1), (2,2),(3,3),(4,5)}
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Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M ONZEY

Formally, an alignment is a set M of pairs (i, j) such that each index
appears at most once, and there is no “crossing”: i < i’ and i is
matched to j implies i’ is matched to j’ > j. In the above example,
this is M = {(1,1), (2, 2), (3, 3), (4,5)}. Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.
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Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.
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Applications

@ Spell-checkers and Dictionaries
© Unix diff
© DNA sequence alignment ... but, we need a new metric
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Similarity Metric

For two strings X and Y, the cost of alignment M is

© [Gap penalty| For each gap in the alignment, we incur a cost 9.

@ [Mismatch cost| For each pair p and q that have been matched
in M, we incur cost a,q; typically o, = 0.
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Similarity Metric

For two strings X and Y, the cost of alignment M is

© [Gap penalty| For each gap in the alignment, we incur a cost 9.

@ [Mismatch cost| For each pair p and q that have been matched
in M, we incur cost a,q; typically o, = 0.

Edit distance is special case when § = a,q = 1.
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An Example

o clulr|irlaln|cle
o|c|iclufr|r|e|n|c|e Cost = 6 + aze
Alternative:
o clulr|r aln|cle
olc|clulr|r|e njic|e Cost = 36

Or a really stupid solution (delete string, insert other string):

o/clujrirjajn c e

Cost = 196.
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Sequence Alignment

Input Given two words X and Y, and gap penalty d and
mismatch costs apq

Goal Find alignment of minimum cost
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Edit distance

Basic observation

Let X =axand Y = By

a, [3: strings.

x and y single characters.

Think about optimal edit distance between X and Y as alignment,
and consider last column of alignment of the two strings:

(81 X (81 X X
or or

B y By B y

Observation
Prefixes must have optimal alignment!
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Problem Structure

Observation

Let X = x1Xp+**Xm and Y = y1¥2+ -+ Yn. If (M, n) are not
matched then either the mth position of X remains unmatched or the
nth position of Y remains unmatched.

Q@ Case x, and y,, are matched.

©® Pay mismatch cost ay,,y, plus cost of aligning strings
X1+ Xm—1and y1---yn—1

@ Case x,, is unmatched.

@ Pay gap penalty plus cost of aligning x1 ++Xm—1 and y1+--yp
© Case y, is unmatched.

@ Pay gap penalty plus cost of aligning x1 «+ <X and y1+ ¢+ yn—1
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Subproblems and Recurrence

Optimal Costs

Let Opt(i, j) be optimal cost of aligning x; - - -+ x; and y; - - - y;. Then

Qi + Opt(i — 1,j — 1),
Opt(i,j) = min { & + Opt(i — 1,j),
o + Opt(i,j — 1)
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Subproblems and Recurrence

Optimal Costs

Let Opt(i, j) be optimal cost of aligning x; - - -+ x; and y; - - - y;. Then

Qi + Opt(i — 1,j — 1),
Opt(i,j) = min { & + Opt(i — 1,j),
o + Opt(i,j — 1)

Base Cases: Opt(i,0) = d - i and Opt(0,j) =4 - j
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Dynamic Programming Solution

for a1l i do MJ[i,0] = id
for a1l j do M[0,j] =jo

fori=1 to m do
for j=1 to n do

Qxy, + M[i — 1,j — 1],
M[i,j] = min< § + M[i — 1,j],
0 + M[ivj - 1]
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Dynamic Programming Solution

for a1l i do MJ[i,0] = id
for a1l j do M[0,j] =jo

fori=1 to m do
for j=1 to n do

Qxy, + M[i — 1,j — 1],
M[i,j] = min< § + M[i — 1,j],
0 + M[ivj - 1]

@ Running time is O(mn).
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Dynamic Programming Solution

for a1l i do MJ[i,0] = id
for a1l j do M[0,j] =jo

fori=1 to m do
for j=1 to n do

Qxy, + M[i — 1,j — 1],
M[i,j] = min< § + M[i — 1,j],
0 + M[ivj - 1]

@ Running time is O(mn).
@ Space used is O(mn).
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Matrix and DAG of Computation

Figure: lterative algorithm in previous slide computes values in row order.
Optimal value is a shortest path from (0, 0) to (m,n) in
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Sequence Alignment in Practice

@ Typically the DNA sequences that are aligned are about 10°
letters long!

@ So about 10'% operations and 10 bytes needed
© The killer is the 10GB storage

© Can we reduce space requirements?
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Optimizing Space

@ Recall

Qxy, + M(i — 1,j — 1),
M(i,j) = min< § + M(i — 1,)),
o+ M(iaj - 1)

@ Entries in jth column only depend on (j — 1)st column and
earlier entries in jth column

© Only store the current column and the previous column reusing
space; N(i, 0) stores M(i, j — 1) and N(i, 1) stores M(i, j)
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Computing in column order to save space

Figure: M(i, j) only depends on previous column values. Keep only two
columns and compute in column order.
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Space Efficient Algorithm

for all i do N[i, 0] = id
for j=1 to n do
N[0,1] = jé (* corresponds to M(0,j) *)
fori=1 to m do
Oy, + N[i — 1,0]
N[i, 1] = min < 6 + N[i — 1,1]
4 + N[i, 0]
fori=1 to m do
Copy NIi, 0] = N[i, 1]

Running time is O(mn) and space used is O(2m) = O(m) \
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Analyzing Space Efficiency

@ From the m X n matrix M we can construct the actual
alignment (exercise)

© Matrix N computes cost of optimal alignment but no way to
construct the actual alignment

© Space efficient computation of alignment? More complicated
algorithm — see text book.
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Takeaway Points

© Dynamic programming is based on finding a recursive way to
solve the problem. Need a recursion that generates a small
number of subproblems.

@ Given a recursive algorithm there is a natural DAG associated
with the subproblems that are generated for given instance; this
is the dependency graph. An iterative algorithm simply evaluates
the subproblems in some topological sort of this DAG.

© The space required to evaluate the answer can be reduced in
some cases by a careful examination of that dependency DAG
of the subproblems and keeping only a subset of the DAG at
any time.
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