

Towards a Recursive Solution

For an arbitrary graph **G**:

- **()** Number vertices as v_1, v_2, \ldots, v_n
- Solutions Find recursively optimum solutions without v_n (recurse on $\mathbf{G} v_n$) and with v_n (recurse on $\mathbf{G} v_n \mathbf{N}(v_n)$ & include v_n).
- Saw that if graph **G** is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for v_n is root **r** of **T**?

Sariel, Alexandra (UIUC) CS473 5

A Recursive Solution

T(u): subtree of **T** hanging at node **u OPT(u)**: max weighted independent set value in **T(u)**

OPT(u) = max	$\int \sum_{\mathbf{v} \text{ child of } \mathbf{u}} \mathbf{OPT}(\mathbf{v}),$	
	$(\mathbf{w}(\mathbf{u}) + \sum_{\mathbf{v} \text{ grandchild of } \mathbf{u}} OPT(\mathbf{v}))$	

Towards a Recursive Solution

Natural candidate for v_n is root r of T? Let \mathcal{O} be an optimum solution to the whole problem.

- Case $\mathbf{r} \not\in \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of \mathbf{T} hanging at a child of \mathbf{r} .
- Case $\mathbf{r} \in \mathcal{O}$: None of the children of \mathbf{r} can be in \mathcal{O} . $\mathcal{O} \{\mathbf{r}\}$ contains an optimum solution for each subtree of \mathbf{T} hanging at a grandchild of \mathbf{r} .

Subproblems? Subtrees of **T** hanging at nodes in **T**.

Iterative Algorithm

- Compute OPT(u) bottom up. To evaluate OPT(u) need to have computed values of all children and grandchildren of u
- What is an ordering of nodes of a tree **T** to achieve above? Post-order traversal of a tree.

Spring 2013

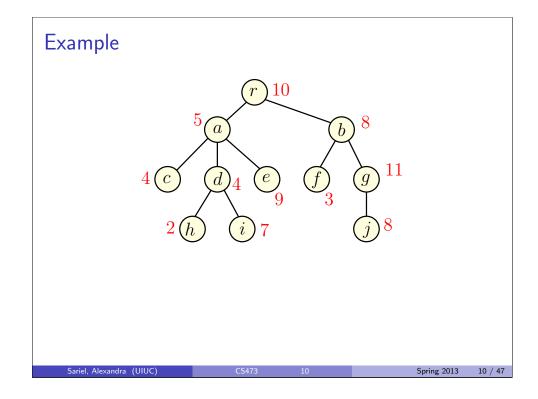
Spring 2013

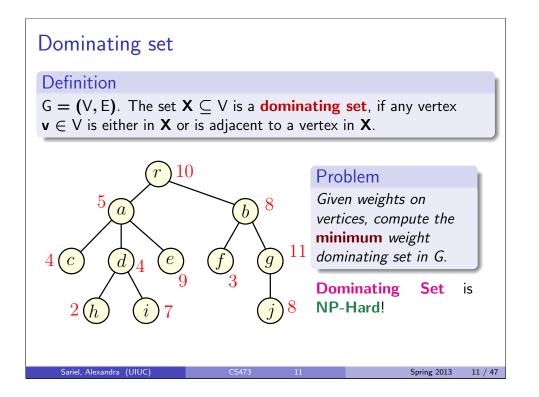
Iterative Algorithm

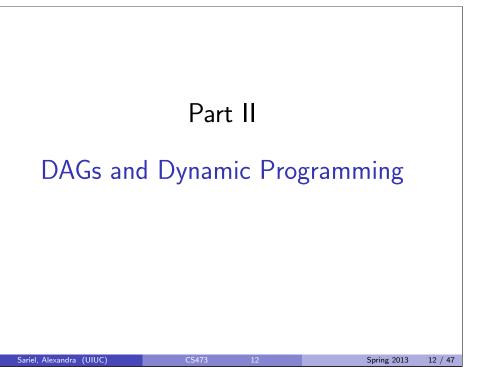
Sariel, Alexandra (UIUC

MIS-Tree(T): Let v₁, v₂,..., v_n be a post-order traversal of nodes of T for i = 1 to n do M[v_i] = max (∑v_j child of v_i M[v_j], w(v_i) + ∑v_j grandchild of v_i M[v_j]) return M[v_n] (* Note: v_n is the root of T *)
Space: O(n) to store the value at each node of T Running time:
Naive bound: O(n²) since each M[v_i] evaluation may take O(n) time and there are n evaluations.
Better bound: O(n). A value M[v_j] is accessed only by its parent and grand parent.

Spring 2013







Recursion and

Observation

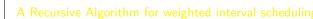
Let **A** be a recursive algorithm for problem Π . For each instance **I** of Π there is an associated DAG **G(I)**.

S

- Create directed graph **G(I)** as follows...
- **②** For each sub-problem in the execution of \mathbf{A} on \mathbf{I} create a node.
- If sub-problem v depends on or recursively calls sub-problem u add directed edge (u, v) to graph.
- G(I) is a DAG. Why? If G(I) has a cycle then A will not terminate on I.

A quick reminder...

Sariel, Alexandra (UIUC



Let \boldsymbol{O}_i be value of an optimal schedule for the first i jobs.

$$\begin{aligned} & \text{Schedule}(n): \\ & \text{if } n=0 \text{ then return } 0 \\ & \text{if } n=1 \text{ then return } w(v_1) \\ & O_{p(n)} \leftarrow \text{Schedule}(p(n)) \\ & O_{n-1} \leftarrow \text{Schedule}(n-1) \\ & \text{if } (O_{p(n)}+w(v_n) < O_{n-1}) \text{ then } \\ & O_n = O_{n-1} \\ & \text{else} \\ & O_n = O_{p(n)} + w(v_n) \\ & \text{return } O_n \end{aligned}$$

Iterative Algorithm for...

Dynamic Programming and

Observation

Sariel, Alexandra (UIUC)

An iterative algorithm **B** obtained from a recursive algorithm **A** for a problem Π does the following:

For each instance I of Π , it computes a topological sort of G(I) and evaluates sub-problems according to the topological ordering.

- Sometimes the DAG G(I) can be obtained directly without thinking about the recursive algorithm A
- In some cases (not all) the computation of an optimal solution reduces to a shortest/longest path in DAG G(I)
- Topological sort based shortest/longest path computation is dynamic programming!

```
Weighted Interval Scheduling via...
Longest Path in a
```

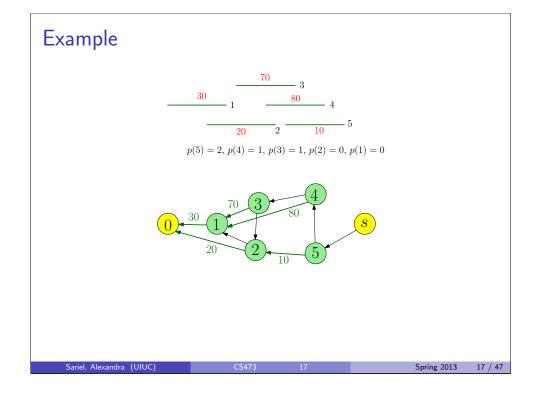
Given intervals, create a $\ensuremath{\mathbf{DAG}}$ as follows:

- Create one node for each interval, plus a dummy sink node 0 for interval 0, plus a dummy source node s.
- So For each interval i add edge (i, p(i)) of the length/weight of v_i .
- **③** Add an edge from \mathbf{s} to \mathbf{n} of length $\mathbf{0}$.
- For each interval i add edge (i, i 1) of length 0.

15

Spring 2013

Spring 2013



Relating Optimum Solution

Given interval problem instance I let G(I) denote the DAG constructed as described.

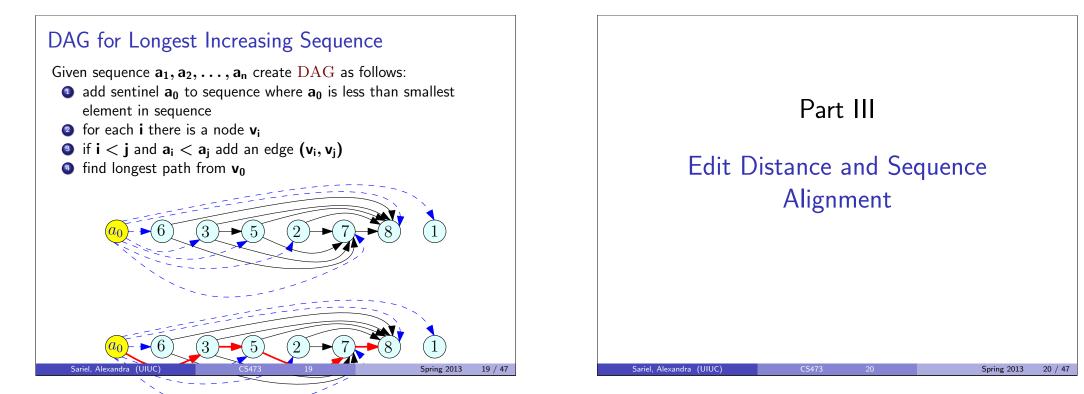
Claim

Optimum solution to weighted interval scheduling instance I is given by longest path from s to 0 in G(I).

Assuming claim is true,

- If I has n intervals, DAG G(I) has n + 2 nodes and O(n) edges. Creating G(I) takes O(n log n) time: to find p(i) for each i. How?
- Congest path can be computed in O(n) time recall O(m + n) algorithm for shortest/longest paths in DAGs.

Spring 2013



Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a *nearby* string?

What does nearness mean?

Question: Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a *distance* between them?

Edit Distance: minimum number of "edits" to transform **x** into **y**.

Edit Distance: Alternate View

Alignment

Sariel, Alexandra, (UIUC

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

 F
 O
 O
 D

 M
 O
 N
 E
 Y

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": i < i' and i is matched to j implies i' is matched to j' > j. In the above example, this is $M = \{(1, 1), (2, 2), (3, 3), (4, 5)\}$. Cost of an alignment is the number of mismatched columns plus number of unmatched indices in both strings.

Edit Distance

Definition

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at most **4**:

 $\underline{\mathrm{F}}\mathrm{OOD} \to \mathrm{MO}\underline{\mathrm{O}}\mathrm{D} \to \mathrm{MON}\underline{\mathrm{O}}\mathrm{D} \to \mathrm{MON}\underline{\mathrm{D}} \to \mathrm{MON}\underline{\mathrm{O}}\mathrm{Y}$

Edit Distance Problem

Sariel Alexandra (IIIIIC

Problem

Given two words, find the edit distance between them, i.e., an alignment of smallest cost.

Spring 2013

21/4

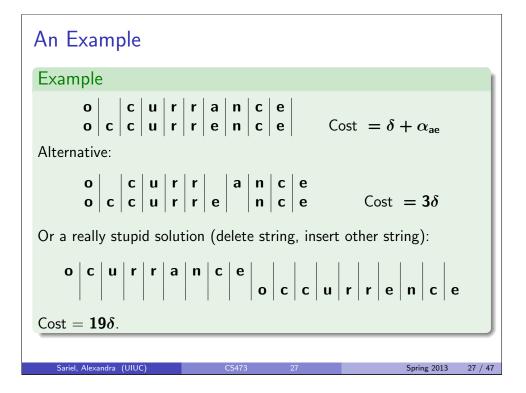
CS473

Spring 2013

Applications

- Spell-checkers and Dictionaries
- Onix diff
- **③** DNA sequence alignment ... but, we need a new metric

Sariel, Alexandra (UIUC)	CS473	25	Spring 2013	25 / 47



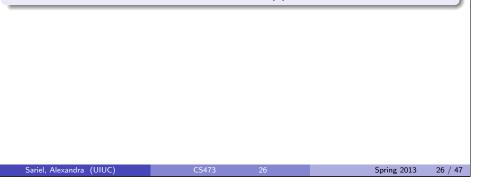
Similarity Metric

Definition

For two strings \boldsymbol{X} and $\boldsymbol{Y},$ the cost of alignment \boldsymbol{M} is

- **(**Gap penalty] For each gap in the alignment, we incur a cost δ .
- **2** [Mismatch cost] For each pair **p** and **q** that have been matched in **M**, we incur cost α_{pq} ; typically $\alpha_{pp} = 0$.

Edit distance is special case when $\delta = \alpha_{pq} = 1$.



Sequence Alignment

- Input Given two words ${\bf X}$ and ${\bf Y},$ and gap penalty δ and mismatch costs $\alpha_{\rm pq}$
- Goal Find alignment of minimum cost

Edit distance

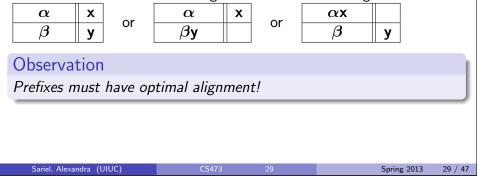
Basic observation

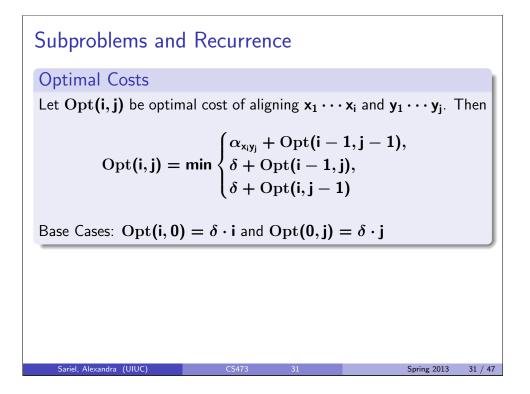
Let $\mathbf{X} = \alpha \mathbf{x}$ and $\mathbf{Y} = \beta \mathbf{y}$

lpha,eta: strings.

x and **y** single characters.

Think about optimal edit distance between X and Y as alignment, and consider last column of alignment of the two strings:





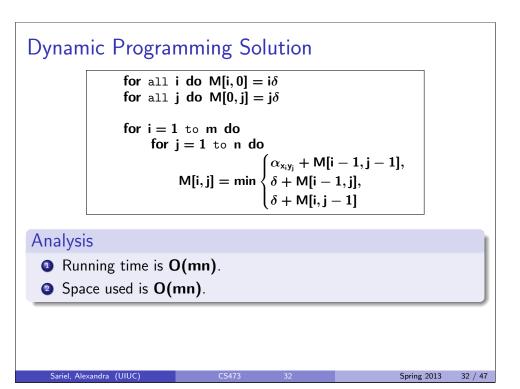
Problem Structure

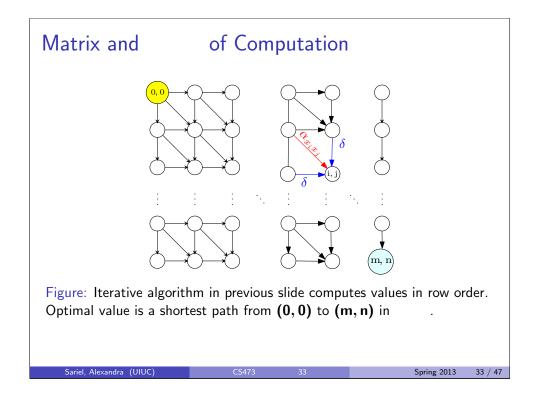
Observation

Let $X = x_1 x_2 \cdots x_m$ and $Y = y_1 y_2 \cdots y_n$. If (m, n) are not matched then either the mth position of X remains unmatched or the nth position of Y remains unmatched.

- **Orrest Schedules** Sector \mathbf{x}_{m} and \mathbf{y}_{n} are matched.
 - Pay mismatch cost $\alpha_{x_my_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$
- **2** Case $\mathbf{x}_{\mathbf{m}}$ is unmatched.
 - ${\color{black} \bullet}$ Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$
- 3 Case y_n is unmatched.
 - ${\color{black} 0}$ Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$

Spring 2013





Optimizing Space

Recall

$$\mathsf{M}(\mathsf{i},\mathsf{j}) = \min egin{cases} lpha_{\mathsf{x}_\mathsf{i}\mathsf{y}_\mathsf{j}} + \mathsf{M}(\mathsf{i}-1,\mathsf{j}-1)\ \delta + \mathsf{M}(\mathsf{i}-1,\mathsf{j}),\ \delta + \mathsf{M}(\mathsf{i},\mathsf{j}-1) \end{cases}$$

- $\textcircled{\sc opt}$ Entries in jth column only depend on $(j-1) \\ \sc opt$ st column and earlier entries in jth column
- $\textcircled{\ } \textbf{Only store the current column and the previous column reusing space; } N(i,0) \text{ stores } M(i,j-1) \text{ and } N(i,1) \text{ stores } M(i,j) \end{array}$

Sequence Alignment in Practice

- Typically the DNA sequences that are aligned are about 10⁵ letters long!
- ${f 2}$ So about ${f 10^{10}}$ operations and ${f 10^{10}}$ bytes needed

CS47

- The killer is the 10GB storage
- On we reduce space requirements?

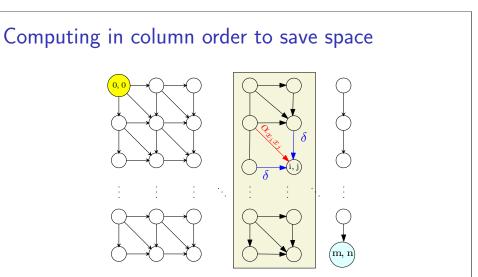


Figure: M(i, j) only depends on previous column values. Keep only two columns and compute in column order.

Sariel, Alexandra (UIUC)

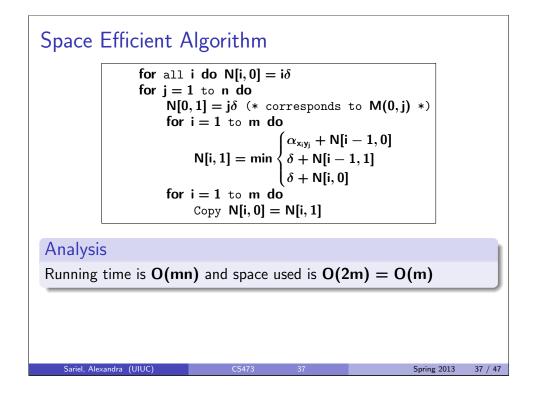
35

CS473

Spring 2013

36 / 47

Spring 2013



Takeaway Points

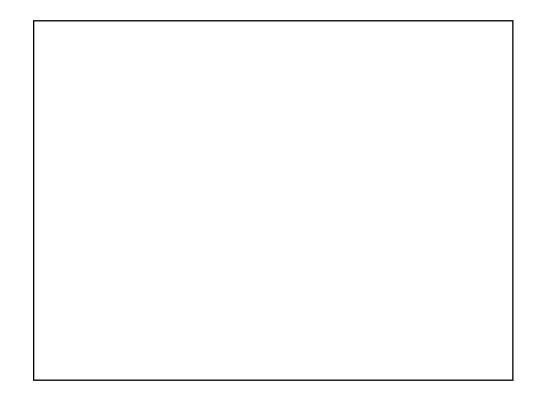
- Opprove the problem. Need a recursion that generates a small number of subproblems.
- Given a recursive algorithm there is a natural DAG associated with the subproblems that are generated for given instance; this is the dependency graph. An iterative algorithm simply evaluates the subproblems in some topological sort of this DAG.
- The space required to evaluate the answer can be reduced in some cases by a careful examination of that dependency DAG of the subproblems and keeping only a subset of the DAG at any time.

Analyzing Space Efficiency

Sariel Alexandra (11111)

- From the m × n matrix M we can construct the actual alignment (exercise)
- Matrix N computes cost of optimal alignment but no way to construct the actual alignment
- Space efficient computation of alignment? More complicated algorithm see text book.

Spring 2013



Spring 2013