
CS 473: Fundamental Algorithms, Spring 2013

Dynamic Programming
Lecture 8
February 14, 2013

Sariel, Alexandra (UIUC) CS473 1 Spring 2013 1 / 48

Part I

Longest Increasing Subsequence

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2 / 48

Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and
non-increasing.

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3 / 48

Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 / 48

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 48

Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A

algLISNaive(A[1..n]):
max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if
a given sequence is increasing.

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 / 48

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n− 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation
if A[n] is in the longest increasing subsequence then all the elements
before it must be smaller.

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 48

Recursive Approach: Take 1

algLIS(A[1..n]):
if (n = 0) then return 0
m = algLIS(A[1..(n− 1)])
B is subsequence of A[1..(n− 1)] with

only elements less than A[n]
(* let h be size of B, h ≤ n− 1 *)

m = max(m, 1 + algLIS(B[1..h]))
Output m

Recursion for running time: T(n) ≤ 2T(n− 1) + O(n).
Easy to see that T(n) is O(n2n).

Sariel, Alexandra (UIUC) CS473 8 Spring 2013 8 / 48

Recursive Approach: Take 2

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n− 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation
For second case we want to find a subsequence in A[1..(n− 1)] that
is restricted to numbers less than A[n]. This suggests that a more
general problem is LIS smaller(A[1..n], x) which gives the longest
increasing subsequence in A where each number in the sequence is
less than x.

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 48

Recursive Approach: Take 2

LIS smaller(A[1..n], x) : length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n− 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n− 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

Recursion for running time: T(n) ≤ 2T(n− 1) + O(1).

Question: Is there any advantage?

Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 48

Recursive Algorithm: Take 2

Observation
The number of different subproblems generated by
LIS smaller(A[1..n], x) is O(n2).

Memoization the recursive algorithm leads to an O(n2) running time!

Question: What are the recursive subproblem generated by
LIS smaller(A[1..n], x)?

1 For 0 ≤ i < n LIS smaller(A[1..i], y) where y is either x or
one of A[i + 1], . . . ,A[n].

Observation
previous recursion also generates only O(n2) subproblems. Slightly
harder to see.

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 48

Recursive Algorithm: Take 3

Definition
LISEnding(A[1..n]): length of longest increasing sub-sequence that
ends in A[n].

Question: can we obtain a recursive expression?

LISEnding(A[1..n]) = max
i:A[i]<A[n]

(
1 + LISEnding(A[1..i])

)

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 / 48

Recursive Algorithm: Take 3

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n− 1 do

if (A[i] < A[n]) then

m = max
(

m, 1 + LIS ending alg(A[1..i])
)

return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i])

Question:
How many distinct subproblems generated by
LIS ending alg(A[1..n])? n.

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 / 48

Iterative Algorithm via Memoization

Compute the values LIS ending alg(A[1..i]) iteratively in a bottom
up fashion.

LIS ending alg(A[1..n]):
Array L[1..n] (* L[i] = value of LIS ending alg(A[1..i]) *)

for i = 1 to n do
L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do
L[i] = max(L[i], 1 + L[j])

return L

LIS(A[1..n]):
L = LIS ending alg(A[1..n])
return the maximum value in L

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 48

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2), Space: Θ(n)

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 48

Example

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Longest increasing subsequence: 3, 5, 7, 8

1 L[i] is value of longest increasing subsequence ending in A[i]

2 Recursive algorithm computes L[i] from L[1] to L[i− 1]

3 Iterative algorithm builds up the values from L[1] to L[n]

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 48

Memoizing LIS smaller

LIS(A[1..n]):
A[n + 1] =∞ (* add a sentinel at the end *)

Array L[(n + 1), (n + 1)] (* two-dimensional array*)

(* L[i, j] for j ≥ i stores the value LIS smaller(A[1..i],A[j]) *)

for j = 1 to n + 1 do
L[0, j] = 0

for i = 1 to n + 1 do
for j = i to n + 1 do

L[i, j] = L[i− 1, j]
if (A[i] < A[j]) then

L[i, j] = max(L[i, j], 1 + L[i− 1, i])

return L[n, (n + 1)]

Correctness: Via induction following the recursion (take 2)
Running time: O(n2), Space: Θ(n2)

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 48

Longest increasing subsequence
Another way to get quadratic time algorithm

1 G = ({s, 1, . . . , n} , {}): directed graph.

1 ∀i, j: If i < j and A[i] < A[j] then
add the edge i→ j to G.

2 ∀i: Add s→ i.

2 The graph G is a DAG. LIS corresponds to longest path in G
starting at s.

3 We know how to compute this in
O(|V(G)|+ |E(G)|) = O(n2).

Comment: One can compute LIS in O(n log n) time with a bit more
work.

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 48

Dynamic Programming
1 Find a “smart” recursion for the problem in which the number of

distinct subproblems is small; polynomial in the original problem
size.

2 Estimate the number of subproblems, the time to evaluate each
subproblem and the space needed to store the value. This gives
an upper bound on the total running time if we use automatic
memoization.

3 Eliminate recursion and find an iterative algorithm to compute
the problems bottom up by storing the intermediate values in an
appropriate data structure; need to find the right way or order
the subproblem evaluation. This leads to an explicit algorithm.

4 Optimize the resulting algorithm further

Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 48

Part II

Weighted Interval Scheduling

Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20 / 48

Weighted Interval Scheduling

Input A set of jobs with start times, finish times and weights
(or profits).

Goal Schedule jobs so that total weight of jobs is maximized.

1 Two jobs with overlapping intervals cannot both be
scheduled!

2 1 2 3
1 4 10

10 1 1

2 1 2 3
1 4 10

10 1 1

Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 / 48

Interval Scheduling
Greedy Solution

Input A set of jobs with start and finish times to be scheduled
on a resource; special case where all jobs have weight 1.

Goal Schedule as many jobs as possible.
1 Greedy strategy of considering jobs according to

finish times produces optimal schedule (to be seen
later).

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 / 48

Greedy Strategies
1 Earliest finish time first

2 Largest weight/profit first

3 Largest weight to length ratio first

4 Shortest length first

5 . . .

None of the above strategies lead to an optimum solution.

Moral: Greedy strategies often don’t work!

Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 / 48

Reduction to...
Max Weight Independent Set Problem

1 Given weighted interval scheduling instance I create an instance
of max weight independent set on a graph G(I) as follows.

1 For each interval i create a vertex vi with weight wi.
2 Add an edge between vi and vj if i and j overlap.

2 Claim: max weight independent set in G(I) has weight equal to
max weight set of intervals in I that do not overlap

Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 48

Reduction to...
Max Weight Independent Set Problem

1 There is a reduction from Weighted Interval Scheduling to
Independent Set.

2 Can use structure of original problem for efficient algorithm?

3 Independent Set in general is NP-Complete.

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 48

Conventions

Definition
1 Let the requests be sorted according to finish time, i.e., i < j

implies fi ≤ fj

2 Define p(j) to be the largest i (less than j) such that job i and
job j are not in conflict

Example

1

2

3

4

5

6

v1 = 2

v2 = 4

v3 = 4

v4 = 7

v5 = 2

v6 = 1

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 0

p(5) = 3

p(6) = 3

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 48

Towards a Recursive Solution

Observation
Consider an optimal schedule O
Case n ∈ O : None of the jobs between n and p(n) can be

scheduled. Moreover O must contain an optimal
schedule for the first p(n) jobs.

Case n 6∈ O : O is an optimal schedule for the first n− 1 jobs.

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 48

A Recursive Algorithm

Let Oi be value of an optimal schedule for the first i jobs.

Schedule(n):
if n = 0 then return 0
if n = 1 then return w(v1)
Op(n) ←Schedule(p(n))
On−1 ←Schedule(n− 1)
if (Op(n) + w(vn) < On−1) then

On = On−1

else
On = Op(n) + w(vn)

return On

Time Analysis

Running time is T(n) = T(p(n)) + T(n− 1) + O(1) which is . . .

Sariel, Alexandra (UIUC) CS473 28 Spring 2013 28 / 48

Bad Example

Figure: Bad instance for recursive algorithm

Running time on this instance is

T(n) = T(n− 1) + T(n− 2) + O(1) = Θ(φn)

where φ ≈ 1.618 is the golden ratio.

Sariel, Alexandra (UIUC) CS473 29 Spring 2013 29 / 48

Analysis of the Problem

n − 2 n − 3 n − 3 n − 4

n − 1 n − 2

n

.

.

.

.

.

.

.

.

.

.

.

.

Figure: Label of node indicates size of sub-problem. Tree of sub-problems
grows very quickly

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 / 48

Memo(r)ization

Observation
1 Number of different sub-problems in recursive algorithm is O(n);

they are O1,O2, . . . ,On−1

2 Exponential time is due to recomputation of solutions to
sub-problems

Solution
Store optimal solution to different sub-problems, and perform
recursive call only if not already computed.

Sariel, Alexandra (UIUC) CS473 31 Spring 2013 31 / 48

Recursive Solution with Memoization

schdIMem(j)
if j = 0 then return 0
if M[j] is defined then (* sub-problem already solved *)

return M[j]
if M[j] is not defined then

M[j] = max
(

w(vj) + schdIMem(p(j)), schdIMem(j− 1)
)

return M[j]

Time Analysis

Each invocation, O(1) time plus: either return a computed
value, or generate 2 recursive calls and fill one M[·]
Initially no entry of M[] is filled; at the end all entries of M[] are
filled

So total time is O(n) (Assuming input is presorted...)

Sariel, Alexandra (UIUC) CS473 32 Spring 2013 32 / 48

Automatic Memoization

Fact
Many functional languages (like LISP) automatically do memoization
for recursive function calls!

Sariel, Alexandra (UIUC) CS473 33 Spring 2013 33 / 48

Back to Weighted Interval Scheduling

Iterative Solution

M[0] = 0
for i = 1 to n do

M[i] = max
(

w(vi) + M[p(i)],M[i− 1]
)

M: table of subproblems

1 Implicitly dynamic programming fills the values of M.

2 Recursion determines order in which table is filled up.

3 Think of decomposing problem first (recursion) and then worry
about setting up table — this comes naturally from recursion.

Sariel, Alexandra (UIUC) CS473 34 Spring 2013 34 / 48

Example

30

70

80

20 10

1

2

3

4

5

p(5) = 2, p(4) = 1, p(3) = 1, p(2) = 0, p(1) = 0

Sariel, Alexandra (UIUC) CS473 35 Spring 2013 35 / 48

Computing Solutions + First Attempt
1 Memoization + Recursion/Iteration allows one to compute the

optimal value. What about the actual schedule?

M[0] = 0
S[0] is empty schedule

for i = 1 to n do

M[i] = max
(

w(vi) + M[p(i)], M[i− 1]
)

if w(vi) + M[p(i)] < M[i− 1] then
S[i] = S[i− 1]

else
S[i] = S[p(i)] ∪ {i}

2 Näıvely updating S[] takes O(n) time

3 Total running time is O(n2)

4 Using pointers and linked lists running time can be improved to
O(n).

Sariel, Alexandra (UIUC) CS473 36 Spring 2013 36 / 48

Computing Implicit Solutions

Observation
Solution can be obtained from M[] in O(n) time, without any
additional information

findSolution(j)

if (j = 0) then return empty schedule

if (vj + M[p(j)] > M[j− 1]) then
return findSolution(p(j)) ∪{j}

else
return findSolution(j− 1)

Makes O(n) recursive calls, so findSolution runs in O(n) time.

Sariel, Alexandra (UIUC) CS473 37 Spring 2013 37 / 48

Computing Implicit Solutions

A generic strategy for computing solutions in dynamic programming:

1 Keep track of the decision in computing the optimum value of a
sub-problem. decision space depends on recursion

2 Once the optimum values are computed, go back and use the
decision values to compute an optimum solution.

Question: What is the decision in computing M[i]?
A: Whether to include i or not.

Sariel, Alexandra (UIUC) CS473 38 Spring 2013 38 / 48

Computing Implicit Solutions

M[0] = 0
for i = 1 to n do

M[i] = max(vi + M[p(i)],M[i− 1])
if (vi + M[p(i)] > M[i− 1])then

Decision[i] = 1 (* 1: i included in solution M[i] *)

else
Decision[i] = 0 (* 0: i not included in solution M[i] *)

S = ∅, i = n
while (i > 0) do

if (Decision[i] = 1) then
S = S ∪ {i}
i = p(i)

else
i = i− 1

return S

Sariel, Alexandra (UIUC) CS473 39 Spring 2013 39 / 48

	Dynamic Programming
	Longest Increasing Subsequence
	Longest Increasing Subsequence
	Sequences
	Recursive Approach: Take 1
	Longest increasing subsequence

	Weighted Interval Scheduling
	Weighted Interval Scheduling
	The Problem
	Greedy Solution
	Interval Scheduling
	Reduction to...
	Reduction to...
	Recursive Solution
	Dynamic Programming
	Computing Solutions

