
CS 473: Fundamental Algorithms, Spring 2013

Binary Search, Introduction
to Dynamic Programming
Lecture 7
February 9, 2013
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Part I

Exponentiation, Binary Search
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Exponentiation

Input Two numbers: a and integer n ≥ 0

Goal Compute an

Obvious algorithm:

SlowPow(a,n):

x = 1;

for i = 1 to n do

x = x*a

Output x

O(n) multiplications.
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Fast Exponentiation

Observation: an = abn/2cadn/2e = abn/2cabn/2cadn/2e−bn/2c.

FastPow(a,n):
if (n = 0) return 1
x =FastPow(a,bn/2c)
x = x ∗ x
if (n is odd) then

x = x ∗ a
return x

T(n): number of multiplications for n

T(n) ≤ T(bn/2c) + 2

T(n) =Θ(log n)
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Complexity of Exponentiation

Question: Is SlowPow() a polynomial time algorithm? FastPow?
Input size: O(log a + log n)
Output size: O(n log a).

Not necessarily polynomial in input size!

Both SlowPow and FastPow are polynomial in output size.
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Exponentiation modulo a given number

Exponentiation in applications:

Input Three integers: a, n ≥ 0, p ≥ 2 (typically a prime)

Goal Compute an mod p

Input size: Θ(log a + log n + log p)
Output size: O(log p) and hence polynomial in input size.

Observation: xy mod p = ((x mod p)(y mod p)) mod p
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Exponentiation modulo a given number

Input Three integers: a, n ≥ 0, p ≥ 2 (typically a prime)

Goal Compute an mod p

FastPowMod(a,n,p):
if (n = 0) return 1
x =FastPowMod(a,bn/2c,p)
x = x ∗ x mod p
if (n is odd)

x = x ∗ a mod p
return x

FastPowMod is a polynomial time algorithm. SlowPowMod is not
(why?).
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Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?

BinarySearch(A[a..b], x):
if (b− a < 0) return NO

mid = A[b(a + b)/2c]
if (x = mid) return YES

if (x < mid)
return BinarySearch(A[a..b(a + b)/2c − 1], x)

else
return BinarySearch(A[b(a + b)/2c+ 1..b],x)

Analysis: T(n) = T(bn/2c) + O(1). T(n) = O(log n).
Observation: After k steps, size of array left is n/2k
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Another common use of binary search
1 Optimization version: find solution of best (say minimum) value

2 Decision version: is there a solution of value at most a given
value v?

Reduce optimization to decision (may be easier to think about):

1 Given instance I compute upper bound U(I) on best value

2 Compute lower bound L(I) on best value

3 Do binary search on interval [L(I),U(I)] using decision version
as black box

4 O(log(U(I)− L(I))) calls to decision version if U(I), L(I) are
integers
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Example
1 Problem: shortest paths in a graph.

2 Decision version: given G with non-negative integer edge
lengths, nodes s, t and bound B, is there an s-t path in G of
length at most B?

3 Optimization version: find the length of a shortest path between
s and t in G.

Question: given a black box algorithm for the decision version, can
we obtain an algorithm for the optimization version?
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Example continued

Question: given a black box algorithm for the decision version, can
we obtain an algorithm for the optimization version?

1 Let U be maximum edge length in G.

2 Minimum edge length is L.

3 s-t shortest path length is at most (n− 1)U and at least L.

4 Apply binary search on the interval [L, (n− 1)U] via the
algorithm for the decision problem.

5 O(log((n− 1)U− L)) calls to the decision problem algorithm
sufficient. Polynomial in input size.
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Part II

Introduction to Dynamic
Programming
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Recursion

Reduction:
Reduce one problem to another

Recursion
A special case of reduction

1 reduce problem to a smaller instance of itself

2 self-reduction

1 Problem instance of size n is reduced to one or more instances
of size n− 1 or less.

2 For termination, problem instances of small size are solved by
some other method as base cases.
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Recursion in Algorithm Design
1 Tail Recursion: problem reduced to a single recursive call after

some work. Easy to convert algorithm into iterative or greedy
algorithms. Examples: Interval scheduling, MST algorithms, etc.

2 Divide and Conquer: Problem reduced to multiple
independent sub-problems that are solved separately. Conquer
step puts together solution for bigger problem.

Examples: Closest pair, deterministic median selection, quick
sort.

3 Dynamic Programming: problem reduced to multiple
(typically) dependent or overlapping sub-problems. Use
memoization to avoid recomputation of common solutions
leading to iterative bottom-up algorithm.
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Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F(n) = F(n− 1) + F(n− 2) and F(0) = 0, F(1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

1 F(n) = (φn − (1− φ)n)/
√

5 where φ is the golden ratio

(1 +
√

5)/2 ' 1.618.

2 limn→∞F(n + 1)/F(n) = φ
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n− 1) + Fib(n− 2)

Running time? Let T(n) be the number of additions in Fib(n).

T(n) = T(n− 1) + T(n− 2) + 1 and T(0) = T(1) = 0

Roughly same as F(n)

T(n) = Θ(φn)

The number of additions is exponential in n. Can we do better?
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An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F[0] = 0
F[1] = 1
for i = 2 to n do

F[i]⇐ F[i− 1] + F[i− 2]
return F[n]

What is the running time of the algorithm? O(n) additions.
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What is the difference?
1 Recursive algorithm is computing the same numbers again and

again.

2 Iterative algorithm is storing computed values and building
bottom up the final value. Memoization.

Dynamic Programming:

Fnding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n− 1) + Fib(n− 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
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Automatic explicit memoization

Initialize table/array M of size n such that M[i] = −1 for
i = 0, . . . , n.

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] 6= −1) (* M[n] has stored value of Fib(n) *)

return M[n]
M[n]⇐ Fib(n− 1) + Fib(n− 2)
return M[n]

Need to know upfront the number of subproblems to allocate
memory
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Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val⇐ Fib(n− 1) + Fib(n− 2)
Store (n, val) in D
return val
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Explicit vs Implicit Memoization
1 Explicit memoization or iterative algorithm preferred if one can

analyze problem ahead of time. Allows for efficient memory
allocation and access.

2 Implicit and automatic memoization used when problem
structure or algorithm is either not well understood or in fact
unknown to the underlying system.

1 Need to pay overhead of data-structure.
2 Functional languages such as LISP automatically do

memoization, usually via hashing based dictionaries.
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Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take
O(n) time?

1 input is n and hence input size is Θ(log n)

2 output is F(n) and output size is Θ(n). Why?

3 Hence output size is exponential in input size so no polynomial
time algorithm possible!

4 Running time of iterative algorithm: Θ(n) additions but number
sizes are O(n) bits long! Hence total time is O(n2), in fact
Θ(n2). Why?

5 Running time of recursive algorithm is O(nφn) but can in fact
shown to be O(φn) by being careful. Doubly exponential in
input size and exponential even in output size.
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Part III

Brute Force Search, Recursion and
Backtracking
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Maximum Independent Set in a Graph

Definition
Given undirected graph G = (V,E) a subset of nodes S ⊆ V is an
independent set (also called a stable set) if for there are no edges
between nodes in S. That is, if u, v ∈ S then (u, v) 6∈ E.

A

B

C

DE

F

Some independent sets in graph above:
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Maximum Independent Set Problem

Input Graph G = (V,E)

Goal Find maximum sized independent set in G

A

B

C

DE

F
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Maximum Weight Independent Set Problem

Input Graph G = (V,E), weights w(v) ≥ 0 for v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F
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Maximum Weight Independent Set Problem
1 No one knows an efficient (polynomial time) algorithm for this

problem

2 Problem is NP-Complete and it is believed that there is no
polynomial time algorithm

Brute-force algorithm:
Try all subsets of vertices.
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Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet(G = (V,E)):
max = 0
for each subset S ⊆ V do

check if S is an independent set

if S is an independent set and w(S) > max then
max = w(S)

Output max

Running time: suppose G has n vertices and m edges

1 2n subsets of V

2 checking each subset S takes O(m) time

3 total time is O(m2n)
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A Recursive Algorithm

Let V = {v1, v2, . . . , vn}.
For a vertex u let N(u) be its neighbors.

Observation
vn: Vertex in the graph.
One of the following two cases is true

Case 1 vn is in some maximum independent set.

Case 2 vn is in no maximum independent set.

RecursiveMIS(G):

if G is empty then Output 0
a = RecursiveMIS(G− vn)

b = w(vn) + RecursiveMIS(G− vn − N(vn))
Output max(a, b)
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Recursive Algorithms
..for Maximum Independent Set

Running time:

T(n) = T(n− 1) + T
(

n− 1− deg(vn)
)

+ O(1 + deg(vn))

where deg(vn) is the degree of vn. T(0) = T(1) = 1 is base case.

Worst case is when deg(vn) = 0 when the recurrence becomes

T(n) = 2T(n− 1) + O(1)

Solution to this is T(n) = O(2n).
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Backtrack Search via Recursion
1 Recursive algorithm generates a tree of computation where each

node is a smaller problem (subproblem)

2 Simple recursive algorithm computes/explores the whole tree
blindly in some order.

3 Backtrack search is a way to explore the tree intelligently to
prune the search space

1 Some subproblems may be so simple that we can stop the
recursive algorithm and solve it directly by some other method

2 Memoization to avoid recomputing same problem
3 Stop the recursion at a subproblem if it is clear that there is no

need to explore further.
4 Leads to a number of heuristics that are widely used in practice

although the worst case running time may still be exponential.
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Example
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