
CS 473: Fundamental Algorithms, Spring 2013

Binary Search, Introduction
to Dynamic Programming
Lecture 7
February 9, 2013

Sariel, Alexandra (UIUC) CS473 1 Spring 2013 1 / 44

Part I

Exponentiation, Binary Search

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2 / 44

Exponentiation

Input Two numbers: a and integer n ≥ 0

Goal Compute an

Obvious algorithm:

SlowPow(a,n):

x = 1;

for i = 1 to n do

x = x*a

Output x

O(n) multiplications.

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3 / 44

Fast Exponentiation

Observation: an = abn/2cadn/2e = abn/2cabn/2cadn/2e−bn/2c.

FastPow(a,n):
if (n = 0) return 1
x =FastPow(a,bn/2c)
x = x ∗ x
if (n is odd) then

x = x ∗ a
return x

T(n): number of multiplications for n

T(n) ≤ T(bn/2c) + 2

T(n) =Θ(log n)

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 / 44



Complexity of Exponentiation

Question: Is SlowPow() a polynomial time algorithm? FastPow?
Input size: O(log a + log n)
Output size: O(n log a).

Not necessarily polynomial in input size!

Both SlowPow and FastPow are polynomial in output size.

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 44

Exponentiation modulo a given number

Exponentiation in applications:

Input Three integers: a, n ≥ 0, p ≥ 2 (typically a prime)

Goal Compute an mod p

Input size: Θ(log a + log n + log p)
Output size: O(log p) and hence polynomial in input size.

Observation: xy mod p = ((x mod p)(y mod p)) mod p

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 / 44

Exponentiation modulo a given number

Input Three integers: a, n ≥ 0, p ≥ 2 (typically a prime)

Goal Compute an mod p

FastPowMod(a,n,p):
if (n = 0) return 1
x =FastPowMod(a,bn/2c,p)
x = x ∗ x mod p
if (n is odd)

x = x ∗ a mod p
return x

FastPowMod is a polynomial time algorithm. SlowPowMod is not
(why?).

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 44

Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?

BinarySearch(A[a..b], x):
if (b− a < 0) return NO

mid = A[b(a + b)/2c]
if (x = mid) return YES

if (x < mid)
return BinarySearch(A[a..b(a + b)/2c − 1], x)

else
return BinarySearch(A[b(a + b)/2c+ 1..b],x)

Analysis: T(n) = T(bn/2c) + O(1). T(n) = O(log n).
Observation: After k steps, size of array left is n/2k

Sariel, Alexandra (UIUC) CS473 8 Spring 2013 8 / 44



Another common use of binary search
1 Optimization version: find solution of best (say minimum) value

2 Decision version: is there a solution of value at most a given
value v?

Reduce optimization to decision (may be easier to think about):

1 Given instance I compute upper bound U(I) on best value

2 Compute lower bound L(I) on best value

3 Do binary search on interval [L(I),U(I)] using decision version
as black box

4 O(log(U(I)− L(I))) calls to decision version if U(I), L(I) are
integers

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 44

Example
1 Problem: shortest paths in a graph.

2 Decision version: given G with non-negative integer edge
lengths, nodes s, t and bound B, is there an s-t path in G of
length at most B?

3 Optimization version: find the length of a shortest path between
s and t in G.

Question: given a black box algorithm for the decision version, can
we obtain an algorithm for the optimization version?

Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 44

Example continued

Question: given a black box algorithm for the decision version, can
we obtain an algorithm for the optimization version?

1 Let U be maximum edge length in G.

2 Minimum edge length is L.

3 s-t shortest path length is at most (n− 1)U and at least L.

4 Apply binary search on the interval [L, (n− 1)U] via the
algorithm for the decision problem.

5 O(log((n− 1)U− L)) calls to the decision problem algorithm
sufficient. Polynomial in input size.

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 44

Part II

Introduction to Dynamic
Programming

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 / 44



Recursion

Reduction:
Reduce one problem to another

Recursion
A special case of reduction

1 reduce problem to a smaller instance of itself

2 self-reduction

1 Problem instance of size n is reduced to one or more instances
of size n− 1 or less.

2 For termination, problem instances of small size are solved by
some other method as base cases.

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 / 44

Recursion in Algorithm Design
1 Tail Recursion: problem reduced to a single recursive call after

some work. Easy to convert algorithm into iterative or greedy
algorithms. Examples: Interval scheduling, MST algorithms, etc.

2 Divide and Conquer: Problem reduced to multiple
independent sub-problems that are solved separately. Conquer
step puts together solution for bigger problem.

Examples: Closest pair, deterministic median selection, quick
sort.

3 Dynamic Programming: problem reduced to multiple
(typically) dependent or overlapping sub-problems. Use
memoization to avoid recomputation of common solutions
leading to iterative bottom-up algorithm.

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 44

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F(n) = F(n− 1) + F(n− 2) and F(0) = 0, F(1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

1 F(n) = (φn − (1− φ)n)/
√

5 where φ is the golden ratio

(1 +
√

5)/2 ' 1.618.

2 limn→∞F(n + 1)/F(n) = φ

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 44

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n− 1) + Fib(n− 2)

Running time? Let T(n) be the number of additions in Fib(n).

T(n) = T(n− 1) + T(n− 2) + 1 and T(0) = T(1) = 0

Roughly same as F(n)

T(n) = Θ(φn)

The number of additions is exponential in n. Can we do better?
Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 44



An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F[0] = 0
F[1] = 1
for i = 2 to n do

F[i]⇐ F[i− 1] + F[i− 2]
return F[n]

What is the running time of the algorithm? O(n) additions.

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 44

What is the difference?
1 Recursive algorithm is computing the same numbers again and

again.

2 Iterative algorithm is storing computed values and building
bottom up the final value. Memoization.

Dynamic Programming:

Fnding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 44

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n− 1) + Fib(n− 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 44

Automatic explicit memoization

Initialize table/array M of size n such that M[i] = −1 for
i = 0, . . . , n.

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] 6= −1) (* M[n] has stored value of Fib(n) *)

return M[n]
M[n]⇐ Fib(n− 1) + Fib(n− 2)
return M[n]

Need to know upfront the number of subproblems to allocate
memory

Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20 / 44



Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val⇐ Fib(n− 1) + Fib(n− 2)
Store (n, val) in D
return val

Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 / 44

Explicit vs Implicit Memoization
1 Explicit memoization or iterative algorithm preferred if one can

analyze problem ahead of time. Allows for efficient memory
allocation and access.

2 Implicit and automatic memoization used when problem
structure or algorithm is either not well understood or in fact
unknown to the underlying system.

1 Need to pay overhead of data-structure.
2 Functional languages such as LISP automatically do

memoization, usually via hashing based dictionaries.

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 / 44

Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take
O(n) time?

1 input is n and hence input size is Θ(log n)

2 output is F(n) and output size is Θ(n). Why?

3 Hence output size is exponential in input size so no polynomial
time algorithm possible!

4 Running time of iterative algorithm: Θ(n) additions but number
sizes are O(n) bits long! Hence total time is O(n2), in fact
Θ(n2). Why?

5 Running time of recursive algorithm is O(nφn) but can in fact
shown to be O(φn) by being careful. Doubly exponential in
input size and exponential even in output size.

Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 / 44

Part III

Brute Force Search, Recursion and
Backtracking

Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 44



Maximum Independent Set in a Graph

Definition
Given undirected graph G = (V,E) a subset of nodes S ⊆ V is an
independent set (also called a stable set) if for there are no edges
between nodes in S. That is, if u, v ∈ S then (u, v) 6∈ E.

A

B

C

DE

F

Some independent sets in graph above:

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 44

Maximum Independent Set Problem

Input Graph G = (V,E)

Goal Find maximum sized independent set in G

A

B

C

DE

F

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 44

Maximum Weight Independent Set Problem

Input Graph G = (V,E), weights w(v) ≥ 0 for v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 44

Maximum Weight Independent Set Problem
1 No one knows an efficient (polynomial time) algorithm for this

problem

2 Problem is NP-Complete and it is believed that there is no
polynomial time algorithm

Brute-force algorithm:
Try all subsets of vertices.

Sariel, Alexandra (UIUC) CS473 28 Spring 2013 28 / 44



Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet(G = (V,E)):
max = 0
for each subset S ⊆ V do

check if S is an independent set

if S is an independent set and w(S) > max then
max = w(S)

Output max

Running time: suppose G has n vertices and m edges

1 2n subsets of V

2 checking each subset S takes O(m) time

3 total time is O(m2n)

Sariel, Alexandra (UIUC) CS473 29 Spring 2013 29 / 44

A Recursive Algorithm

Let V = {v1, v2, . . . , vn}.
For a vertex u let N(u) be its neighbors.

Observation
vn: Vertex in the graph.
One of the following two cases is true

Case 1 vn is in some maximum independent set.

Case 2 vn is in no maximum independent set.

RecursiveMIS(G):

if G is empty then Output 0
a = RecursiveMIS(G− vn)

b = w(vn) + RecursiveMIS(G− vn − N(vn))
Output max(a, b)

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 / 44

Recursive Algorithms
..for Maximum Independent Set

Running time:

T(n) = T(n− 1) + T
(

n− 1− deg(vn)
)

+ O(1 + deg(vn))

where deg(vn) is the degree of vn. T(0) = T(1) = 1 is base case.

Worst case is when deg(vn) = 0 when the recurrence becomes

T(n) = 2T(n− 1) + O(1)

Solution to this is T(n) = O(2n).

Sariel, Alexandra (UIUC) CS473 31 Spring 2013 31 / 44

Backtrack Search via Recursion
1 Recursive algorithm generates a tree of computation where each

node is a smaller problem (subproblem)

2 Simple recursive algorithm computes/explores the whole tree
blindly in some order.

3 Backtrack search is a way to explore the tree intelligently to
prune the search space

1 Some subproblems may be so simple that we can stop the
recursive algorithm and solve it directly by some other method

2 Memoization to avoid recomputing same problem
3 Stop the recursion at a subproblem if it is clear that there is no

need to explore further.
4 Leads to a number of heuristics that are widely used in practice

although the worst case running time may still be exponential.

Sariel, Alexandra (UIUC) CS473 32 Spring 2013 32 / 44



Example

Sariel, Alexandra (UIUC) CS473 33 Spring 2013 33 / 44


	Binary Search, Introduction to Dynamic Programming
	Exponentiation, Binary Search
	Exponentiation
	Binary Search
	Introduction to Dynamic Programming
	Fibonacci Numbers
	Brute Force Search, Recursion and Backtracking
	Recursive Algorithms



