
CS 473: Fundamental Algorithms, Spring 2013

Recurrences, Closest Pair and
Selection
Lecture 6
February 7, 2013

Sariel, Alexandra (UIUC) CS473 1 Spring 2013 1 / 47

Part I

Recurrences

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2 / 47

Solving Recurrences

Two general methods:
1 Recursion tree method: need to do sums

1 elementary methods, geometric series
2 integration

2 Guess and Verify
1 guessing involves intuition, experience and trial & error
2 verification is via induction

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3 / 47

Recurrence: Example I
1 Consider T(n) = 2T(n/2) + n/ log n.

2 Construct recursion tree, and observe pattern. ith level has 2i

nodes, and problem size at each node is n/2i and hence work at
each node is n

2i/ log n
2i .

3 Summing over all levels

T(n) =

log n−1∑
i=0

2i

[
(n/2i)

log(n/2i)

]

=

log n−1∑
i=0

n

log n− i

= n

log n∑
j=1

1

j
= nHlog n = Θ(n log log n)

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 / 47

Recurrence: Example II
1 Consider...

2 What is the depth of recursion?
√

n,
√√

n,
√√√

n, . . . ,O(1).

3 Number of levels: n2−L
= 2 means L = log log n.

4 Number of children at each level is 1, work at each node is 1

5 Thus, T(n) =
∑L

i=0 1 = Θ(L) = Θ(log log n).

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 / 47

Recurrence: Example III
1 Consider T(n) =

√
nT(
√

n) + n.

2 Using recursion trees: number of levels L = log log n

3 Work at each level? Root is n, next level is
√

n×
√

n = n, so
on. Can check that each level is n.

4 Thus, T(n) = Θ(n log log n)

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 / 47

Recurrence: Example IV
1 Consider T(n) = T(n/4) + T(3n/4) + n.

2 Using recursion tree, we observe the tree has leaves at different
levels (a lop-sided tree).

3 Total work in any level is at most n. Total work in any level
without leaves is exactly n.

4 Highest leaf is at level log4 n and lowest leaf is at level log4/3 n

5 Thus, n log4 n ≤ T(n) ≤ n log4/3 n, which means
T(n) = Θ(n log n)

Sariel, Alexandra (UIUC) CS473 7 Spring 2013 7 / 47

Part II

Closest Pair

Sariel, Alexandra (UIUC) CS473 8 Spring 2013 8 / 47

Closest Pair - the problem

Input Given a set S of n points on the plane

Goal Find p, q ∈ S such that d(p, q) is minimum

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 / 47

Applications
1 Basic primitive used in graphics, vision, molecular modelling

2 Ideas used in solving nearest neighbor, Voronoi diagrams,
Euclidean MST

Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 47

Algorithm: Brute Force
1 Compute distance between every pair of points and find

minimum.

2 Takes O(n2) time.

3 Can we do better?

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 47

Closest Pair: 1-d case

Input Given a set S of n points on a line

Goal Find p, q ∈ S such that d(p, q) is minimum

Algorithm
1 Sort points based on coordinate

2 Compute the distance between successive points, keeping track
of the closest pair.

Running time O(n log n)

Can we do this in better running time?
Can reduce Distinct Elements Problem (see lecture 1) to this problem
in O(n) time. Do you see how?

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 / 47

Generalizing 1-d case

Can we generalize 1-d algorithm to 2-d?
Sort according to x or y-coordinate??
No easy generalization.

Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 / 47

First Attempt
Divide and Conquer I

1 Partition into 4 quadrants of roughly equal size.Not always!

2 Find closest pair in each quadrant recursively

3 Combine solutions

Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 47

New Algorithm

Divide and Conquer II
1 Divide the set of points into two equal parts via vertical line

2 Find closest pair in each half recursively

3 Find closest pair with one point in each half

4 Return the best pair among the above 3 solutions

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 47

New Algorithm

Divide and Conquer II
1 Divide the set of points into two equal parts via vertical line

2 Find closest pair in each half recursively

3 Find closest pair with one point in each half

4 Return the best pair among the above 3 solutions

1 Sort points based on x-coordinate and pick the median. Time
= O(n log n)

2 How to find closest pair with points in different halves? O(n2) is
trivial. Better?

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 47

Combining Partial Solutions
1 Does it take O(n2) to combine solutions?

2 Let δ be the distance between closest pairs, where both points
belong to the same half.

δ

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 47

Combining Partial Solutions
1 Let δ be the distance between closest pairs, where both points

belong to the same half.

2 Need to consider points within δ of dividing line

δ

δ δ

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 47

Sparsity of Band XXX

δ

Divide the band into square boxes of size δ/2

Lemma
Each box has at most one point

Proof.
If not, then there are a pair of points (both
belonging to one half) that are at most√

2δ/2 < δ apart!

Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 47

Searching within the Band

δ

Lemma
Suppose a, b are both in the band
d(a, b) < δ then a, b have at most two rows
of boxes between them.

Proof.
Each row of boxes has height δ/2. If more
than two rows then d(a, b) > 2 · δ/2!

Sariel, Alexandra (UIUC) CS473 20 Spring 2013 20 / 47

Searching within the Band

δ

Corollary
Order points according to their y-coordinate. If p, q are
such that d(p, q) < δ then p and q are within 11
positions in the sorted list.

Proof.
1 ≤ 2 points between them if p and q in same row.

2 ≤ 6 points between them if p and q in two
consecutive rows.

3 ≤ 10 points between if p and q one row apart.

4 =⇒ More than ten points between them in the
sorted y order than p and q are more than two
rows apart.

5 =⇒ d(p, q) > δ. A contradiction.

Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 / 47

The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P1 and P2

2. δ1 ← ClosestPair(P1).
3. δ2 ← ClosestPair(P2).
4. δ = min(δ1, δ2)
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for i = 1 to |A| − 1 do

for j = i + 1 to min{i + 11, |A|} do
if (dist(A[i],A[j]) < δ) update δ and closest pair

1 Step 1, involves sorting and scanning. Takes O(n log n) time.

2 Step 5 takes O(n) time.

3 Step 6 takes O(n log n) time

4 Step 7 takes O(n) time.

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 / 47

Running Time

The running time of the algorithm is given by

T(n) ≤ 2T(n/2) + O(n log n)

Thus, T(n) = O(n log2 n).

Improved Algorithm
Avoid repeated sorting of points in band: two options

1 Sort all points by y-coordinate and store the list. In conquer step
use this to avoid sorting

2 Each recursive call returns a list of points sorted by their
y-coordinates. Merge in conquer step in linear time.

Analysis: T(n) ≤ 2T(n/2) + O(n) = O(n log n)

Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 / 47

Part III

Selecting in Unsorted Lists

Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 47

Quick Sort

Quick Sort [Hoare]
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

3 Recursively sort the subarrays, and concatenate them.

Example:

1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1

2 pivot: 16

3 split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort

4 put them together with pivot in middle

Sariel, Alexandra (UIUC) CS473 25 Spring 2013 25 / 47

Time Analysis
1 Let k be the rank of the chosen pivot. Then,

T(n) = T(k− 1) + T(n− k) + O(n)
2 If k = dn/2e then

T(n) = T(dn/2e−1)+T(bn/2c)+O(n) ≤ 2T(n/2)+O(n).
Then, T(n) = O(n log n).

1 Theoretically, median can be found in linear time.

3 Typically, pivot is the first or last element of array. Then,

T(n) = max
1≤k≤n

(T(k− 1) + T(n− k) + O(n))

In the worst case T(n) = T(n− 1) + O(n), which means
T(n) = O(n2). Happens if array is already sorted and pivot is
always first element.

Sariel, Alexandra (UIUC) CS473 26 Spring 2013 26 / 47

Problem - Selection

Input Unsorted array A of n integers

Goal Find the jth smallest number in A (rank j number)

Example

A = {4, 6, 2, 1, 5, 8, 7} and j = 4. The jth smallest element is 5.

Median: j = b(n + 1)/2c

Sariel, Alexandra (UIUC) CS473 27 Spring 2013 27 / 47

Algorithm I
1 Sort the elements in A

2 Pick jth element in sorted order

Time taken = O(n log n)

Do we need to sort? Is there an O(n) time algorithm?

Sariel, Alexandra (UIUC) CS473 28 Spring 2013 28 / 47

Algorithm II

If j is small or n− j is small then

1 Find j smallest/largest elements in A in O(jn) time. (How?)

2 Time to find median is O(n2).

Sariel, Alexandra (UIUC) CS473 29 Spring 2013 29 / 47

Divide and Conquer Approach
1 Pick a pivot element a from A

2 Partition A based on a.
Aless = {x ∈ A | x ≤ a} and Agreater = {x ∈ A | x > a}

3 |Aless| = j: return a

4 |Aless| > j: recursively find jth smallest element in Aless

5 |Aless| < j: recursively find kth smallest element in Agreater

where k = j− |Aless|.

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 / 47

Time Analysis
1 Partitioning step: O(n) time to scan A

2 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes Ω(n2) time

Sariel, Alexandra (UIUC) CS473 31 Spring 2013 31 / 47

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Sariel, Alexandra (UIUC) CS473 32 Spring 2013 32 / 47

Divide and Conquer Approach
A game of medians

Idea
1 Break input A into many subarrays: L1, . . . Lk.

2 Find median mi in each subarray Li.

3 Find the median x of the medians m1, . . . ,mk.

4 Intuition: The median x should be close to being a good median
of all the numbers in A.

5 Use x as pivot in previous algorithm.

But we have to be...
More specific...

1 Size of each group?

2 How to find median of medians?

Sariel, Alexandra (UIUC) CS473 33 Spring 2013 33 / 47

Choosing the pivot
A clash of medians

1 Partition array A into dn/5e lists of 5 items each.
L1 = {A[1],A[2], . . . ,A[5]}, L2 = {A[6], . . . ,A[10]}, . . .,
Li = {A[5i + 1], . . . ,A[5i− 4]}, . . .,
Ldn/5e = {A[5dn/5e − 4, . . . ,A[n]}.

2 For each i find median bi of Li using brute-force in O(1) time.
Total O(n) time

3 Let B = {b1, b2, . . . , bdn/5e}
4 Find median b of B

Lemma
Median of B is an approximate median of A. That is, if b is used a
pivot to partition A, then |Aless| ≤ 7n/10 + 6 and
|Agreater| ≤ 7n/10 + 6.

Sariel, Alexandra (UIUC) CS473 34 Spring 2013 34 / 47

Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . ,A[5i]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j− |Aless|)

How do we find median of B? Recursively!

Sariel, Alexandra (UIUC) CS473 35 Spring 2013 35 / 47

Running time of deterministic median selection
A dance with recurrences

T(n) = T(dn/5e) + max{T(|Aless|),T(|Agreater)|}+ O(n)

From Lemma,

T(n) ≤ T(dn/5e) + T(b7n/10 + 6c) + O(n)

and
T(1) = 1

Exercise: show that T(n) = O(n)

Sariel, Alexandra (UIUC) CS473 36 Spring 2013 36 / 47

Median of Medians: Proof of Lemma

Figure: Shaded elements are all
greater than b

Proposition

There are at least 3n/10− 6
elements greater than the median of
medians b.

Proof.
At least half of the dn/5e groups
have at least 3 elements larger than
b, except for last group and the
group containing b. So b is less than

3(d(1/2)dn/5ee−2) ≥ 3n/10−6

Sariel, Alexandra (UIUC) CS473 37 Spring 2013 37 / 47

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10− 6 elements greater than the median of
medians b.

Corollary

|Aless| ≤ 7n/10 + 6.

Via symmetric argument,

Corollary

|Agreater| ≤ 7n/10 + 6.

Sariel, Alexandra (UIUC) CS473 38 Spring 2013 38 / 47

Questions to ponder
1 Why did we choose lists of size 5? Will lists of size 3 work?

2 Write a recurrence to analyze the algorithm’s running time if we
choose a list of size k.

Sariel, Alexandra (UIUC) CS473 39 Spring 2013 39 / 47

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!

Sariel, Alexandra (UIUC) CS473 40 Spring 2013 40 / 47

Takeaway Points
1 Recursion tree method and guess and verify are the most reliable

methods to analyze recursions in algorithms.

2 Recursive algorithms naturally lead to recurrences.

3 Some times one can look for certain type of recursive algorithms
(reverse engineering) by understanding recurrences and their
behavior.

Sariel, Alexandra (UIUC) CS473 41 Spring 2013 41 / 47

	Recurrences, Closest Pair and Selection
	Recurrences
	Closest Pair
	The Problem
	Algorithmic Solution
	Special Case
	Divide and Conquer
	Towards a fast solution
	Running Time Analysis

	Selecting in Unsorted Lists
	Quick Sort
	Selection
	NaÃ¯ve Algorithm
	Divide and Conquer
	Median of Medians
	Divide and Conquer Approach
	Choosing the pivot
	Algorithm for Selection
	Running time of deterministic median selection

