Chapter 5

Reductions, Recursion and Divide and Conquer

CS 473: Fundamental Algorithms, Spring 2013
February 2, 2013

5.1 Reductions and Recursion

5.1.0.1 Reduction

Reducing problem A to problem B :
(A) Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant? A: With a blue elephant gun.
Q: How do you hunt a red elephant? A: Hold his trunk shut until he turns blue, and then shoot him with the blue elephant gun.

Q: How do you shoot a white elephant? A: Embarrass it till it becomes red. Now use your algorithm for hunting red elephants.

5.1.0.2 UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A ?

Naive algorithm:
for $i=1$ to $n-1$ do
for $j=i+1$ to n do
if $(A[i]=A[j])$
return YES
return NO

Running time: $O\left(n^{2}\right)$

5.1.0.3 Reduction to Sorting

```
Sort A
for i=1 to n-1 do
    if (A[i]=A[i+1]) then
        return YES
return NO
```

Running time: $O(n)$ plus time to sort an array of n numbers
Important point: algorithm uses sorting as a black box

5.1.0.4 Two sides of Reductions

Suppose problem A reduces to problem B
(A) Positive direction: Algorithm for B implies an algorithm for A
(B) Negative direction: Suppose there is no "efficient" algorithm for A then it implies no efficient algorithm for B (technical condition for reduction time necessary for this)
Example: Distinct Elements reduces to Sorting in $O(n)$ time
(A) An $O(n \log n)$ time algorithm for Sorting implies an $O(n \log n)$ time algorithm for Distinct Elements problem.
(B) If there is no o $(n \log n)$ time algorithm for Distinct Elements problem then there is no $o(n \log n)$ time algorithm for Sorting.

5.2 Recursion

5.2.0.5 Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction
(A) reduce problem to a smaller instance of itself
(B) self-reduction
(A) Problem instance of size n is reduced to one or more instances of size $n-1$ or less.
(B) For termination, problem instances of small size are solved by some other method as base cases

5.2.0.6 Recursion

(A) Recursion is a very powerful and fundamental technique
(B) Basis for several other methods
(A) Divide and conquer
(B) Dynamic programming
(C) Enumeration and branch and bound etc
(D) Some classes of greedy algorithms
(C) Makes proof of correctness easy (via induction)
(D) Recurrences arise in analysis

5.2.0.7 Selection Sort

Sort a given array $A[1 . . n]$ of integers.
Recursive version of Selection sort.

```
SelectSort (A[1..n]):
    if n=1 return
    Find smallest number in A. Let }A[i]\mathrm{ be smallest number
    Swap }A[1] and A[i
    SelectSort(A[2..n])
```

$T(n)$: time for SelectSort on an n element array.

$$
T(n)=T(n-1)+n \text { for } n>1 \text { and } T(1)=1 \text { for } n=1
$$

$$
T(n)=\Theta\left(n^{2}\right)
$$

5.2.0.8 Tower of Hanoi

Move stack of n disks from peg 0 to peg 2 , one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?

5.2.0.9 Tower of Hanoi via Recursion

5.2.0.10 Recursive Algorithm

```
Hanoi(n, src, dest, tmp):
    if ( }n>0)\mathrm{ then
        Hanoi(n-1, src, tmp, dest)
        Move disk n from src to dest
        Hanoi(n-1, tmp, dest, src)
```

$T(n)$: time to move n disks via recursive strategy

$$
T(n)=2 T(n-1)+1 \quad n>1 \quad \text { and } T(1)=1
$$

5.2.0.11 Analysis

$$
\begin{aligned}
T(n) & =2 T(n-1)+1 \\
& =2^{2} T(n-2)+2+1 \\
& =\ldots \\
& =2^{i} T(n-i)+2^{i-1}+2^{i-2}+\ldots+1 \\
& =\ldots \\
& =2^{n-1} T(1)+2^{n-2}+\ldots+1 \\
& =2^{n-1}+2^{n-2}+\ldots+1 \\
& =\left(2^{n}-1\right) /(2-1)=2^{n}-1
\end{aligned}
$$

5.2.0.12 Non-Recursive Algorithms for Tower of Hanoi

Pegs numbered $0,1,2$
Non-recursive Algorithm 1:
(A) Always move smallest disk forward if n is even, backward if n is odd.
(B) Never move the same disk twice in a row.
(C) Done when no legal move.

Non-recursive Algorithm 2:
(A) Let $\rho(n)$ be the smallest integer k such that $n / 2^{k}$ is not an integer. Example: $\rho(40)=4$, $\rho(18)=2$.
(B) In step i move disk $\rho(i)$ forward if $n-i$ is even and backward if $n-i$ is odd.

Moves are exactly same as those of recursive algorithm. Prove by induction.

5.3 Divide and Conquer

5.3.0.13 Divide and Conquer Paradigm

Divide and Conquer is a common and useful type of recursion Approach
(A) Break problem instance into smaller instances - divide step
(B) Recursively solve problem on smaller instances
(C) Combine solutions to smaller instances to obtain a solution to the original instance conquer step
Question: Why is this not plain recursion?
(A) In divide and conquer, each smaller instance is typically at least a constant factor smaller than the original instance which leads to efficient running times.
(B) There are many examples of this particular type of recursion that it deserves its own treatment.

5.4 Merge Sort

5.4.1 Merge Sort
 5.4.1.1 Sorting

Input Given an array of n elements
Goal Rearrange them in ascending order

5.4.2 Merge Sort [von Neumann]

5.4.2.1 MergeSort

1. Input: Array $A[1 \ldots n]$

$$
A L G O R I T H M S
$$

2. Divide into subarrays $A[1 \ldots m]$ and $A[m+1 \ldots n]$, where $m=\lfloor n / 2\rfloor$

$$
A L G O R \quad I T H M S
$$

3. Recursively MergeSort $A[1 \ldots m]$ and $A[m+1 \ldots n]$

$$
A G L O R \quad H I M S T
$$

4. $\ddagger 5$-¿Merge the sorted arrays

$$
A G H I L M O R S T
$$

5.4.2.2 Merging Sorted Arrays

(A) Use a new array C to store the merged array
(B) Scan A and B from left-to-right, storing elements in C in order

$$
\begin{gathered}
\mathfrak{i} 1>A \mathfrak{i}^{2}>G \mathfrak{i}^{3-4>L O R} \quad \mathfrak{i}^{1-3>H} \mathbf{i}^{4}>I M S T \\
A G H I L M O R S T
\end{gathered}
$$

(C) Merge two arrays using only constantly more extra space (in-place merge sort): doable but complicated and typically impractical.

5.4.3 Analysis

5.4.3.1 Running Time
$T(n)$: time for merge sort to sort an n element array

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n
$$

What do we want as a solution to the recurrence?
Almost always only an asymptotically tight bound. That is we want to know $f(n)$ such that $T(n)=\Theta(f(n))$.
(A) $T(n)=O(f(n))$ - upper bound
(B) $T(n)=\Omega(f(n))$ - lower bound

5.4.4 Solving Recurrences

5.4.4.1 Solving Recurrences: Some Techniques

(A) Know some basic math: geometric series, logarithms, exponentials, elementary calculus
(B) Expand the recurrence and spot a pattern and use simple math
(C) Recursion tree method - imagine the computation as a tree
(D) Guess and verify - useful for proving upper and lower bounds even if not tight bounds
Albert Einstein: "Everything should be made as simple as possible, but not simpler."
Know where to be loose in analysis and where to be tight. Comes with practice, practice, practice!

5.4.5 Recursion Trees

5.4.5.1 MergeSort: n is a power of 2

(A) Unroll the recurrence. $T(n)=2 T(n / 2)+c n$
(B) Identify a pattern. At the i th level total work is $c n$.
(C) Sum over all levels. The number of levels is $\log n$. So total is $c n \log n=O(n \log n)$.

5.4.6 Recursion Trees

5.4.6.1 An illustrated example...

Work in each node

5.4.7 MergeSort Analysis

5.4.7.1 When n is not a power of 2
(A) When n is not a power of 2 , the running time of MergeSort is expressed as

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n
$$

(B) $n_{1}=2^{k-1}<n \leq 2^{k}=n_{2}\left(n_{1}, n_{2}\right.$ powers of 2$)$.
(C) $T\left(n_{1}\right)<T(n) \leq T\left(n_{2}\right)$ (Why?).
(D) $T(n)=\Theta(n \log n)$ since $n / 2 \leq n_{1}<n \leq n_{2} \leq 2 n$.

5.4.7.2 Recursion Trees

MergeSort: n is not a power of 2

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n
$$

Observation: For any number $x,\lfloor x / 2\rfloor+\lceil x / 2\rceil=x$.

5.4.8 MergeSort Analysis

5.4.8.1 When n is not a power of 2: Guess and Verify

If n is power of 2 we saw that $T(n)=\Theta(n \log n)$.
Can guess that $T(n)=\Theta(n \log n)$ for all n.
Verify? proof by induction!
Induction Hypothesis: $T(n) \leq 2 c n \log n$ for all $n \geq 1$
Base Case: $n=1$. $T(1)=0$ since no need to do any work and $2 c n \log n=0$ for $n=1$.
Induction Step Assume $T(k) \leq 2 c k \log k$ for all $k<n$ and prove it for $k=n$.

5.4.8.2 Induction Step

We have

$$
\begin{aligned}
T(n) & =T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n \\
& \leq 2 c\lfloor n / 2\rfloor \log \lfloor n / 2\rfloor+2 c\lceil n / 2\rceil \log \lceil n / 2\rceil+c n \quad \text { (by induction) } \\
& \leq 2 c\lfloor n / 2\rfloor \log \lceil n / 2\rceil+2 c\lceil n / 2\rceil \log \lceil n / 2\rceil+c n \\
& \leq 2 c(\lfloor n / 2\rfloor+\lceil n / 2\rceil) \log \lceil n / 2\rceil+c n \\
& \leq 2 c n \log \lceil n / 2\rceil+c n \\
& \leq 2 c n \log (2 n / 3)+c n \quad(\text { since }\lceil n / 2\rceil \leq 2 n / 3 \text { for all } n \geq 2) \\
& \leq 2 c n \log n+c n(1-2 \log 3 / 2) \\
& \leq 2 c n \log n+c n(\log 2-\log 9 / 4) \\
& \leq 2 c n \log n
\end{aligned}
$$

5.4.8.3 Guess and Verify

The math worked out like magic!
Why was $2 c n \log n$ chosen instead of say $4 c n \log n$?
(A) Do not know upfront what constant to choose.
(B) Instead assume that $T(n) \leq \alpha c n \log n$ for some constant α.
α will be fixed later.
(C) Need to prove that for α large enough the algebra succeeds.
(D) In our case... need α such that $\alpha \log 3 / 2>1$.
(E) Typically, do the algebra with α and then show that it works...
... if α is chosen to be sufficiently large constant.
How do we know which function to guess? We don't so we try several "reasonable" functions.
With practice and experience we get better at guessing the right function.

5.4.9 Guess and Verify

5.4.9.1 What happens if the guess is wrong?

(A) Guessed that the solution to the MergeSort recurrence is $T(n)=O(n)$.
(B) Try to prove by induction that $T(n) \leq \alpha c n$ for some const' α.

Induction Step: attempt

$$
\begin{aligned}
T(n) & =T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n \\
& \leq \alpha c\lfloor n / 2\rfloor+\alpha c\lceil n / 2\rceil+c n \\
& \leq \alpha c n+c n \\
& \leq(\alpha+1) c n
\end{aligned}
$$

But need to show that $T(n) \leq \alpha c n$!
(C) So guess does not work for any constant α. Suggests that our guess is incorrect.

5.4.9.2 Selection Sort vs Merge Sort

(A) Selection Sort spends $O(n)$ work to reduce problem from n to $n-1$ leading to $O\left(n^{2}\right)$ running time.
(B) Merge Sort spends $O(n)$ time after reducing problem to two instances of size $n / 2$ each. Running time is $O(n \log n)$
Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can we do better by splitting into more than 2 arrays? Say k arrays of size n / k each?

5.5 Quick Sort

5.5.0.3 Quick Sort

Quick Sort [Hoare]

1. ¡4¿Pick a pivot element from array
2. ¡2-3iSplit array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is $O(n)$
3. Recursively sort the subarrays, and concatenate them.

Example:

(A) array: $16,12,14,20,5,3,18,19,1$
(B) pivot: 16
(C) split into $12,14,5,3,1$ and $20,19,18$ and recursively sort
(D) put them together with pivot in middle

5.5.0.4 Time Analysis

(A) Let k be the rank of the chosen pivot. Then, $T(n)=T(k-1)+T(n-k)+O(n)$
(B) If $k=\lceil n / 2\rceil$ then $T(n)=T(\lceil n / 2\rceil-1)+T(\lfloor n / 2\rfloor)+O(n) \leq 2 T(n / 2)+O(n)$. Then, $T(n)=O(n \log n)$.
(A) Theoretically, median can be found in linear time.
(C) Typically, pivot is the first or last element of array. Then,

$$
T(n)=\max _{1 \leq k \leq n}(T(k-1)+T(n-k)+O(n))
$$

In the worst case $T(n)=T(n-1)+O(n)$, which means $T(n)=O\left(n^{2}\right)$. Happens if array is already sorted and pivot is always first element.

5.6 Fast Multiplication

5.7 The Problem

5.7.0.5 Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their product.

Grade School Multiplication Compute "partial product" by multiplying each digit of y with x and adding the partial products.

5.8 Algorithmic Solution

5.8.1 Grade School Multiplication

5.8.1.1 Time Analysis of Grade School Multiplication
(A) Each partial product: $\Theta(n)$
(B) Number of partial products: $\Theta(n)$
(C) Addition of partial products: $\Theta\left(n^{2}\right)$
(D) Total time: $\Theta\left(n^{2}\right)$

5.8.1.2 A Trick of Gauss

Carl Fridrich Gauss: 1777-1855 "Prince of Mathematicians"
Observation: Multiply two complex numbers: $(a+b i)$ and $(c+d i)$

$$
(a+b i)(c+d i)=a c-b d+(a d+b c) i
$$

How many multiplications do we need?
Only 3! If we do extra additions and subtractions.
Compute $a c, b d,(a+b)(c+d)$. Then $(a d+b c)=(a+b)(c+d)-a c-b d$

5.8.2 Divide and Conquer Solution 5.8.2.1 Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.
(A) $x=x_{n-1} x_{n-2} \ldots x_{0}$ and $y=y_{n-1} y_{n-2} \ldots y_{0}$
(B) $x=10^{n / 2} x_{L}+x_{R}$ where $x_{L}=x_{n-1} \ldots x_{n / 2}$ and $x_{R}=x_{n / 2-1} \ldots x_{0}$
(C) $y=10^{n / 2} y_{L}+y_{R}$ where $y_{L}=y_{n-1} \ldots y_{n / 2}$ and $y_{R}=y_{n / 2-1} \ldots y_{0}$

Therefore

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

5.8.2.2 Example

$$
\begin{aligned}
1234 \times 5678= & (100 \times 12+34) \times(100 \times 56+78) \\
= & 10000 \times 12 \times 56 \\
& +100 \times(12 \times 78+34 \times 56) \\
& +34 \times 78
\end{aligned}
$$

5.8.2.3 Time Analysis

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

4 recursive multiplications of number of size $n / 2$ each plus 4 additions and left shifts (adding enough 0's to the right)

$$
T(n)=4 T(n / 2)+O(n) \quad T(1)=O(1)
$$

$T(n)=\Theta\left(n^{2}\right)$. No better than grade school multiplication!
Can we invoke Gauss's trick here?

5.8.3 Karatsuba's Algorithm

5.8.3.1 Improving the Running Time

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$
Recursively compute only $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$. Time Analysis Running time is given by

$$
T(n)=3 T(n / 2)+O(n) \quad T(1)=O(1)
$$

which means $T(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)$

5.8.3.2 State of the Art

Schönhage-Strassen 1971: $O(n \log n \log \log n)$ time using Fast-Fourier-Transform (FFT)
Martin Fürer 2007: $O\left(n \log n 2^{O\left(\log ^{*} n\right)}\right)$ time

Conjecture There is an $O(n \log n)$ time algorithm.

5.8.3.3 Analyzing the Recurrences

(A) Basic divide and conquer: $T(n)=4 T(n / 2)+O(n), T(1)=1$. Claim: $T(n)=\Theta\left(n^{2}\right)$.
(B) Saving a multiplication: $T(n)=3 T(n / 2)+O(n), T(1)=1$. Claim: $T(n)=\Theta\left(n^{1+\log 1.5}\right)$ Use recursion tree method:
(A) In both cases, depth of recursion $L=\log n$.
(B) Work at depth i is $4^{i} n / 2^{i}$ and $3^{i} n / 2^{i}$ respectively: number of children at depth i times the work at each child
(C) Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L}(3 / 2)^{i}$ respectively.

5.8.3.4 Recursion tree analysis

