CS 473: Fundamental Algorithms, Spring 2013

Reductions, Recursion and Divide and Conquer

Lecture 5
February 2, 2013

Reduction

Reducing problem \mathbf{A} to problem \mathbf{B} :
(1) Algorithm for \mathbf{A} uses algorithm for \mathbf{B} as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.
Q: How do you hunt a red elephant?
A: Hold his trunk shut until he turns blue, and then shoot him with the blue elephant gun.

Q: How do you shoot a white elephant?
A: Embarrass it till it becomes red. Now use your algorithm for hunting red elephants.

Part I

Reductions and Recursion

UNIQUENESS: Distinct Elements Problem

Problem Given an array \mathbf{A} of \mathbf{n} integers, are there any duplicates in A?

Naive algorithm:

```
for i=1 to n-1 do
    for j=i+1 to n do
        if (A[i] = A[j]
        return YES
return No
```

Running time: $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Reduction to Sorting

```
Sort A
for i=1 to n-1 do
    if (A[i] = A[i+1]) then
return YES
return NO
```

Running time: $\mathbf{O}(\mathbf{n})$ plus time to sort an array of \mathbf{n} numbers

Important point: algorithm uses sorting as a black box

Two sides of Reductions

Suppose problem A reduces to problem B
(1) Positive direction: Algorithm for \mathbf{B} implies an algorithm for \mathbf{A}
(2) Negative direction: Suppose there is no "efficient" algorithm for A then it implies no efficient algorithm for \mathbf{B} (technical condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in $\mathbf{O (n)}$ time
(1) An $\mathbf{O}(n \log n)$ time algorithm for Sorting implies an $\mathbf{O}(n \log n)$ time algorithm for Distinct Elements problem.
(2) If there is no $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ time algorithm for Distinct Elements problem then there is no $\mathbf{o}(\mathbf{n} \log \mathbf{n})$ time algorithm for Sorting.

Recursion

(1) Recursion is a very powerful and fundamental technique
(2) Basis for several other methods
(1) Divide and conquer
© Dynamic programming

- Enumeration and branch and bound etc
- Some classes of greedy algorithms
(3) Makes proof of correctness easy (via induction)
(0) Recurrences arise in analysis

Selection Sort

Sort a given array $\mathbf{A}[\mathbf{1 . . n}]$ of integers.

Recursive version of Selection sort.
SelectSort (A[1..n]):
if $\mathrm{n}=1$ return
Find smallest number in \mathbf{A}. Let $\mathbf{A}[\mathbf{i}]$ be smallest number Swap $\mathbf{A}[1]$ and $\mathbf{A}[\mathrm{i}]$
SelectSort(A[2..n])
$\mathbf{T}(\mathbf{n})$: time for SelectSort on an \mathbf{n} element array.
$\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n}-\mathbf{1})+\mathbf{n}$ for $\mathbf{n}>\mathbf{1}$ and $\mathbf{T}(\mathbf{1})=\mathbf{1}$ for $\mathbf{n}=\mathbf{1}$
$T(n)=\Theta\left(n^{2}\right)$.

Tower of Hanoi via Recursion

Tower of Hanoi

The Tower of Hanoi puzzle

Move stack of \mathbf{n} disks from peg $\mathbf{0}$ to peg $\mathbf{2}$, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?

Recursive Algorithm

Hanoi(n, src, dest, tmp):

if $(n>0)$ then

Hanoi(n - 1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n - 1, tmp, dest, src)
$\mathbf{T}(\mathbf{n})$: time to move \mathbf{n} disks via recursive strategy

$$
T(n)=2 T(n-1)+1 \quad n>1 \quad \text { and } T(1)=1
$$

Analysis

$$
\begin{aligned}
T(n) & =2 T(n-1)+1 \\
& =2^{2} T(n-2)+2+1 \\
& =\cdots \\
& =2^{i} T(n-i)+2^{i-1}+2^{i-2}+\ldots+1 \\
& =\cdots \\
& =2^{n-1} T(1)+2^{n-2}+\ldots+1 \\
& =2^{n-1}+2^{n-2}+\ldots+1 \\
& =\left(2^{n}-1\right) /(2-1)=2^{n}-1
\end{aligned}
$$

Non-Recursive Algorithms for Tower of Hanoi

Pegs numbered 0,1,2
Non-recursive Algorithm 1:
(1) Always move smallest disk forward if \mathbf{n} is even, backward if \mathbf{n} is odd.
(2) Never move the same disk twice in a row.
(0) Done when no legal move.

Non-recursive Algorithm 2:
(1) Let $\rho(\mathbf{n})$ be the smallest integer \mathbf{k} such that $\mathbf{n} / 2^{\mathbf{k}}$ is not an integer. Example: $\rho(40)=4, \rho(18)=2$.
(2) In step \mathbf{i} move disk $\boldsymbol{\rho} \mathbf{(\mathbf { i })}$ forward if $\mathbf{n}-\mathbf{i}$ is even and backward if $\mathbf{n}-\mathbf{i}$ is odd.
Moves are exactly same as those of recursive algorithm. Prove by induction.

Divide and Conquer Paradigm

Divide and Conquer is a common and useful type of recursion

Approach

(1) Break problem instance into smaller instances - divide step
(2) Recursively solve problem on smaller instances
(3) Combine solutions to smaller instances to obtain a solution to the original instance - conquer step

Question: Why is this not plain recursion?
(1) In divide and conquer, each smaller instance is typically at least a constant factor smaller than the original instance which leads to efficient running times.
(2) There are many examples of this particular type of recursion that it deserves its own treatment.

Sorting

Input Given an array of \mathbf{n} elements
Goal Rearrange them in ascending order

Merging Sorted Arrays

(1) Use a new array \mathbf{C} to store the merged array
(2) Scan \mathbf{A} and \mathbf{B} from left-to-right, storing elements in \mathbf{C} in order

AGLOR HIMST
 AGHILMORST

(3) Merge two arrays using only constantly more extra space (in-place merge sort): doable but complicated and typically impractical.

Merge Sort [von Neumann]

(1) Input: Array $\mathbf{A}[\mathbf{1} \ldots \mathbf{n}]$

ALGORITHMS

(2) Divide into subarrays $\mathbf{A}[\mathbf{1} \ldots \mathrm{m}]$ and $\mathbf{A}[\mathbf{m}+\mathbf{1} \ldots \mathrm{n}]$, where $m=\lfloor n / 2\rfloor$

ALGOR ITHMS

© Recursively MergeSort $\mathbf{A}[\mathbf{1} \ldots \mathbf{m}]$ and $\mathbf{A}[\mathbf{m}+\mathbf{1} \ldots \mathbf{n}]$

AGLOR HIMST

(9) Merge the sorted arrays

AGHILMORST

Running Time

$\mathbf{T}(\mathbf{n})$: time for merge sort to sort an \mathbf{n} element array

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n
$$

What do we want as a solution to the recurrence?
Almost always only an asymptotically tight bound. That is we want to know $\mathbf{f}(\mathbf{n})$ such that $\mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}(\mathbf{f}(\mathbf{n}))$.
(1) $\mathbf{T}(\mathbf{n})=\mathbf{O}(\mathbf{f}(\mathbf{n}))$ - upper bound
(2) $\mathbf{T}(\mathbf{n})=\Omega(\mathbf{f}(\mathbf{n}))$ - lower bound

Solving Recurrences: Some Techniques

(1) Know some basic math: geometric series, logarithms, exponentials, elementary calculus
(2) Expand the recurrence and spot a pattern and use simple math
(3) Recursion tree method - imagine the computation as a tree

- Guess and verify - useful for proving upper and lower bounds even if not tight bounds
Albert Einstein: "Everything should be made as simple as possible, but not simpler."

Know where to be loose in analysis and where to be tight. Comes with practice, practice, practice!

Recursion Trees

(1) Unroll the recurrence. $\mathbf{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}$

(2) Identify a pattern. At the ith level total work is $\mathbf{c n}$.
(3) Sum over all levels. The number of levels is $\log \mathbf{n}$. So total is cn $\log n=0(n \log n)$.

Analysis

When n is not a power of 2
(1) When \mathbf{n} is not a power of $\mathbf{2}$, the running time of MergeSort is expressed as

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n
$$

(2) $n_{1}=2^{k-1}<n \leq 2^{k}=n_{2}\left(n_{1}, n_{2}\right.$ powers of 2$)$.
(3) $T\left(n_{1}\right)<T(n) \leq T\left(n_{2}\right)$ (Why?)
(1) $\boldsymbol{T}(\mathbf{n})=\boldsymbol{\Theta}(\mathbf{n} \log \mathbf{n})$ since $\mathbf{n} / \mathbf{2} \leq \mathbf{n}_{1}<\mathbf{n} \leq \mathbf{n}_{2} \leq \mathbf{2 n}$.

Recursion Trees

MergeSort: n is not a power of $\mathbf{2}$

MergeSort Analysis

When n is not a power of 2 : Guess and Verify

If \mathbf{n} is power of $\mathbf{2}$ we saw that $\mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}(\mathbf{n} \log \mathbf{n})$.
Can guess that $\mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}(\mathbf{n} \log \mathbf{n})$ for all \mathbf{n}.
Verify? proof by induction!
Induction Hypothesis: $\mathbf{T}(\mathbf{n}) \leq \mathbf{2 c n} \log \mathbf{n}$ for all $\mathbf{n} \geq \mathbf{1}$
Base Case: $\mathbf{n}=\mathbf{1}$. $\mathbf{T}(\mathbf{1})=\mathbf{0}$ since no need to do any work and
$2 \mathrm{cn} \log \mathrm{n}=0$ for $\mathrm{n}=1$.
Induction Step Assume $\mathbf{T}(\mathbf{k}) \leq \mathbf{2 c k} \log \mathbf{k}$ for all $\mathbf{k}<\mathbf{n}$ and prove it for $\mathbf{k}=\mathbf{n}$.

Observation: For any number $\mathrm{x},\lfloor\mathrm{x} / 2\rfloor+\lceil\mathrm{x} / 2\rceil=\mathrm{x}$.

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n
$$

Induction Step

We have
$T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n$
$\leq 2 c\lfloor n / 2\rfloor \log \lfloor n / 2\rfloor+2 c\lceil n / 2\rceil \log \lceil n / 2\rceil+c n \quad$ (by induction)
$\leq 2 c\lfloor n / 2\rfloor \log \lceil n / 2\rceil+2 c\lceil n / 2\rceil \log \lceil n / 2\rceil+c n$
$\leq 2 c(\lfloor n / 2\rfloor+\lceil n / 2\rceil) \log \lceil n / 2\rceil+c n$
$\leq 2 \mathrm{cn} \log \lceil\mathrm{n} / 2\rceil+\mathrm{cn}$
$\leq 2 \mathrm{cn} \log (2 n / 3)+\mathrm{cn} \quad($ since $\lceil n / 2\rceil \leq 2 n / 3$ for all $n \geq 2)$
$\leq 2 c n \log n+c n(1-2 \log 3 / 2)$
$\leq 2 \mathrm{cn} \log \mathrm{n}+\mathrm{cn}(\log 2-\log 9 / 4)$
$\leq 2 \mathrm{cn} \log \mathrm{n}$

Guess and Verify

The math worked out like magic!
Why was $2 \mathrm{cn} \log \mathrm{n}$ chosen instead of say $\mathbf{4 c n} \log \mathrm{n}$?
(1) Do not know upfront what constant to choose.
(2) Instead assume that $\mathbf{T}(\mathbf{n}) \leq \alpha \mathbf{c n} \log \mathbf{n}$ for some constant α. α will be fixed later.
(3) Need to prove that for $\boldsymbol{\alpha}$ large enough the algebra succeeds.
(1) In our case... need α such that $\alpha \log 3 / 2>1$.

- Typically, do the algebra with α and then show that it works... ... if α is chosen to be sufficiently large constant.
How do we know which function to guess?
We don't so we try several "reasonable" functions. With practice and experience we get better at guessing the right function.

Selection Sort vs Merge Sort

(1) Selection Sort spends $\mathbf{O}(\mathbf{n})$ work to reduce problem from \mathbf{n} to $\mathbf{n - 1}$ leading to $\mathbf{O}\left(\mathbf{n}^{2}\right)$ running time.
(3) Merge Sort spends $\mathbf{O}(\mathbf{n})$ time after reducing problem to two instances of size $\mathbf{n} / \mathbf{2}$ each. Running time is $\mathbf{O}(\mathbf{n} \log n)$

Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can we do better by splitting into more than 2 arrays? Say \mathbf{k} arrays of size \mathbf{n} / \mathbf{k} each?

Guess and Verify

(1) Guessed that the solution to the MergeSort recurrence is $T(n)=O(n)$.
(2) Try to prove by induction that $\mathbf{T}(\mathbf{n}) \leq \alpha \mathbf{c n}$ for some const' α. Induction Step: attempt

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(\lfloor\mathrm{n} / 2\rfloor)+\mathrm{T}(\lceil\mathrm{n} / 2\rceil)+\mathrm{cn} \\
& \leq \alpha \mathrm{c}\lfloor\mathrm{n} / 2\rfloor+\alpha \mathrm{c}\lceil\mathrm{n} / 2\rceil+\mathrm{cn} \\
& \leq \alpha \mathrm{cn}+\mathrm{cn} \\
& \leq(\alpha+1) \mathrm{cn}
\end{aligned}
$$

But need to show that $\mathbf{T}(\mathbf{n}) \leq \boldsymbol{c} \mathbf{n}$!
(3) So guess does not work for any constant $\boldsymbol{\alpha}$. Suggests that our guess is incorrect.

Quick Sort

Quick Sort [Hoare]

(1) Pick a pivot element from array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is $\mathbf{O}(\mathbf{n})$
(3) Recursively sort the subarrays, and concatenate them.

Example:
(1) array: $16,12,14,20,5,3,18,19,1$
(2) pivot: 16
(3) split into $12,14,5,3,1$ and $20,19,18$ and recursively sort
(1) put them together with pivot in middle

Time Analysis

(1) Let \mathbf{k} be the rank of the chosen pivot. Then,

$$
T(n)=T(k-1)+T(n-k)+O(n)
$$

(2) If $k=\lceil n / 2\rceil$ then
$T(n)=T(\lceil n / 2\rceil-1)+T(\lfloor n / 2\rfloor)+O(n) \leq 2 T(n / 2)+O(n)$.
Then, $\mathbf{T}(\mathbf{n})=\mathbf{O}(\mathbf{n} \log \mathrm{n})$.
(1) Theoretically, median can be found in linear time.
(3) Typically, pivot is the first or last element of array. Then,

$$
T(n)=\max _{1 \leq k \leq n}(T(k-1)+T(n-k)+O(n))
$$

In the worst case $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n}-\mathbf{1})+\mathbf{O}(\mathbf{n})$, which means $\mathbf{T}(\mathbf{n})=\mathbf{O}\left(\mathbf{n}^{2}\right)$. Happens if array is already sorted and pivot is always first element.

Part III

Fast Multiplication

Time Analysis of Grade School Multiplication

(1) Each partial product: $\boldsymbol{\Theta}(\mathbf{n})$
(2) Number of partial products: $\boldsymbol{\Theta}(\mathbf{n})$
(3) Addition of partial products: $\boldsymbol{\Theta}\left(\mathbf{n}^{2}\right)$
(- Total time: $\boldsymbol{\Theta}\left(\mathbf{n}^{2}\right)$

Compute "partial product" by multiplying each digit of \mathbf{y} with \mathbf{x} and adding the partial products.

$$
\begin{array}{r}
3141 \\
\times 2718 \\
\hline 25128 \\
3141 \\
21987 \\
\hline 6282 \\
\hline 8537238
\end{array}
$$

A Trick of Gauss

Carl Fridrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: $\mathbf{(a + b i})$ and $(\mathbf{c}+\mathbf{d i})$

$$
(a+b i)(c+d i)=a c-b d+(a d+b c) i
$$

How many multiplications do we need?
Only 3 ! If we do extra additions and subtractions.
Compute ac, $\mathbf{b d},(\mathbf{a}+\mathbf{b})(\mathbf{c}+\mathbf{d})$. Then
$(a d+b c)=(a+b)(c+d)-a c-b d$

Time Analysis

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

4 recursive multiplications of number of size $\mathbf{n} / \mathbf{2}$ each plus 4 additions and left shifts (adding enough 0's to the right)

$$
T(n)=4 T(n / 2)+O(n) \quad T(1)=O(1)
$$

$\mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}\left(\mathbf{n}^{2}\right)$. No better than grade school multiplication!
Can we invoke Gauss's trick here?

Improving the Running Time

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $\mathrm{x}_{\mathrm{L}} \mathrm{y}_{\mathrm{R}}+\mathrm{x}_{\mathrm{R}} \mathrm{y}_{\mathrm{L}}=\left(\mathrm{x}_{\mathrm{L}}+\mathrm{x}_{\mathrm{R}}\right)\left(\mathrm{y}_{\mathrm{L}}+\mathrm{y}_{\mathrm{R}}\right)-\mathrm{x}_{\mathrm{L}} \mathrm{y}_{\mathrm{L}}-\mathrm{x}_{\mathrm{R}} \mathrm{y}_{\mathrm{R}}$
Recursively compute only $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$.

Time Analysis

Running time is given by

$$
T(n)=3 T(n / 2)+O(n) \quad T(1)=O(1)
$$

which means $\mathbf{T}(\mathbf{n})=\mathbf{O}\left(\mathbf{n l o g}_{2}{ }^{\log ^{3}}\right)=\mathbf{O}\left(\mathbf{n}^{1.585}\right)$

State of the Art

Schönhage-Strassen 1971: $\mathbf{O}(\mathbf{n} \log \mathbf{n} \log \log \mathbf{n})$ time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: $\mathbf{O}\left(\mathbf{n} \log \mathbf{n} \mathbf{2}^{\mathbf{O}\left(\log ^{*} \mathbf{n}\right)}\right)$ time

Conjecture

There is an $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ time algorithm.

Analyzing the Recurrences

(1) Basic divide and conquer: $T(n)=4 T(n / 2)+O(n)$,
$T(1)=1$. Claim: $T(n)=\Theta\left(n^{2}\right)$.
(2) Saving a multiplication: $T(n)=3 T(n / 2)+O(n), T(1)=1$. Claim: $\mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}\left(\mathbf{n}^{1+\log 1.5}\right)$
Use recursion tree method:
(1) In both cases, depth of recursion $\mathbf{L}=\log \mathbf{n}$.
(2) Work at depth \mathbf{i} is $4^{\mathbf{i}} \mathbf{n} / 2^{\mathbf{i}}$ and $3^{\mathbf{i}} \mathbf{n} / 2^{\mathbf{i}}$ respectively: number of children at depth \mathbf{i} times the work at each child
(3 Total work is therefore $n \sum_{i=0}^{\mathrm{L}} 2^{\mathrm{i}}$ and $\mathbf{n} \sum_{\mathrm{i}=0}^{\mathrm{L}}(3 / 2)^{\mathrm{i}}$ respectively.

Recursion tree analysis

