CS 473: Fundamental Algorithms, Spring 2013

Reductions, Recursion and
Divide and Conquer

Lecture 5
February 2, 2013

Sariel, Alexandra (UIUC) CS473 1 Spring 2013 1/48

Part |

Reductions and Recursion

Sariel, Alexandra (UIUC) CS473 2 Spring 2013 2/48

Reduction

Reducing problem A to problem B:
@ Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?

A: Hold his trunk shut until he turns blue, and then shoot him with
the blue elephant gun.

Q: How do you shoot a white elephant?

A: Embarrass it till it becomes red. Now use your algorithm for
hunting red elephants.

Sariel, Alexandra (UIUC) CS473 3 Spring 2013 3/48

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:
fori=1 to n—1 do
for j=i+1 to n do
if (A[i] = A[ID

return YES
return NO

Running time: O(n?)

Sariel, Alexandra (UIUC) CS473 4 Spring 2013 4 /48

Reduction to Sorting

Sort A
fori=1ton—-1do
if (A[i] = A[i+ 1] then
return YES
return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Sariel, Alexandra (UIUC) CS473 5 Spring 2013 5 /48

Two sides of Reductions

Suppose problem A reduces to problem B
@ Positive direction: Algorithm for B implies an algorithm for A

@ Negative direction: Suppose there is no “efficient” algorithm for
A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in O(n) time
@ An O(nlogn) time algorithm for Sorting implies an O(n log n)
time algorithm for Distinct Elements problem.

@ If there is no o(nlogn) time algorithm for Distinct Elements
problem then there is no o(nlog n) time algorithm for Sorting.

Sariel, Alexandra (UIUC) CS473 6 Spring 2013 6 /48

Recursion
Reduction: reduce one problem to another
Recursion: a special case of reduction

© reduce problem to a smaller instance of itself

self-reduction

Q

@ Problem instance of size n is reduced to one or more instances
of size n — 1 or less.

Q

For termination, problem instances of small size are solved by
some other method as base cases

Sariel, Alexandra (UIUC) CS473 7 Spring 2013

7/48

Recursion

@ Recursion is a very powerful and fundamental technique
© Basis for several other methods

@ Divide and conquer

@ Dynamic programming

© Enumeration and branch and bound etc
@ Some classes of greedy algorithms

© Makes proof of correctness easy (via induction)

© Recurrences arise in analysis

Sariel, Alexandra (UIUC) CS473 8 Spring 2013 8 /48

Selection Sort

Sort a given array A[1..n] of integers.

Recursive version of Selection sort.
SelectSort (A[1..n]):

if n=1 return

Find smallest number in A. Let A[i] be smallest number
Swap A[1l] and A[i]
SelectSort (A[2..n])

T(n): time for SelectSort on an n element array.
Tn)=T(n—1)4+nforn>1and T(1) =1forn=1

T(n) = ©(n?).

Sariel, Alexandra (UIUC) CS473 9 Spring 2013 9 /48

Tower of Hanoi via Recursion

= =

oL

st | £

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Sariel, Alexandra (UIUC) CS473 11 Spring 2013 11 / 48

Tower of Hanoi

N 4

The Tower of Hanoi puzzle

Move stack of n disks from peg 0 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?

Sariel, Alexandra (UIUC) CS473 10 Spring 2013 10 / 48

Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n > 0) then
Hanoi(n — 1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n — 1, tmp, dest, src)

T(n): time to move n disks via recursive strategy

T(n)=2T(n—-1)+1 n>1 and T(1) =1

Sariel, Alexandra (UIUC) CS473 12 Spring 2013 12 / 48

Analysis

T(n)

2T(n—1) +1
22T(n—2)4+2+1

2T(n—i) + 271 42724 ...

- +1

= 2" 'T(1)+2"24...+1

= 214224 ... +1

= 2"-1)/2-1)=2"—1
Sariel, Alexandra (UIUC) CS473 13 Spring 2013 13 /48

Part Il
Divide and Conquer

Sariel, Alexandra (UIUC) CS473 15 Spring 2013 15 / 48

Non-Recursive Algorithms for Tower of Hanoi
Pegs numbered 0,1, 2

Non-recursive Algorithm 1:

@ Always move smallest disk forward if n is even, backward if n is
odd.

@ Never move the same disk twice in a row.
© Done when no legal move.

Non-recursive Algorithm 2:
@ Let p(n) be the smallest integer k such that n/2% is not an
integer. Example: p(40) = 4, p(18) = 2.
@ In step i move disk p(i) forward if n — i is even and backward if
n —iis odd.
Moves are exactly same as those of recursive algorithm. Prove by

induction.
Sariel, Alexandra (UIUC) CS473 14 Spring 2013 14 / 48

Divide and Conquer Paradigm
Divide and Conquer is a common and useful type of recursion

Approach
© Break problem instance into smaller instances - divide step
@ Recursively solve problem on smaller instances

© Combine solutions to smaller instances to obtain a solution to
the original instance - conquer step

Question: Why is this not plain recursion?

@ In divide and conquer, each smaller instance is typically at least
a constant factor smaller than the original instance which leads
to efficient running times.

@ There are many examples of this particular type of recursion that
it deserves its own treatment.

Sariel, Alexandra (UIUC) CS473 16 Spring 2013 16 / 48

Sorting

Input Given an array of n elements

Goal Rearrange them in ascending order

Sariel, Alexandra (UIUC) CS473 17 Spring 2013 17 / 48

Merging Sorted Arrays

@ Use a new array C to store the merged array

@ Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGHILMORST

© Merge two arrays using only constantly more extra space

(in-place merge sort): doable but complicated and typically
impractical.

Merge Sort [von Neumann|

Q Input: Array A[l1...n]
ALGORITHMS
@ Divide into subarrays A[l1...m] and A[m + 1...n], where

m = |n/2]
ALGOR ITHMS

@ Recursively MergeSort A[1...m] and Ajm + 1...n]
AGLOR HIMST
© Merge the sorted arrays

AGHILMORST

Sariel, Alexandra (UIUC) CS473 18 Spring 2013 18 / 48

Sariel, Alexandra (UIUC) CS473 19 Spring 2013 19 / 48

Running Time
T(n): time for merge sort to sort an n element array

T(n) =T([n/2]) + T([n/2]) +cn

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want
to know f(n) such that T(n) = ©(f(n)).

@ T(n) = O(f(n)) - upper bound
@ T(n) = Q(f(n)) - lower bound

Sariel, Alexandra (UIUC) CS473 20

Spring 2013 20 / 48

Solving Recurrences: Some Techniques Recursion Trees

@ Know some basic math: geometric series, logarithms,

exponentials, elementary calculus ® Unroll the recurrence. T(n) = 2T(n/2) + cn
© Expand the recurrence and spot a pattern and use simple math
© Recursion tree method — imagine the computation as a tree (»)
© Guess and verify — useful for proving upper and lower bounds (n/2) (n/2)

even if not tight bounds

Albert Einstein: “Everything should be made as simple as possible,
but not simpler.”

Know where to be loose in analysis and where to be tight. Comes
with practice, practice, practice!

Q lIdentify a pattern. At the ith level total work is cn.
© Sum over all levels. The number of levels is log n. So total is
cnlogn = O(nlogn).

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 /48

Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 /48

Recursion Trees Analysis

©@ When n is not a power of 2, the running time of MergeSort is
expressed as

T(n) =T([n/2]) + T([n/2]) +cn

Q@ n; =21 < n < 2% = ny (ny, ny powers of 2).
Q@ T(n) < T(n) < T(n2) (Why?).
Q@ T(n) = O(nlogn) sincen/2 <n;p <n<ny <2n.

Work in|

Sariel, Alexandra (UIUC) CS473 23 Spring 2013 23 /48 Sariel, Alexandra (UIUC) CS473 24 Spring 2013 24 / 48

Recursion Trees

is not a power of 2

Sariel, Alexandra (UIUC) CS473

Spring 2013

25 / 48

Analysis

If nis power of 2 we saw that T(n) = O(nlogn).
Can guess that T(n) = O(nlog n) for all n.

Verify? proof by induction!

Induction Hypothesis: T(n) < 2cnlogn foralln > 1

Base Case: n = 1. T(1) = 0 since no need to do any work and

2cnlogn =0forn=1.

Induction Step Assume T(k) < 2ck logk for all k < n and prove

it for k = n.

Sariel, Alexandra (UIUC) CS473

Spring 2013

26 / 48

T(n) =T([n/2])+ T([n/2]) + cn

Observation: For any number x, |x/2] + [x/2] = x.

Spring 2013 26 / 48

Induction Step
We have

T(n) T([n/2])+ T([n/2]) + cn

2¢(In/2] + [n/2])log[n/2] + cn
2cnlogn/2] + cn

2cnlogn + cn(1 — 2log 3/2)
2cnlog n + cn(log 2 — log 9/4)
2cnlogn

A VA VAN VAN VANR VANR VAN VAN |

Sariel, Alexandra (UIUC) CS473 27

2c|n/2] log|n/2] 4+ 2c[n/2] log[n/2] 4+ cn (by induc
2c|n/2] log[n/2] 4+ 2c[n/2] log[n/2] + cn

2cnlog(2n/3) + cn (since [n/2] < 2n/3 foralln > 2

Spring 2013 27 / 48

tion)

Guess and Verify

The math worked out like magic!
Why was 2cn log n chosen instead of say 4cnlog n?
@ Do not know upfront what constant to choose.

@ Instead assume that T(n) < acnlog n for some constant a.
o will be fixed later.

© Need to prove that for a large enough the algebra succeeds.

@ In our case... need « such that alog3/2 > 1.

© Typically, do the algebra with a and then show that it works...
. if a is chosen to be sufficiently large constant.

How do we know which function to guess?
We don't so we try several “reasonable” functions. With practice and
experience we get better at guessing the right function.

Sariel, Alexandra (UIUC) CS473 28 Spring 2013 28 / 48

Guess and Verify

@ Guessed that the solution to the MergeSort recurrence is
T(n) = O(n).

@ Try to prove by induction that T(n) < acn for some const’ c.
Induction Step: attempt

T(ln/2]) + T([n/2]) + cn
ac|n/2| + ac[n/2] 4+ cn
acn 4+ cn

(o + 1)en

T(n)

IAIA A

But need to show that T(n) < acn!

© So guess does not work for any constant . Suggests that our
guess is incorrect.

Sariel, Alexandra (UIUC) CS473 29 Spring 2013 29 / 48

Selection Sort vs Merge Sort

@ Selection Sort spends O(n) work to reduce problem from n to
n — 1 leading to O(n?) running time.

@ Merge Sort spends O(n) time after reducing problem to two
instances of size n/2 each. Running time is O(nlog n)

Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can
we do better by splitting into more than 2 arrays? Say k arrays of
size n/k each?

Sariel, Alexandra (UIUC) CS473 30 Spring 2013 30 /48

Quick Sort
Quick Sort [Hoare]

© Pick a pivot element from array

© Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

© Recursively sort the subarrays, and concatenate them.

Example:
Q array: 16, 12, 14, 20, 5, 3, 18, 19, 1
Q pivot: 16
© split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
© put them together with pivot in middle

Sariel, Alexandra (UIUC) CS473 31 Spring 2013 31 /48

Time Analysis

@ Let k be the rank of the chosen pivot. Then,
T(n) =T(k—1) 4+ T(n — k) + O(n)
@ If k = [n/2] then
T(n) =T([n/2]-1)+T([n/2])+0(n) < 2T(n/2)+0(n).
Then, T(n) = O(nlogn).
@ Theoretically, median can be found in linear time.

© Typically, pivot is the first or last element of array. Then,

T(n) = max (T(k— 1) + T(n — k) + O(n))

In the worst case T(n) = T(n — 1) + O(n), which means
T(n) = O(n?). Happens if array is already sorted and pivot is
always first element.

Sariel, Alexandra (UIUC) CS473 32 Spring 2013 32 /48

Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their

product.
Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and
adding the partial products.
3141
x2718
25128
3141
21987
6282
8537238
Sariel, Alexandra (UIUC) CS473 34 Spring 2013 34 /48

Part Il

Fast Multiplication

Sariel, Alexandra (UIUC) CS473 33 Spring 2013

33 /48

Time Analysis of Grade School Multiplication

@ Each partial product: ©(n)

@ Number of partial products: @(n)
© Addition of partial products: @(n?)
Q Total time: @(n?)

Sariel, Alexandra (UIUC) CS473 35 Spring 2013

35/ 48

A Trick of Gauss

Carl Fridrich Gauss: 1777-1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac — bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd, (a + b)(c + d). Then
(ad + bc) = (a+ b)(c + d) — ac — bd

Sariel, Alexandra (UIUC)

CS473 36 Spring 2013

36 /48

Example

1234 x 5678

Sariel, Alexandra (UIUC)

(100 x 12 4 34) x (100 x 56 + 78)
10000 x 12 x 56

+100 x (12 x 78 4+ 34 x 56)

+34 x 78

CS473 38 Spring 2013

38 /48

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Q xX=X4_1Xp_2...% and y = Yn_1¥n—2---Yo

@ x = 10"/2x_ + xg where x, = X,_1 ... Xn/2 and
XR = Xn/2_1 .o e Xp

Q@ y=10"%y, + yg wherey, =yn_1... Yn/2 and
YR = Yn/2—1---Y0

Therefore
Xy = (10"/2x|_ + xR)(IO“/ZyL + yr)
= 10"x.y. + 10"/2(XLYR + XrYL) + XrYR
Sariel, Alexandra (UIUC) CS473 37 Spring 2013 37 /48
Time Analysis
Xy = (10"/2x|_ + xR)(IO“/zyL + yr)
= 10"x,y. + 10™2(x yr + XrYL) + XRYR
4 recursive multiplications of number of size n/2 each plus 4
additions and left shifts (adding enough 0's to the right)
T(n) =4T(n/2) 4+ O(n) T(1) = 0(1)
T(n) = ©(n?). No better than grade school multiplication!
Can we invoke Gauss's trick here?
Sariel, Alexandra (UIUC) CS473 39 Spring 2013 39 /48

Improving the Running Time

xy = (10"%x + xg)(10"y. + yg)
= 10"y, + 10"/2(XLYR + XrYL) + XRrYR

Gauss trick: x YR + XrYL = (XL 4+ Xr)(YL + YR) — XLYL — XRYR

Recursively compute only x,yi, XrYr, (XL + Xr) (YL + YR)-

Time Analysis
Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = 0(1)
which means T(n) = O(n'°#23) = O(n!-%%)

v

Sariel, Alexandra (UIUC) CS473 40 Spring 2013 40 / 48

Analyzing the Recurrences
@ Basic divide and conquer: T(n) = 4T(n/2) + O(n),
T(1) = 1. Claim: T(n) = ©(n?).
@ Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1.
Claim: T(n) = ©(nlt"el5)
Use recursion tree method:
@ In both cases, depth of recursion L = log n.

@ Work at depth i is 4'n/2' and 3'n/2' respectively: number of
children at depth i times the work at each child

@ Total work is therefore n Y. 2" and n "1 (3/2)' respectively.

Sariel, Alexandra (UIUC) CS473 42 Spring 2013 42 / 48

State of the Art

Schénhage-Strassen 1971: O(n log n log log n) time using
Fast-Fourier-Transform (FF'T)

Martin Fiirer 2007: O(nlog n2°0(°¢” ") time

Conjecture
There is an O(n log n) time algorithm.

Sariel, Alexandra (UIUC) CS473 41 Spring 2013

41/ 48

Recursion tree analysis

Sariel, Alexandra (UIUC) CS473 43 Spring 2013

43 / 48

	Reductions, Recursion and Divide and Conquer
	Reductions and Recursion
	Recursion
	Divide and Conquer
	Merge Sort
	Merge Sort
	Merge Sort [von Neumann]
	Analysis
	Solving Recurrences
	Recursion Trees
	Recursion Trees
	MergeSort Analysis
	MergeSort Analysis
	Guess and Verify

	Quick Sort
	Fast Multiplication
	The Problem
	Algorithmic Solution
	Grade School Multiplication
	Divide and Conquer Solution
	Karatsuba's Algorithm

