CS 473: Fundamental Algorithms, Spring 2013

Reductions, Recursion and
Divide and Conquer

Lecture 5
February 2, 2013
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Reductions and Recursion
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Reduction

Reducing problem A to problem B:
@ Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?

A: Hold his trunk shut until he turns blue, and then shoot him with
the blue elephant gun.

Q: How do you shoot a white elephant?

A: Embarrass it till it becomes red. Now use your algorithm for
hunting red elephants.
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UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:
fori=1 to n—1 do
for j=i+1 to n do
if (A[i] = A[ID

return YES
return NO

Running time: O(n?)
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Reduction to Sorting

Sort A
fori=1ton—-1do
if (A[i] = A[i+ 1] then
return YES
return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box
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Two sides of Reductions

Suppose problem A reduces to problem B
@ Positive direction: Algorithm for B implies an algorithm for A

@ Negative direction: Suppose there is no “efficient” algorithm for
A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in O(n) time
@ An O(nlogn) time algorithm for Sorting implies an O(n log n)
time algorithm for Distinct Elements problem.

@ If there is no o(nlogn) time algorithm for Distinct Elements
problem then there is no o(nlog n) time algorithm for Sorting.
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Recursion
Reduction: reduce one problem to another
Recursion: a special case of reduction

© reduce problem to a smaller instance of itself

self-reduction

Q

@ Problem instance of size n is reduced to one or more instances
of size n — 1 or less.

Q

For termination, problem instances of small size are solved by
some other method as base cases
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Recursion

@ Recursion is a very powerful and fundamental technique
© Basis for several other methods

@ Divide and conquer

@ Dynamic programming

© Enumeration and branch and bound etc
@ Some classes of greedy algorithms

© Makes proof of correctness easy (via induction)

© Recurrences arise in analysis
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Selection Sort

Sort a given array A[1..n] of integers.

Recursive version of Selection sort.
SelectSort (A[1..n]):

if n=1 return

Find smallest number in A. Let A[i] be smallest number
Swap A[1l] and A[i]
SelectSort (A[2..n])

T(n): time for SelectSort on an n element array.
Tn)=T(n—1)4+nforn>1and T(1) =1forn=1

T(n) = ©(n?).
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Tower of Hanoi via Recursion
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The Tower of Hanoi algorithm; ignore everything but the bottom disk
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Tower of Hanoi

N 4

The Tower of Hanoi puzzle

Move stack of n disks from peg 0 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?
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Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n > 0) then
Hanoi(n — 1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n — 1, tmp, dest, src)

T(n): time to move n disks via recursive strategy

T(n)=2T(n—-1)+1 n>1 and T(1) =1
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Analysis

T(n)

2T(n—1) +1
22T(n—2)4+2+1

2T(n—i) + 271 42724 ...

- +1

= 2" 'T(1)+2"24...+1

= 214224 ... +1

= 2"-1)/2-1)=2"—1
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Divide and Conquer
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Non-Recursive Algorithms for Tower of Hanoi
Pegs numbered 0,1, 2

Non-recursive Algorithm 1:

@ Always move smallest disk forward if n is even, backward if n is
odd.

@ Never move the same disk twice in a row.
© Done when no legal move.

Non-recursive Algorithm 2:
@ Let p(n) be the smallest integer k such that n/2% is not an
integer. Example: p(40) = 4, p(18) = 2.
@ In step i move disk p(i) forward if n — i is even and backward if
n —iis odd.
Moves are exactly same as those of recursive algorithm. Prove by

induction.
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Divide and Conquer Paradigm
Divide and Conquer is a common and useful type of recursion

Approach
© Break problem instance into smaller instances - divide step
@ Recursively solve problem on smaller instances

© Combine solutions to smaller instances to obtain a solution to
the original instance - conquer step

Question: Why is this not plain recursion?

@ In divide and conquer, each smaller instance is typically at least
a constant factor smaller than the original instance which leads
to efficient running times.

@ There are many examples of this particular type of recursion that
it deserves its own treatment.
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Sorting

Input Given an array of n elements

Goal Rearrange them in ascending order
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Merging Sorted Arrays

@ Use a new array C to store the merged array

@ Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGHILMORST

© Merge two arrays using only constantly more extra space

(in-place merge sort): doable but complicated and typically
impractical.

Merge Sort [von Neumann|

Q Input: Array A[l1...n]
ALGORITHMS
@ Divide into subarrays A[l1...m] and A[m + 1...n], where

m = |n/2]
ALGOR ITHMS

@ Recursively MergeSort A[1...m] and Ajm + 1...n]
AGLOR HIMST
© Merge the sorted arrays

AGHILMORST
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Running Time
T(n): time for merge sort to sort an n element array

T(n) =T([n/2]) + T([n/2]) +cn

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want
to know f(n) such that T(n) = ©(f(n)).

@ T(n) = O(f(n)) - upper bound
@ T(n) = Q(f(n)) - lower bound
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Solving Recurrences: Some Techniques Recursion Trees

@ Know some basic math: geometric series, logarithms,

exponentials, elementary calculus ® Unroll the recurrence. T(n) = 2T(n/2) + cn
© Expand the recurrence and spot a pattern and use simple math
© Recursion tree method — imagine the computation as a tree (»)
© Guess and verify — useful for proving upper and lower bounds (n/2) (n/2)

even if not tight bounds

Albert Einstein: “Everything should be made as simple as possible,
but not simpler.”

Know where to be loose in analysis and where to be tight. Comes
with practice, practice, practice!

Q lIdentify a pattern. At the ith level total work is cn.
© Sum over all levels. The number of levels is log n. So total is
cnlogn = O(nlogn).

Sariel, Alexandra (UIUC) CS473 22 Spring 2013 22 /48

Sariel, Alexandra (UIUC) CS473 21 Spring 2013 21 /48

Recursion Trees Analysis

©@ When n is not a power of 2, the running time of MergeSort is
expressed as

T(n) =T([n/2]) + T([n/2]) +cn

Q@ n; =21 < n < 2% = ny (ny, ny powers of 2).
Q@ T(n) < T(n) < T(n2) (Why?).
Q@ T(n) = O(nlogn) sincen/2 <n;p <n<ny <2n.

Work in|
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Recursion Trees

is not a power of 2
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Analysis

If nis power of 2 we saw that T(n) = O(nlogn).
Can guess that T(n) = O(nlog n) for all n.

Verify? proof by induction!

Induction Hypothesis: T(n) < 2cnlogn foralln > 1

Base Case: n = 1. T(1) = 0 since no need to do any work and

2cnlogn =0forn=1.

Induction Step Assume T(k) < 2ck logk for all k < n and prove

it for k = n.
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T(n) =T([n/2])+ T([n/2]) + cn

Observation: For any number x, |x/2] + [x/2] = x.

Spring 2013 26 / 48

Induction Step
We have

T(n) T([n/2])+ T([n/2]) + cn

2¢(In/2] + [n/2])log[n/2] + cn
2cnlogn/2] + cn

2cnlogn + cn(1 — 2log 3/2)
2cnlog n + cn(log 2 — log 9/4)
2cnlogn

A VA VAN VAN VANR VANR VAN VAN |
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2c|n/2] log[n/2] 4+ 2c[n/2] log[n/2] + cn

2cnlog(2n/3) + cn  (since [n/2] < 2n/3 foralln > 2
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Guess and Verify

The math worked out like magic!
Why was 2cn log n chosen instead of say 4cnlog n?
@ Do not know upfront what constant to choose.

@ Instead assume that T(n) < acnlog n for some constant a.
o will be fixed later.

© Need to prove that for a large enough the algebra succeeds.

@ In our case... need « such that alog3/2 > 1.

© Typically, do the algebra with a and then show that it works...
. if a is chosen to be sufficiently large constant.

How do we know which function to guess?
We don't so we try several “reasonable” functions. With practice and
experience we get better at guessing the right function.
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Guess and Verify

@ Guessed that the solution to the MergeSort recurrence is
T(n) = O(n).

@ Try to prove by induction that T(n) < acn for some const’ c.
Induction Step: attempt

T(ln/2]) + T([n/2]) + cn
ac|n/2| + ac[n/2] 4+ cn
acn 4+ cn

(o + 1)en

T(n)

IAIA A

But need to show that T(n) < acn!

© So guess does not work for any constant . Suggests that our
guess is incorrect.
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Selection Sort vs Merge Sort

@ Selection Sort spends O(n) work to reduce problem from n to
n — 1 leading to O(n?) running time.

@ Merge Sort spends O(n) time after reducing problem to two
instances of size n/2 each. Running time is O(nlog n)

Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can
we do better by splitting into more than 2 arrays? Say k arrays of
size n/k each?
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Quick Sort
Quick Sort [Hoare]

© Pick a pivot element from array

© Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

© Recursively sort the subarrays, and concatenate them.

Example:
Q array: 16, 12, 14, 20, 5, 3, 18, 19, 1
Q pivot: 16
© split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
© put them together with pivot in middle
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Time Analysis

@ Let k be the rank of the chosen pivot. Then,
T(n) =T(k—1) 4+ T(n — k) + O(n)
@ If k = [n/2] then
T(n) =T([n/2]-1)+T([n/2])+0(n) < 2T(n/2)+0(n).
Then, T(n) = O(nlogn).
@ Theoretically, median can be found in linear time.

© Typically, pivot is the first or last element of array. Then,

T(n) = max (T(k— 1) + T(n — k) + O(n))

In the worst case T(n) = T(n — 1) + O(n), which means
T(n) = O(n?). Happens if array is already sorted and pivot is
always first element.
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Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their

product.
Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and
adding the partial products.
3141
x2718
25128
3141
21987
6282
8537238
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Fast Multiplication
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Time Analysis of Grade School Multiplication

@ Each partial product: ©(n)

@ Number of partial products: @(n)
© Addition of partial products: @(n?)
Q Total time: @(n?)
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A Trick of Gauss

Carl Fridrich Gauss: 1777-1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac — bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd, (a + b)(c + d). Then
(ad + bc) = (a+ b)(c + d) — ac — bd
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Example

1234 x 5678
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(100 x 12 4 34) x (100 x 56 + 78)
10000 x 12 x 56

+100 x (12 x 78 4+ 34 x 56)

+34 x 78
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Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Q xX=X4_1Xp_2...% and y = Yn_1¥n—2---Yo

@ x = 10"/2x_ + xg where x, = X,_1 ... Xn/2 and
XR = Xn/2_1 .o e Xp

Q@ y=10"%y, + yg wherey, =yn_1... Yn/2 and
YR = Yn/2—1---Y0

Therefore
Xy = (10"/2x|_ + xR)(IO“/ZyL + yr)
= 10"x.y. + 10"/2(XLYR + XrYL) + XrYR
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Time Analysis
Xy = (10"/2x|_ + xR)(IO“/zyL + yr)
= 10"x,y. + 10™2(x yr + XrYL) + XRYR
4 recursive multiplications of number of size n/2 each plus 4
additions and left shifts (adding enough 0's to the right)
T(n) =4T(n/2) 4+ O(n) T(1) = 0(1)
T(n) = ©(n?). No better than grade school multiplication!
Can we invoke Gauss's trick here?
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Improving the Running Time

xy = (10"%x + xg)(10"y. + yg)
= 10"y, + 10"/2(XLYR + XrYL) + XRrYR

Gauss trick: x YR + XrYL = (XL 4+ Xr)(YL + YR) — XLYL — XRYR

Recursively compute only x,yi, XrYr, (XL + Xr) (YL + YR)-

Time Analysis
Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = 0(1)
which means T(n) = O(n'°#23) = O(n!-%%)

v
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Analyzing the Recurrences
@ Basic divide and conquer: T(n) = 4T(n/2) + O(n),
T(1) = 1. Claim: T(n) = ©(n?).
@ Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1.
Claim: T(n) = ©(nlt"el5)
Use recursion tree method:
@ In both cases, depth of recursion L = log n.

@ Work at depth i is 4'n/2' and 3'n/2' respectively: number of
children at depth i times the work at each child

@ Total work is therefore n Y. 2" and n "1 (3/2)' respectively.
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State of the Art

Schénhage-Strassen 1971: O(n log n log log n) time using
Fast-Fourier-Transform (FF'T)

Martin Fiirer 2007: O(nlog n2°0(°¢” ") time

Conjecture
There is an O(n log n) time algorithm.
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Recursion tree analysis

Sariel, Alexandra (UIUC) CS473 43 Spring 2013

43 / 48




	Reductions, Recursion and Divide and Conquer
	Reductions and Recursion
	Recursion
	Divide and Conquer
	Merge Sort
	Merge Sort
	Merge Sort [von Neumann]
	Analysis
	Solving Recurrences
	Recursion Trees
	Recursion Trees
	MergeSort Analysis
	MergeSort Analysis
	Guess and Verify

	Quick Sort
	Fast Multiplication
	The Problem
	Algorithmic Solution
	Grade School Multiplication
	Divide and Conquer Solution
	Karatsuba's Algorithm



