Breadth First Search, Dijkstra's Algorithm for Shortest Paths

Lecture 3 January 24, 2013

Part I

Breadth First Search

Breadth First Search (BFS)

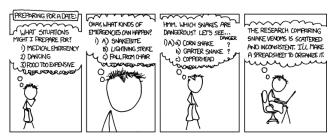
Overview

- (A) **BFS** is obtained from **BasicSearch** by processing edges using a data structure called a **queue**.
- (B) It processes the vertices in the graph in the order of their shortest distance from the vertex **s** (the start vertex).

As such...

- DFS good for exploring graph structure
- 2 BFS good for exploring distances

xkcd take on DFS



I REALLY NEED TO STOP USING DEPTH-FIRST SEARCHES.

Queue Data Structure

Queues

A queue is a list of elements which supports the operations:

- enqueue: Adds an element to the end of the list
- **dequeue**: Removes an element from the front of the list Elements are extracted in **first-in first-out (FIFO)** order, i.e., elements are picked in the order in which they were inserted.

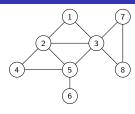
5

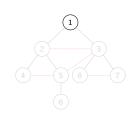
BFS Algorithm

```
Given (undirected or directed) graph G = (V, E) and node s \in V
    BFS(s)
        Mark all vertices as unvisited
        Initialize search tree T to be empty
        Mark vertex s as visited
        set Q to be the empty queue
        eng(s)
        while Q is nonempty do
            u = deq(Q)
            for each vertex v \in Adj(u)
                if v is not visited then
                    add edge (u, v) to T
                    Mark v as visited and enq(v)
```

Proposition

BFS(s) runs in O(n + m) time.

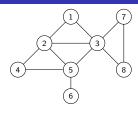


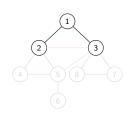


- 1. [1]
- 2. [2,3]
- 3. [3,4,5]

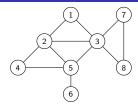
- 4. [4,5,
- 5. [5,7,8]
 - 5. [7,8,6]

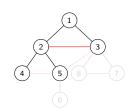
- 7. [8,6]
- 8. [6]
- 9. []





- 2. [2,3] 5. [5,7,8] 8. [6]

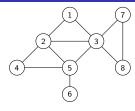


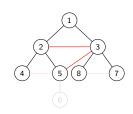


- 1. [1]
- 2. [2,3]
- 3. [3,4,5]

- 4. [4,5,7,
- 5. [5,7,8]

- 7. [8,0]
- 8. [6]
- 9. [

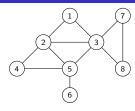


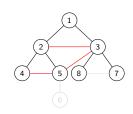


- 1. [1]
- 2. [2,3]
- 3. [3,4,5]

- 4. [4,5,7,8]
 - 5. [5,7,8]
 - 5. [7,8,6]

- 7. [8,6]
- 8. [6]
-). []

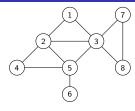


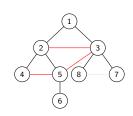


- 1. [1]
- 2. [2,3]
- 3. [3,4,5]

- 4. [4,5,7,8]
- 5. [5,7,8]
 - [7,8,6]

- 7. [8,6]
- 8. [6]
-). []

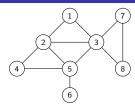


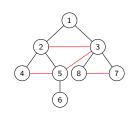


- 1. [1]
- 2. [2,3]
- 3. [3,4,5]

- 4. [4,5,7,8]
- 5. [5,7,8]
 - 6. [7,8,6]

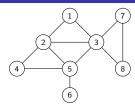
- 7. [8,6]
- 8. [6]
-). []

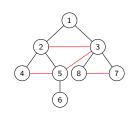




- 1. [1]
- 2. [2,3]
- 3. [3,4,5]

- 4. [4,5,7,8]
- 5. [5,7,8]
 - 6. [7,8,6]
- 7. [8,6]
 - B. [6]
 -). []

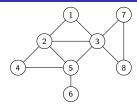


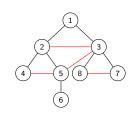


- 1. [1]
- 2. [2,3]
- 3. [3,4,5]

- 4. [4,5,7,8]
- 5. [5,7,8]
 - 6. [7,8,6]

- 7. [8,6]
 - 8. [6]
 -). []

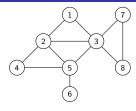


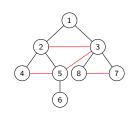


- 1. [1]
- 2. [2,3]
- 3. [3,4,5]

- 4. [4,5,7,8]
- 5. [5,7,8]
 - 6. [7,8,6]

- 7. [8,6]
- 8. [6]
 -). []

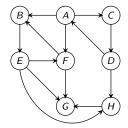




- 4. [4,5,7,8]
- 7. [8,6]

- 2. [2,3] 3. [3,4,5]
- 5. [5,7,8] 6. [7,8,6]

8. [6]



BFS with Distance

```
BFS(s)
    Mark all vertices as unvisited and for each v set dist(v) =
    Initialize search tree T to be empty
    Mark vertex s as visited and set dist(s) = 0
    set Q to be the empty queue
    eng(s)
    while Q is nonempty do
        u = deq(Q)
        for each vertex v \in Adj(u) do
            if v is not visited do
                add edge (u, v) to T
                Mark v as visited, enq(v)
                and set dist(v) = dist(u) + 1
```

9

Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of BFS(s)

- (A) The search tree contains exactly the set of vertices in the connected component of **s**.
- (B) If dist(u) < dist(v) then u is visited before v.
- (C) For every vertex **u**, dist(**u**) is indeed the length of shortest path from **s** to **u**.
- (D) If \mathbf{u}, \mathbf{v} are in connected component of \mathbf{s} and $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ is an edge of \mathbf{G} , then either \mathbf{e} is an edge in the search tree, or $|\operatorname{dist}(\mathbf{u}) \operatorname{dist}(\mathbf{v})| \leq 1$.

Proof.

Exercise.

Properties of BFS: <u>Directed</u> Graphs

Proposition

The following properties hold upon termination of BFS(s):

- (A) The search tree contains exactly the set of vertices reachable from ${\bf s}$
- (B) If dist(u) < dist(v) then u is visited before v
- (C) For every vertex \mathbf{u} , $\mathbf{dist}(\mathbf{u})$ is indeed the length of shortest path from \mathbf{s} to \mathbf{u}
- (D) If $\mathbf u$ is reachable from $\mathbf s$ and $\mathbf e = (\mathbf u, \mathbf v)$ is an edge of $\mathbf G$, then either $\mathbf e$ is an edge in the search tree, or $\mathrm{dist}(\mathbf v) \mathrm{dist}(\mathbf u) \leq 1$. Not necessarily the case that $\mathrm{dist}(\mathbf u) \mathrm{dist}(\mathbf v) \leq 1$.

Proof.

Exercise.

BFS with Layers

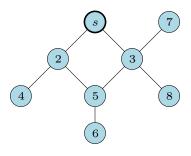
```
BFSLayers(s):
    Mark all vertices as unvisited and initialize T to be empty
    Mark s as visited and set L_0 = \{s\}
    i = 0
    while Li is not empty do
             initialize L_{i+1} to be an empty list
             for each u in L_i do
                 for each edge (u, v) \in Adj(u) do
                 if v is not visited
                          mark v as visited
                          add (u, v) to tree T
                          add v to L_{i+1}
            i = i + 1
```

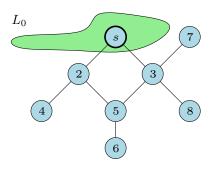
Running time: O(n + m)

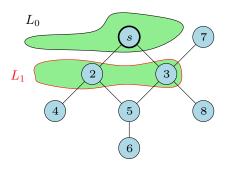
BFS with Layers

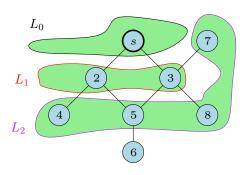
```
BFSLayers(s):
    Mark all vertices as unvisited and initialize T to be empty
    Mark s as visited and set L_0 = \{s\}
    i = 0
    while Li is not empty do
             initialize L_{i+1} to be an empty list
             for each u in L_i do
                 for each edge (u, v) \in Adj(u) do
                 if v is not visited
                          mark v as visited
                          add (u, v) to tree T
                          add v to L_{i+1}
            i = i + 1
```

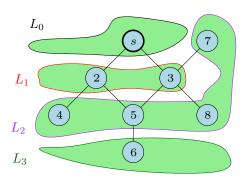
Running time: O(n + m)









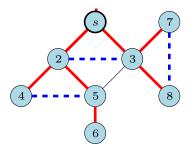


BFS with Layers: Properties

Proposition

The following properties hold on termination of BFSLayers(s).

- BFSLayers(s) outputs a BFS tree
- f Q $f L_i$ is the set of vertices at distance exactly f i from f s
- **3** If **G** is undirected, each edge $e = \{u, v\}$ is one of three types:
 - 1 tree edge between two consecutive layers
 - onn-tree forward/backward edge between two consecutive layers
 - on-tree cross-edge with both u, v in same layer
 - Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.



BFS with Layers: Properties

For directed graphs

Proposition

The following properties hold on termination of BFSLayers(s), if G is directed.

For each edge e = (u, v) is one of four types:

- ① a tree edge between consecutive layers, $u \in L_i, v \in L_{i+1}$ for some $i \geq 0$
- a non-tree forward edge between consecutive layers
- a non-tree backward edge
- a cross-edge with both u, v in same layer

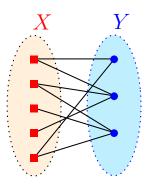
Part II

Bipartite Graphs and an application of BFS

Bipartite Graphs

Definition (Bipartite Graph)

Undirected graph G = (V, E) is a **bipartite graph** if V can be partitioned into X and Y s.t. all edges in E are between X and Y.



Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree T at some node r. Let L_i be all nodes at level i, that is, L_i is all nodes at distance i from root r. Now define X to be all nodes at even levels and Y to be all nodes at odd level. Only edges in T are between levels.

19

Proposition

An odd length cycle is not bipartite

Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof

Root tree T at some node r. Let L_i be all nodes at level i, that is, L_i is all nodes at distance i from root r. Now define X to be all nodes at even levels and Y to be all nodes at odd level. Only edges in T are between levels.

Proposition

An odd length cycle is not bipartite

19

Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree T at some node r. Let L_i be all nodes at level i, that is, L_i is all nodes at distance i from root r. Now define X to be all nodes at even levels and Y to be all nodes at odd level. Only edges in T are between levels.

19

Proposition

An odd length cycle is not bipartite.

Spring 2013

Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree T at some node r. Let L_i be all nodes at level i, that is, L_i is all nodes at distance i from root r. Now define X to be all nodes at even levels and Y to be all nodes at odd level. Only edges in T are between levels.

Proposition

An odd length cycle is not bipartite.

Odd Cycles are not Bipartite

Proposition

An odd length cycle is not bipartite.

Proof.

Let $C = u_1, u_2, \ldots, u_{2k+1}, u_1$ be an odd cycle. Suppose C is a bipartite graph and let X, Y be the partition. Without loss of generality $u_1 \in X$. Implies $u_2 \in Y$. Implies $u_3 \in X$. Inductively, $u_i \in X$ if i is odd $u_i \in Y$ if i is even. But $\{u_1, u_{2k+1}\}$ is an edge and both belong to X!

Definition

Given a graph G = (V, E) a subgraph of G is another graph H = (V', E') where $V' \subseteq V$ and $E' \subseteq E$.

Proposition

If **G** is bipartite then any subgraph **H** of **G** is also bipartite.

Proposition

A graph **G** is not bipartite if **G** has an odd cycle **C** as a subgraph.

Proof.

Definition

Given a graph G = (V, E) a subgraph of G is another graph H = (V', E') where $V' \subseteq V$ and $E' \subseteq E$.

Proposition

If G is bipartite then any subgraph H of G is also bipartite.

Proposition

A graph **G** is not bipartite if **G** has an odd cycle **C** as a subgraph.

Proof.

Definition

Given a graph G = (V, E) a subgraph of G is another graph H = (V', E') where $V' \subseteq V$ and $E' \subseteq E$.

Proposition

If G is bipartite then any subgraph H of G is also bipartite.

Proposition

A graph **G** is not bipartite if **G** has an odd cycle **C** as a subgraph.

Proof

Definition

Given a graph G = (V, E) a subgraph of G is another graph H = (V', E') where $V' \subseteq V$ and $E' \subseteq E$.

Proposition

If G is bipartite then any subgraph H of G is also bipartite.

Proposition

A graph **G** is not bipartite if **G** has an odd cycle **C** as a subgraph.

Proof.

Bipartite Graph Characterization

Theorem

A graph **G** is bipartite if and only if it has no odd length cycle as subgraph.

Proof.

Only If: **G** has an odd cycle implies **G** is not bipartite.

If: **G** has no odd length cycle. Assume without loss of generality that **G** is connected.

- Pick u arbitrarily and do BFS(u)
- 2 $X = \bigcup_{i \text{ is even}} L_i \text{ and } Y = \bigcup_{i \text{ is odd}} L_i$
- Claim: X and Y is a valid partition if G has no odd length cycle.

Bipartite Graph Characterization

Theorem

A graph **G** is bipartite if and only if it has no odd length cycle as subgraph.

Proof.

Only If: **G** has an odd cycle implies **G** is not bipartite.

If: **G** has no odd length cycle. Assume without loss of generality that **G** is connected.

- Pick u arbitrarily and do BFS(u)
- 2 $X = \bigcup_{i \text{ is even}} L_i \text{ and } Y = \bigcup_{i \text{ is odd}} L_i$
- Claim: X and Y is a valid partition if G has no odd length cycle.

Proof of Claim

Claim

In BFS(u) if $a, b \in L_i$ and (a, b) is an edge then there is an odd length cycle containing (a, b).

Proof.

Let v be least common ancestor of a, b in BFS tree T.

 \mathbf{v} is in some level $\mathbf{j} < \mathbf{i}$ (could be \mathbf{u} itself).

Path from $\mathbf{v} \rightsquigarrow \mathbf{a}$ in \mathbf{T} is of length $\mathbf{j} - \mathbf{i}$.

Path from $\mathbf{v} \leadsto \mathbf{b}$ in \mathbf{T} is of length $\mathbf{j} - \mathbf{i}$.

These two paths plus (a, b) forms an odd cycle of length

$$2(j-i)+1$$

Spring 2013

Proof of Claim

Claim

In BFS(u) if $a, b \in L_i$ and (a, b) is an edge then there is an odd length cycle containing (a, b).

Proof.

Let v be least common ancestor of a, b in BFS tree T.

 \mathbf{v} is in some level $\mathbf{j} < \mathbf{i}$ (could be \mathbf{u} itself).

Path from $\mathbf{v} \rightsquigarrow \mathbf{a}$ in \mathbf{T} is of length $\mathbf{j} - \mathbf{i}$.

Path from $\mathbf{v} \rightsquigarrow \mathbf{b}$ in \mathbf{T} is of length $\mathbf{j} - \mathbf{i}$.

These two paths plus (a, b) forms an odd cycle of length

$$2(j-i)+1$$

Proof of Claim: Figure

24

Another tidbit

Corollary

There is an O(n + m) time algorithm to check if G is bipartite and output an odd cycle if it is not.

Part III

Shortest Paths and Dijkstra's Algorithm

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- **1** Given nodes \mathbf{s}, \mathbf{t} find shortest path from \mathbf{s} to \mathbf{t} .
- Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!

Single-Source Shortest Paths:

Non-Negative Edge Lengths

Single-Source Shortest Path Problems

- **1** Input: A (undirected or directed) graph G = (V, E) with non-negative edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?
 - Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.
 - $oldsymbol{o}$ set $\ell(u,v) = \ell(v,u) = \ell(\{u,v\})$
 - Exercise: show reduction wor

Single-Source Shortest Paths:

Non-Negative Edge Lengths

Single-Source Shortest Path Problems

- **1** Input: A (undirected or directed) graph G = (V, E) with non-negative edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?
 - Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.

28

- \circ set $\ell(u, v) = \ell(v, u) = \ell(\{u, v\})$
- Exercise: show reduction wor

Single-Source Shortest Paths:

Non-Negative Edge Lengths

Single-Source Shortest Path Problems

- **1** Input: A (undirected or directed) graph G = (V, E) with non-negative edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?
 - Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.

28

- $oldsymbol{0}$ set $\ell(u,v) = \ell(v,u) = \ell(\{u,v\})$
- Exercise: show reduction works

Special case: All edge lengths are **1**.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- \bigcirc O(m + n) time algorithm.

Special case: Suppose $\ell(\mathbf{e})$ is an integer for all \mathbf{e} ? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(\mathbf{e})-1$ dummy nodes on \mathbf{e}

Let $L = \max_{e} \ell(e)$. New graph has O(mL) edges and O(mL + n) nodes. BFS takes O(mL + n) time. Not efficient if L is large.

Special case: All edge lengths are **1**.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- \bigcirc O(m + n) time algorithm.

Special case: Suppose $\ell(\mathbf{e})$ is an integer for all \mathbf{e} ? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(\mathbf{e})-1$ dummy nodes on \mathbf{e}

Let $L=max_{\rm e}\,\ell(e)$. New graph has O(mL) edges and O(mL+n) nodes. BFS takes O(mL+n) time. Not efficient if L is large.

Special case: All edge lengths are **1**.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- \bigcirc O(m + n) time algorithm.

Special case: Suppose $\ell(\mathbf{e})$ is an integer for all \mathbf{e} ? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(\mathbf{e}) - 1$ dummy nodes on \mathbf{e}

Let $L=max_{\rm e}\,\ell(e)$. New graph has O(mL) edges and O(mL+n) nodes. BFS takes O(mL+n) time. Not efficient if L is large.

Special case: All edge lengths are **1**.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- \bigcirc O(m + n) time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(e)-1$ dummy nodes on e

Let $L=max_e\,\ell(e)$. New graph has O(mL) edges and O(mL+n) nodes. BFS takes O(mL+n) time. Not efficient if L is large.

Special case: All edge lengths are **1**.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- \bigcirc O(m + n) time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(e)-1$ dummy nodes on e

Let $L = max_e \ell(e)$. New graph has O(mL) edges and O(mL + n) nodes. BFS takes O(mL + n) time. Not efficient if L is large.

Why does **BFS** work?

BFS(s) explores nodes in increasing distance from s

Lemma

Let **G** be a directed graph with non-negative edge lengths. Let $\operatorname{dist}(s,v)$ denote the shortest path length from s to v. If $s=v_0 \to v_1 \to v_2 \to \ldots \to v_k$ is a shortest path from s to v_k then for $1 \le i < k$:

- $\ 0 \ s = v_0 \to v_1 \to v_2 \to \ldots \to v_i$ is a shortest path from s to v_i
- $ext{ dist}(s, v_i) \leq ext{ dist}(s, v_k)$

Proof.

Suppose not. Then for some i < k there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$. Then P' concatenated with $v_i \rightarrow v_{i+1} \ldots \rightarrow v_k$ contains a strictly shorter

Why does **BFS** work?

BFS(s) explores nodes in increasing distance from s

Lemma

Let **G** be a directed graph with non-negative edge lengths. Let $\operatorname{dist}(s,v) \text{ denote the shortest path length from } s \text{ to } v. \text{ If } s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \text{ is a shortest path from } s \text{ to } v_k \text{ then for } 1 \leq i < k:$

- $ext{@} \operatorname{dist}(s, v_i) \leq \operatorname{dist}(s, v_k)$

Proof.

Suppose not. Then for some i < k there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$. Then P' concatenated with $v_i \rightarrow v_{i+1} \ldots \rightarrow v_k$ contains a strictly shorter

Why does **BFS** work?

BFS(s) explores nodes in increasing distance from s

Lemma

Let **G** be a directed graph with non-negative edge lengths. Let $\operatorname{dist}(s,v) \text{ denote the shortest path length from } s \text{ to } v. \text{ If } s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \text{ is a shortest path from } s \text{ to } v_k \text{ then for } 1 \leq i < k \text{:}$

- $0 \ s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i \ \text{is a shortest path from } s \ \text{to} \ v_i$

Proof.

Suppose not. Then for some i < k there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$. Then P' concatenated with $v_i \rightarrow v_{i+1} \ldots \rightarrow v_k$ contains a strictly shorter

Lemma

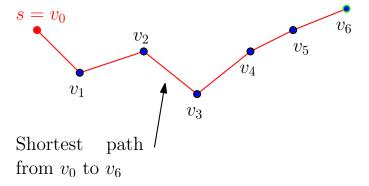
Let **G** be a directed graph with non-negative edge lengths. Let $\operatorname{dist}(s,v) \text{ denote the shortest path length from } s \text{ to } v. \text{ If } s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \text{ is a shortest path from } s \text{ to } v_k \text{ then for } 1 \leq i < k:$

- $\textbf{0} \ \ s = \textbf{v}_0 \rightarrow \textbf{v}_1 \rightarrow \textbf{v}_2 \rightarrow \ldots \rightarrow \textbf{v}_i$ is a shortest path from s to \textbf{v}_i

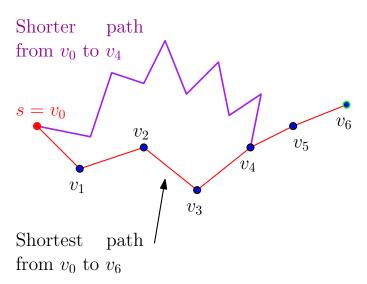
Proof.

Suppose not. Then for some i < k there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$. Then P' concatenated with $v_i \rightarrow v_{i+1} \ldots \rightarrow v_k$ contains a strictly shorter path to v_k than $s = v_0 \rightarrow v_1 \ldots \rightarrow v_k$.

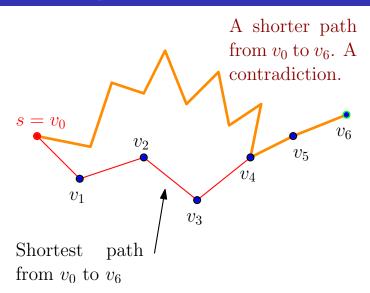
A proof by picture



A proof by picture



A proof by picture



A Basic Strategy

Explore vertices in increasing order of distance from s: (For simplicity assume that nodes are at different distances from s and that no edge has zero length)

```
Initialize for each node \mathbf{v}, \operatorname{dist}(\mathbf{s},\mathbf{v}) = \infty
Initialize \mathbf{S} = \emptyset,
for \mathbf{i} = 1 to |\mathbf{V}| do

(* Invariant: \mathbf{S} contains the \mathbf{i} - 1 closest nodes to \mathbf{s} *)

Among nodes in \mathbf{V} \setminus \mathbf{S}, find the node \mathbf{v} that is the

ith closest to \mathbf{s}

Update \operatorname{dist}(\mathbf{s},\mathbf{v})
\mathbf{S} = \mathbf{S} \cup \{\mathbf{v}\}
```

How can we implement the step in the for loop?

A Basic Strategy

Explore vertices in increasing order of distance from s: (For simplicity assume that nodes are at different distances from s and that no edge has zero length)

```
Initialize for each node \mathbf{v}, \operatorname{dist}(\mathbf{s},\mathbf{v}) = \infty
Initialize \mathbf{S} = \emptyset,
for \mathbf{i} = 1 to |\mathbf{V}| do

(* Invariant: \mathbf{S} contains the \mathbf{i} - 1 closest nodes to \mathbf{s} *)

Among nodes in \mathbf{V} \setminus \mathbf{S}, find the node \mathbf{v} that is the

ith closest to \mathbf{s}
Update \operatorname{dist}(\mathbf{s},\mathbf{v})
\mathbf{S} = \mathbf{S} \cup \{\mathbf{v}\}
```

How can we implement the step in the for loop?

Finding the ith closest node

- **1** S contains the i-1 closest nodes to s
- ② Want to find the ith closest node from V S.

What do we know about the ith closest node?

Claim

Let ${\bf P}$ be a shortest path from ${\bf s}$ to ${\bf v}$ where ${\bf v}$ is the ${\bf i}$ th closest node. Then, all intermediate nodes in ${\bf P}$ belong to ${\bf S}$.

Proof.

If **P** had an intermediate node \mathbf{u} not in \mathbf{S} then \mathbf{u} will be closer to \mathbf{s} than \mathbf{v} . Implies \mathbf{v} is not the \mathbf{i} th closest node to \mathbf{s} - recall that \mathbf{S} already has the $\mathbf{i}-\mathbf{1}$ closest nodes.

Finding the ith closest node

- **9** S contains the i-1 closest nodes to s
- ② Want to find the ith closest node from V S.

What do we know about the ith closest node?

Claim

Let P be a shortest path from s to v where v is the ith closest node. Then, all intermediate nodes in P belong to S.

Proof.

If **P** had an intermediate node \mathbf{u} not in \mathbf{S} then \mathbf{u} will be closer to \mathbf{s} than \mathbf{v} . Implies \mathbf{v} is not the \mathbf{i} th closest node to \mathbf{s} - recall that \mathbf{S} already has the $\mathbf{i}-\mathbf{1}$ closest nodes.

Finding the ith closest node

- **9** S contains the i-1 closest nodes to s
- ② Want to find the ith closest node from V S.

What do we know about the ith closest node?

Claim

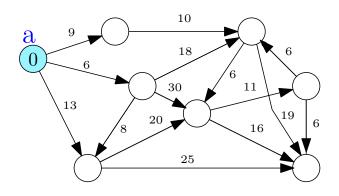
Let P be a shortest path from s to v where v is the ith closest node. Then, all intermediate nodes in P belong to S.

Proof.

If **P** had an intermediate node \mathbf{u} not in \mathbf{S} then \mathbf{u} will be closer to \mathbf{s} than \mathbf{v} . Implies \mathbf{v} is not the \mathbf{i} th closest node to \mathbf{s} - recall that \mathbf{S} already has the $\mathbf{i}-\mathbf{1}$ closest nodes.

Finding the ith closest node repeatedly

An example

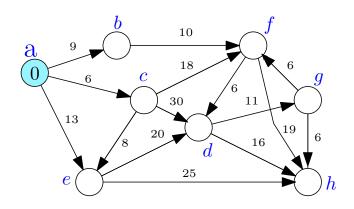


34

34 / 48

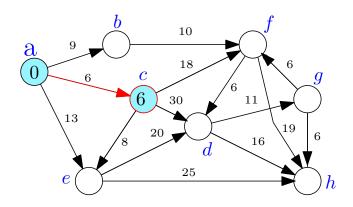
Finding the ith closest node repeatedly

An example

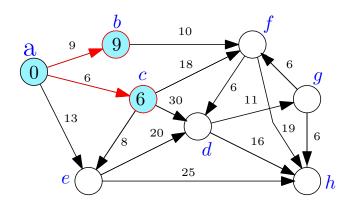


34

An example

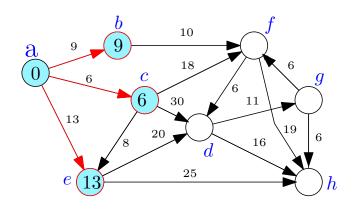


An example

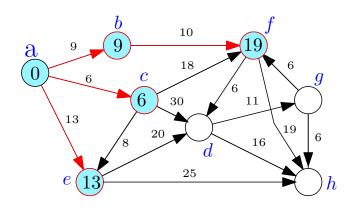


34

An example

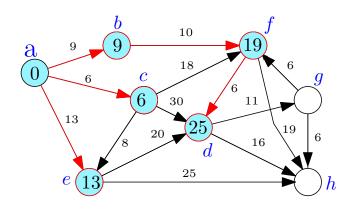


An example

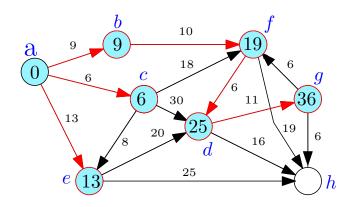


34

An example

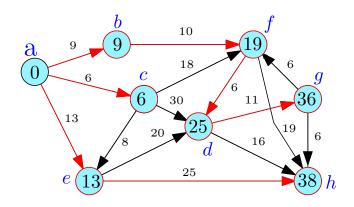


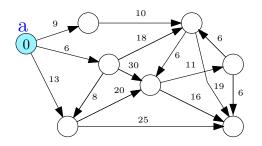
An example



34

An example





Corollary

The ith closest node is adjacent to S.

- **9** S contains the i-1 closest nodes to s
- ② Want to find the ith closest node from V S.
- For each $u \in V S$ let P(s, u, S) be a shortest path from s to u using only nodes in S as intermediate vertices.
- 2 Let d'(s, u) be the length of P(s, u, S)

Observations: for each $\mathbf{u} \in \mathbf{V} - \mathbf{S}$,

Lemma

If v is the ith closest node to s, then $d'(s, v) = \operatorname{dist}(s, v)$.

- **9** S contains the i-1 closest nodes to s
- ② Want to find the ith closest node from V S.
- For each $u \in V S$ let P(s, u, S) be a shortest path from s to u using only nodes in S as intermediate vertices.
- 2 Let d'(s, u) be the length of P(s, u, S)

Observations: for each $\mathbf{u} \in \mathbf{V} - \mathbf{S}$,

- $0 \operatorname{dist}(s, u) \le d'(s, u)$ since we are constraining the paths
- $d'(s,u) = \min_{a \in S} (\operatorname{dist}(s,a) + \ell(a,u)) \text{Why?}$

Lemma

If v is the ith closest node to s, then d'(s, v) = dist(s, v).

- **9** S contains the i-1 closest nodes to s
- ② Want to find the ith closest node from V S.
- For each $u \in V S$ let P(s, u, S) be a shortest path from s to u using only nodes in S as intermediate vertices.
- 2 Let d'(s, u) be the length of P(s, u, S)

Observations: for each $\mathbf{u} \in \mathbf{V} - \mathbf{S}$,

- $0 \operatorname{dist}(s, u) \le d'(s, u)$ since we are constraining the paths
- $d'(s,u) = \min_{a \in S} (\operatorname{dist}(s,a) + \ell(a,u)) \text{Why?}$

Lemma

If v is the ith closest node to s, then d'(s, v) = dist(s, v).

Lemma

Given:

9 S: Set of i - 1 closest nodes to s.

 $d'(s,u) = \min_{x \in S} (dist(s,x) + \ell(x,u))$

If v is an ith closest node to s, then d'(s, v) = dist(s, v).

Proof.

Let \mathbf{v} be the **i**th closest node to \mathbf{s} . Then there is a shortest path \mathbf{P} from \mathbf{s} to \mathbf{v} that contains only nodes in \mathbf{S} as intermediate nodes (see previous claim). Therefore $\mathbf{d}'(\mathbf{s}, \mathbf{v}) = \operatorname{dist}(\mathbf{s}, \mathbf{v})$.

Lemma

If v is an ith closest node to s, then d'(s, v) = dist(s, v).

Corollary

The ith closest node to s is the node $v \in V - S$ such that $d'(s,v) = \min_{u \in V - S} d'(s,u)$.

Proof.

For every node $u \in V - S$, $\operatorname{dist}(s, u) \leq d'(s, u)$ and for the ith closest node v, $\operatorname{dist}(s, v) = d'(s, v)$. Moreover, $\operatorname{dist}(s, u) \geq \operatorname{dist}(s, v)$ for each $u \in V - S$.

```
Initialize for each node v: dist(s, v) = \infty
Initialize S = \emptyset, d'(s,s) = 0
for i = 1 to |V| do
     (* Invariant: S contains the i-1 closest nodes to s *)
     (* Invariant: d'(s,u) is shortest path distance from u to
      using only S as intermediate nodes*)
     Let v be such that d'(s, v) = \min_{u \in V - S} d'(s, u)
     dist(s, v) = d'(s, v)
     S = S \cup \{v\}
     for each node u in V \setminus S do
         d'(s,u) \Leftarrow min_{a \in S} \Big( \mathrm{dist}(s,a) + \ell(a,u) \Big)
```

Correctness: By induction on i using previous lemmas Running time: $O(n \cdot (n + m))$ time.

• n outer iterations. In each iteration, d'(s, u) for each u by scanning all edges out of nodes in S; O(m + n) time/iteration.

```
Initialize for each node v: dist(s, v) = \infty
Initialize S = \emptyset, d'(s,s) = 0
for i = 1 to |V| do
     (* Invariant: S contains the i-1 closest nodes to s *)
     (* Invariant: d'(s,u) is shortest path distance from u to
     using only S as intermediate nodes*)
    Let v be such that d'(s, v) = \min_{u \in V - S} d'(s, u)
    dist(s, v) = d'(s, v)
    S = S \cup \{v\}
    for each node u in V \setminus S do
         d'(s, u) \Leftarrow \min_{a \in S} (dist(s, a) + \ell(a, u))
```

Correctness: By induction on i using previous lemmas.

Running time: $O(n \cdot (n + m))$ time.

• n outer iterations. In each iteration, d'(s, u) for each u by scanning all edges out of nodes in S; O(m + n) time/iteration.

```
Initialize for each node v: dist(s, v) = \infty
Initialize S = \emptyset, d'(s,s) = 0
for i = 1 to |V| do
     (* Invariant: S contains the i-1 closest nodes to s *)
     (* Invariant: d'(s,u) is shortest path distance from u to
     using only S as intermediate nodes*)
    Let v be such that d'(s, v) = \min_{u \in V - S} d'(s, u)
    dist(s, v) = d'(s, v)
    S = S \cup \{v\}
    for each node u in V \setminus S do
         d'(s, u) \Leftarrow \min_{a \in S} (dist(s, a) + \ell(a, u))
```

Correctness: By induction on i using previous lemmas.

Running time: $O(n \cdot (n + m))$ time.

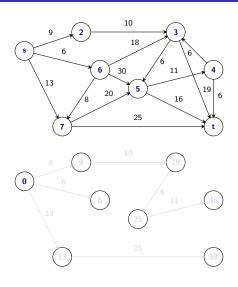
1 o u outer iterations. In each iteration, d'(s, u) for each u by scanning all edges out of nodes in S; O(m + n) time/iteration.

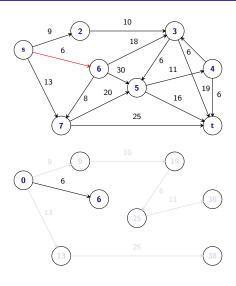
```
Initialize for each node v: dist(s, v) = \infty
Initialize S = \emptyset, d'(s,s) = 0
for i = 1 to |V| do
      (* Invariant: S contains the i-1 closest nodes to s *)
      (* Invariant: d'(s,u) is shortest path distance from u to
       using only S as intermediate nodes*)
      Let v be such that d'(s, v) = \min_{u \in V - S} d'(s, u)
      dist(s, v) = d'(s, v)
      S = S \cup \{v\}
      for each node u in V \setminus S do
           \mathsf{d}'(\mathsf{s},\mathsf{u}) \Leftarrow \mathsf{min}_{\mathsf{a} \in \mathsf{S}} \Big( \mathrm{dist}(\mathsf{s},\mathsf{a}) + \ell(\mathsf{a},\mathsf{u}) \Big)
```

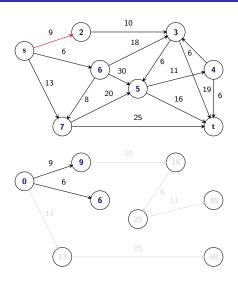
Correctness: By induction on i using previous lemmas.

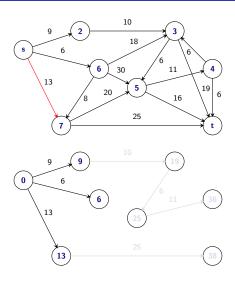
Running time: $O(n \cdot (n + m))$ time.

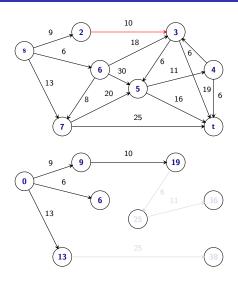
1 n outer iterations. In each iteration, d'(s, u) for each u by scanning all edges out of nodes in S; O(m + n) time/iteration.

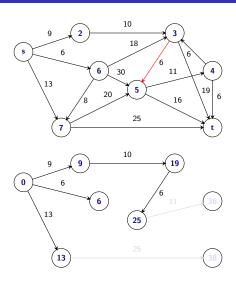


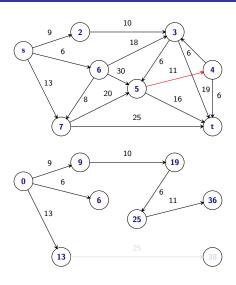


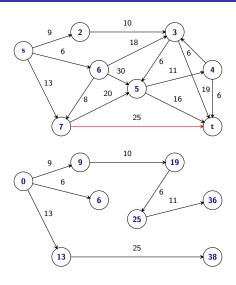












Improved Algorithm

- Main work is to compute the d'(s, u) values in each iteration
- 2 d'(s, u) changes from iteration i to i + 1 only because of the node v that is added to S in iteration i.

```
Initialize for each node v, \operatorname{dist}(s,v) = d'(s,v) = \infty

Initialize S = \emptyset, d'(s,s) = 0

for i = 1 to |V| do

// S contains the i - 1 closest nodes to s,

// and the values of d'(s,u) are current

v be node realizing d'(s,v) = \min_{u \in V - S} d'(s,u)

\operatorname{dist}(s,v) = d'(s,v)

S = S \cup \{v\}

Update d'(s,u) for each u in V - S as follows:

d'(s,u) = \min(d'(s,u), \operatorname{dist}(s,v) + \ell(v,u))
```

Running time: $O(m + n^2)$ time.

- n outer iterations and in each iteration following steps
- Sariel, Alexandra (UIUC)

 Sariel, Alexandra (UIUC)

 Suriel, Alexandra (UIUC)

 CS473

 41

 Spring 2013

 41 / 48

Improved Algorithm

- Main work is to compute the d'(s, u) values in each iteration
- 2 d'(s, u) changes from iteration i to i + 1 only because of the node v that is added to S in iteration i.

```
Initialize for each node v, \operatorname{dist}(s,v) = d'(s,v) = \infty Initialize S = \emptyset, d'(s,s) = 0 for i = 1 to |V| do  
// S contains the i - 1 closest nodes to s, // and the values of d'(s,u) are current v be node realizing d'(s,v) = \min_{u \in V - S} d'(s,u) \operatorname{dist}(s,v) = d'(s,v) S = S \cup \{v\} Update d'(s,u) for each u in V - S as follows: d'(s,u) = \min(d'(s,u), \operatorname{dist}(s,v) + \ell(v,u))
```

Running time: $O(m + n^2)$ time.

n outer iterations and in each iteration following steps

Sariel, Alexandra (UIUC) CS473 41 Spring 2013 41 / 48

ting d'(s, u) after v added takes O(deg(v)) time so total

Improved Algorithm

```
Initialize for each node v, \operatorname{dist}(s,v) = d'(s,v) = \infty Initialize S = \emptyset, \operatorname{d}'(s,s) = 0 for i = 1 to |V| do  
// S contains the i - 1 closest nodes to s,  
// and the values of \operatorname{d}'(s,u) are current v be node realizing \operatorname{d}'(s,v) = \min_{u \in V - S} \operatorname{d}'(s,u) \operatorname{dist}(s,v) = \operatorname{d}'(s,v) S = S \cup \{v\} Update \operatorname{d}'(s,u) for each u in V - S as follows: \operatorname{d}'(s,u) = \min(\operatorname{d}'(s,u), \operatorname{dist}(s,v) + \ell(v,u))
```

Running time: $O(m + n^2)$ time.

- outer iterations and in each iteration following steps
- ② updating d'(s, u) after v added takes O(deg(v)) time so total work is O(m) since a node enters S only once
- **3** Finding **v** from d'(s, u) values is O(n) time

Dijkstra's Algorithm

- \bullet eliminate d'(s, u) and let dist(s, u) maintain it
- ② update **dist** values after adding **v** by scanning edges out of **v**

```
\begin{split} & \text{Initialize for each node } v, \ \operatorname{dist}(s,v) = \infty \\ & \text{Initialize } S = \{\}, \ \operatorname{dist}(s,s) = 0 \\ & \text{for } i = 1 \ \text{to} \ |V| \ \text{do} \\ & \text{Let } v \text{ be such that } \operatorname{dist}(s,v) = \min_{u \in V-S} \operatorname{dist}(s,u) \\ & S = S \cup \{v\} \\ & \text{for each } u \text{ in } \operatorname{Adj}(v) \text{ do} \\ & \text{dist}(s,u) = \min \Big( \operatorname{dist}(s,u), \ \operatorname{dist}(s,v) + \ell(v,u) \Big) \end{split}
```

Priority Queues to maintain dist values for faster running time

- ① Using heaps and standard priority queues: $O((m + n) \log n)$
- ② Using Fibonacci heaps: $O(m + n \log n)$.

Dijkstra's Algorithm

- eliminate d'(s, u) and let dist(s, u) maintain it
- ② update **dist** values after adding **v** by scanning edges out of **v**

```
\begin{split} & \text{Initialize for each node } v, \ \operatorname{dist}(s,v) = \infty \\ & \text{Initialize } S = \{\}, \ \operatorname{dist}(s,s) = 0 \\ & \text{for } i = 1 \ \text{to} \ |V| \ \text{do} \\ & \text{Let } v \ \text{be such that } \operatorname{dist}(s,v) = \min_{u \in V-S} \operatorname{dist}(s,u) \\ & S = S \cup \{v\} \\ & \text{for each } u \ \text{in } \operatorname{Adj}(v) \ \text{do} \\ & & \operatorname{dist}(s,u) = \min \Big( \operatorname{dist}(s,u), \ \operatorname{dist}(s,v) + \ell(v,u) \Big) \end{split}
```

Priority Queues to maintain dist values for faster running time

- ① Using heaps and standard priority queues: $O((m + n) \log n)$
- ② Using Fibonacci heaps: $O(m + n \log n)$.

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.
- 2 findMin: find the minimum key in S.
- **3** extractMin: Remove $\mathbf{v} \in \mathbf{S}$ with smallest key and return it.
- **1** insert(\mathbf{v} , $\mathbf{k}(\mathbf{v})$): Add new element \mathbf{v} with key $\mathbf{k}(\mathbf{v})$ to \mathbf{S} .
- delete(v): Remove element v from S.
- **decreaseKey(v, k'(v))**: decrease key of **v** from **k(v)** (current key) to **k'(v)** (new key). Assumption: $\mathbf{k'(v)} \leq \mathbf{k(v)}$.
- meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time. decreaseKey is implemented via delete and insert.

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.
- 2 findMin: find the minimum key in S.
- **3** extractMin: Remove $\mathbf{v} \in \mathbf{S}$ with smallest key and return it.
- **1** insert(v, k(v)): Add new element v with key k(v) to S.
- delete(v): Remove element v from S.
- decrease Key(\mathbf{v} , $\mathbf{k'}(\mathbf{v})$): decrease key of \mathbf{v} from $\mathbf{k}(\mathbf{v})$ (current key) to $\mathbf{k'}(\mathbf{v})$ (new key). Assumption: $\mathbf{k'}(\mathbf{v}) \leq \mathbf{k}(\mathbf{v})$.
- meld: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time. decreaseKey is implemented via delete and insert.

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.
- findMin: find the minimum key in S.
- **3** extractMin: Remove $\mathbf{v} \in \mathbf{S}$ with smallest key and return it.
- **1** insert(\mathbf{v} , $\mathbf{k}(\mathbf{v})$): Add new element \mathbf{v} with key $\mathbf{k}(\mathbf{v})$ to \mathbf{S} .
- delete(v): Remove element v from S.
- decrease Key(\mathbf{v} , $\mathbf{k'}(\mathbf{v})$): decrease key of \mathbf{v} from $\mathbf{k}(\mathbf{v})$ (current key) to $\mathbf{k'}(\mathbf{v})$ (new key). Assumption: $\mathbf{k'}(\mathbf{v}) \leq \mathbf{k}(\mathbf{v})$.
- meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time. decreaseKey is implemented via delete and insert.

Dijkstra's Algorithm using Priority Queues

```
\begin{split} Q &\Leftarrow \mathsf{makePQ}() \\ &\mathsf{insert}(Q, \ (s, 0)) \\ &\mathsf{for} \ \mathsf{each} \ \mathsf{node} \ \mathsf{u} \neq \mathsf{s} \ \mathsf{do} \\ & \quad \mathsf{insert}(Q, \ (\mathsf{u}, \infty)) \\ &\mathsf{S} \Leftarrow \emptyset \\ &\mathsf{for} \ \mathsf{i} = 1 \ \mathsf{to} \ |\mathsf{V}| \ \mathsf{do} \\ & \quad (\mathsf{v}, \mathsf{dist}(\mathsf{s}, \mathsf{v})) = \mathsf{extractMin}(\mathsf{Q}) \\ & \mathsf{S} = \mathsf{S} \cup \{\mathsf{v}\} \\ & \quad \mathsf{for} \ \mathsf{each} \ \mathsf{u} \ \mathsf{in} \ \mathsf{Adj}(\mathsf{v}) \ \mathsf{do} \\ & \quad \mathsf{decreaseKey}\Big(\mathsf{Q}, \ (\mathsf{u}, \mathsf{min}(\mathsf{dist}(\mathsf{s}, \mathsf{u}), \ \mathsf{dist}(\mathsf{s}, \mathsf{v}) + \ell(\mathsf{v}, \mathsf{u})))\Big) \,. \end{split}
```

Priority Queue operations:

- O(n) insert operations
- O(n) extractMin operations
- O(m) decreaseKey operations

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

① All operations can be done in $O(\log n)$ time

Dijkstra's algorithm can be implemented in $O((n+m) \log n)$ time.

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

① All operations can be done in $O(\log n)$ time

Dijkstra's algorithm can be implemented in $O((n + m) \log n)$ time.

- extractMin, insert, delete, meld in O(log n) time
- **2** decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- ① Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- ② Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

- extractMin, insert, delete, meld in O(log n) time
- **Q** decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- ① Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- ② Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

- extractMin, insert, delete, meld in O(log n) time
- **decreaseKey** in O(1) amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- ① Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- ② Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

- extractMin, insert, delete, meld in O(log n) time
- **Quantized** decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- ① Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- ② Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

Shortest Path Tree

Dijkstra's algorithm finds the shortest path distances from s to **V**. **Question:** How do we find the paths themselves?

```
for each node u \neq s do
```

Shortest Path Tree

Dijkstra's algorithm finds the shortest path distances from s to V.

Question: How do we find the paths themselves?

```
Q = makePQ()
insert(Q, (s, 0))
prev(s) \Leftarrow null
for each node u \neq s do
    insert(Q, (u, \infty))
     prev(u) \Leftarrow null
S = \emptyset
for i = 1 to |V| do
     (v, dist(s, v)) = extractMin(Q)
    S = S \cup \{v\}
     for each u in Adj(v) do
          if (dist(s, v) + \ell(v, u) < dist(s, u)) then
               decreaseKey(Q, (u, dist(s, v) + \ell(v, u)))
               prev(u) = v
```

47

Shortest Path Tree

Lemma

The edge set $(\mathbf{u}, \mathbf{prev}(\mathbf{u}))$ is the reverse of a shortest path tree rooted at \mathbf{s} . For each \mathbf{u} , the reverse of the path from \mathbf{u} to \mathbf{s} in the tree is a shortest path from \mathbf{s} to \mathbf{u} .

Proof Sketch.

- The edge set $\{(u, prev(u)) \mid u \in V\}$ induces a directed in-tree rooted at s (Why?)
- Use induction on |S| to argue that the tree is a shortest path tree for nodes in V.

Shortest paths to s

Dijkstra's algorithm gives shortest paths from \mathbf{s} to all nodes in \mathbf{V} . How do we find shortest paths from all of \mathbf{V} to \mathbf{s} ?

- In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.
- In directed graphs, use Dijkstra's algorithm in G^{rev}!

Shortest paths to s

Dijkstra's algorithm gives shortest paths from \mathbf{s} to all nodes in \mathbf{V} . How do we find shortest paths from all of \mathbf{V} to \mathbf{s} ?

- In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.
- In directed graphs, use Dijkstra's algorithm in G^{rev}!