
Chapter 2

DFS in Directed Graphs, Strong
Connected Components, and DAGs

CS 473: Fundamental Algorithms, Spring 2013
January 19, 2013

2.0.0.1 Strong Connected Components (SCCs)

Algorithmic Problem Find all SCCs of a given directed
graph. Previous lecture:
Saw an O(n · (n+m)) time algorithm.
This lecture: O(n+m) time algorithm.

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

2.0.0.2 Graph of SCCs

.

.A.B .C

.D.E .F

.G .H

Graph G

.

.B,E, F

.G .H

.A,C,D

Graph of SCCs GSCC

Meta-graph of SCCs Let S1, S2, . . . Sk be the strong connected components (i.e., SCCs)
of G. The graph of SCCs is GSCC

(A) Vertices are S1, S2, . . . Sk

(B) There is an edge (Si, Sj) if there is some u ∈ Si and v ∈ Sj such that (u, v) is an edge
in G.

1



2.0.0.3 Reversal and SCCs

Proposition 2.0.1. For any graph G, the graph of SCCs of Grev is the same as the reversal
of GSCC.

Proof : Exercise.

2.0.0.4 SCCs and DAGs

Proposition 2.0.2. For any graph G, the graph GSCC has no directed cycle.

Proof : If GSCC has a cycle S1, S2, . . . , Sk then S1 ∪ S2 ∪ · · · ∪ Sk should be in the same SCC
in G. Formal details: exercise.

2.1 Directed Acyclic Graphs
2.1.0.5 Directed Acyclic Graphs

Definition 2.1.1. A directed graph G is
a directed acyclic graph (DAG) if
there is no directed cycle in G.

..1

.2 .3

.4

2.1.0.6 Sources and Sinks

source sink

1

2 3

4

Definition 2.1.2. (A) A vertex u is a
source if it has no in-coming edges.

(B) A vertex u is a sink if it has no out-
going edges.

2



2.1.0.7 Simple DAG Properties

(A) Every DAG G has at least one source and at least one sink.
(B) If G is a DAG if and only if Grev is a DAG.
(C) G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

2.1.0.8 Topological Ordering/Sorting

..1

.2 .3

.4

Graph G

..1 .2 .3 .4

Topological Ordering of G

Definition 2.1.3. A topological ordering/topological sorting of G = (V,E) is an
ordering ≺ on V such that if (u, v) ∈ E then u ≺ v.

Informal equivalent definition: One can order the vertices of the graph along a line
(say the x-axis) such that all edges are from left to right.

2.1.0.9 DAGs and Topological Sort

Lemma 2.1.4. A directed graph G can be topologically ordered iff it is a DAG.

Proof : =⇒: Suppose G is not a DAG and has a topological ordering ≺. G has a cycle
C = u1, u2, . . . , uk, u1.

Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1!

That is... u1 ≺ u1.

A contradiction (to ≺ being an order).

Not possible to topologically order the vertices.

2.1.0.10 DAGs and Topological Sort

Lemma 2.1.5. A directed graph G can be topologically ordered iff it is a DAG.

Proof :[Continued] ⇐: Consider the following algorithm:

(A) Pick a source u, output it.
(B) Remove u and all edges out of u.
(C) Repeat until graph is empty.
(D) Exercise: prove this gives an ordering.

3



Exercise: show above algorithm can be implemented in O(m+ n) time.

2.1.0.11 Topological Sort: An Exam-
ple

..¡2-¿1

.¡3-¿2 .¡4-¿3

.¡5-¿4

Output: 1 2 3 4

2.1.0.12 Topological Sort: Another
Example

a b c

d e

f g

h
2.1.0.13 DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.
Question: What is a DAG with the most number of distinct topological sorts for a

given number n of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a
given number n of vertices?

2.1.1 Using DFS...

2.1.1.1 ... to check for Acylicity and compute Topological Ordering

Question Given G, is it a DAG? If it is, generate a topological sort.
DFS based algorithm:

(A) Compute DFS(G)
(B) If there is a back edge then G is not a DAG.
(C) Otherwise output nodes in decreasing post-visit order.
Correctness relies on the following:

Proposition 2.1.6. G is a DAG iff there is no back-edge in DFS(G).

Proposition 2.1.7. If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Proof : There are several possibilities:
(A) [pre(v), post(v)] comes after [pre(u), post(u)] and they are disjoint. But then, u was

visited first by the DFS, if (u, v) ∈ E(G) then DFS will visit v during the recursive
call on u. But then, post(v) < post(u). A contradiction.

(B) [pre(v), post(v)] ⊆ [pre(u), post(u)]: impossible as post(v) > post(u).

4



(C) [pre(u), post(u)] ⊆ [pre(v), post(v)]. But then DFS visited v, and then visited u.
Namely there is a path in G from v to u. But then if (u, v) ∈ E(G) then there would
be a cycle in G, and it would not be a DAG. Contradiction.

(D) No other possibility - since “lifetime” intervals of DFS are either disjoint or contained
in each other.

2.1.1.2 Example

..1

.2 .3

.4

2.1.1.3 Back edge and Cycles

Proposition 2.1.8. G has a cycle iff there is a back-edge in DFS(G).

Proof : If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u
in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . . → vk → v1.
Let vi be first node in C visited in DFS.
All other nodes in C are descendants of vi since they are reachable from vi.
Therefore, (vi−1, vi) (or (vk, v1) if i = 1) is a back edge.

2.1.1.4 Topological sorting of a DAG

Input: DAG G. With n vertices and m edges.
O(n+m) algorithms for topological sorting

(A) Put source s of G as first in the order, remove s, and repeat.
(Implementation not trivial.)

(B) Do DFS of G.
Compute post numbers.
Sort vertices by decreasing post number.

Question How to avoid sorting?
No need to sort - post numbering algorithm can output vertices...

2.1.1.5 DAGs and Partial Orders

Definition 2.1.9. A partially ordered set is a set S along with a binary relation ⪯ such
that ⪯ is

1. reflexive (a ⪯ a for all a ∈ V ),

2. anti-symmetric (a ⪯ b and a ̸= b implies b ̸⪯ a), and

5



3. transitive (a ⪯ b and b ⪯ c implies a ⪯ c).

Example: For numbers in the plane define (x, y) ⪯ (x′, y′) iff x ≤ x′ and y ≤ y′.
Observation: A finite partially ordered set is equivalent to aDAG. (No equal elements.)
Observation: A topological sort of aDAG corresponds to a complete (or total) ordering

of the underlying partial order.

2.1.2 What’s DAG but a sweet old fashioned notion

2.1.2.1 Who needs a DAG...

Example

(A) V : set of n products (say, n different types of tablets).
(B) Want to buy one of them, so you do market research...
(C) Online reviews compare only pairs of them.

...Not everything compared to everything.
(D) Given this partial information:

(A) Decide what is the best product.
(B) Decide what is the ordering of products from best to worst.
(C) ...

2.1.3 What DAGs got to do with it?

2.1.3.1 Or why we should care about DAGs

(A) DAGs enable us to represent partial ordering information we have about some set (very
common situation in the real world).

(B) Questions about DAGs:
(A) Is a graph G a DAG?

⇐⇒
Is the partial ordering information we have so far is consistent?

(B) Compute a topological ordering of a DAG.
⇐⇒
Find an a consistent ordering that agrees with our partial information.

(C) Find comparisons to do so DAG has a unique topological sort.
⇐⇒
Which elements to compare so that we have a consistent ordering of the items.

2.2 Linear time algorithm for finding all strong con-

nected components of a directed graph
2.2.0.2 Finding all SCCs of a Directed Graph

Problem Given a directed graph G = (V,E), output all its strong connected components.

6



Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)
Compute rch(Grev, u) using DFS(Grev, u)
SCC(G, u) ⇐ rch(G, u) ∩ rch(Grev, u)
∀u ∈ SCC(G, u): Mark u as visited.

Running time: O(n(n+m)) Is there an O(n+m) time algorithm?

2.2.0.3 Structure of a Directed Graph

.

.A.B .C

.D.E .F

.G .H

Graph G

.

.B,E, F

.G .H

.A,C,D

Graph of SCCs GSCC

Reminder GSCC is created by collapsing every strong connected component to a single
vertex.

Proposition 2.2.1. For a directed graph G, its meta-graph GSCC is a DAG.

2.2.1 Linear-time Algorithm for SCCs: Ideas

2.2.1.1 Exploit structure of meta-graph...

Wishful Thinking Algorithm

(A) Let u be a vertex in a sink SCC of GSCC

(B) Do DFS(u) to compute SCC(u)
(C) Remove SCC(u) and repeat

Justification

(A) DFS(u) only visits vertices (and edges) in SCC(u)
(B) ... since there are no edges coming out a sink!
(C) DFS(u) takes time proportional to size of SCC(u)
(D) Therefore, total time O(n+m)!

2.2.1.2 Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without computing GSCC?

Answer: DFS(G) gives some information!

7



.

.B,E, F

.G .H

.A,C,D

.11 .16

.
5

.
9

GSCC with post times

2.2.1.3 Post-visit times of SCCs

Definition 2.2.2. Given G and a SCC S of G, define post(S) = maxu∈S post(u) where post
numbers are with respect to some DFS(G).

2.2.1.4 An Example

AB C

DE F

G H

Graph G

[1, 16]

[2, 11] [12, 15]

[13, 14][3, 10] [6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

Graph with pre-post times for DFS(A);
black edges in tree

2.2.2 Graph of strong connected components

2.2.2.1 ... and post-visit times

Proposition 2.2.3. If S and S ′ are SCCs in G and (S, S ′) is an edge in GSCC then post(S) >
post(S ′).

Proof : Let u be first vertex in S ∪ S ′ that is visited.
(A) If u ∈ S then all of S ′ will be explored before DFS(u) completes.
(B) If u ∈ S ′ then all of S ′ will be explored before any of S.

A False Statement: If S and S ′ are SCCs in G and (S, S ′) is an edge in GSCC then for
every u ∈ S and u′ ∈ S ′, post(u) > post(u′).

2.2.2.2 Topological ordering of the strong components

Corollary 2.2.4. Ordering SCCs in decreasing order of post(S) gives a topological ordering
of GSCC

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.
So...
DFS(G) gives some information on topological ordering of GSCC!

8



2.2.2.3 Finding Sources

Proposition 2.2.5. The vertex u with the highest post visit time belongs to a source SCC
in GSCC

Proof :¡2-¿

(A) post(SCC(u)) = post(u)
(B) Thus, post(SCC(u)) is highest and will be output first in topological ordering of GSCC.

2.2.2.4 Finding Sinks

Proposition 2.2.6. The vertex u with highest post visit time in DFS(Grev) belongs to a
sink SCC of G.

Proof :¡2-¿

(A) u belongs to source SCC of Grev

(B) Since graph of SCCs of Grev is the reverse of GSCC, SCC(u) is sink SCC of G.

2.2.3 Linear Time Algorithm

2.2.3.1 ...for computing the strong connected components in G

do DFS(Grev) and sort vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do
if u is not visited then

DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component

Remove Su from G

Analysis Running time is O(n+m). (Exercise)

2.2.3.2 Linear Time Algorithm: An Example - Initial steps

Graph G:

G

FE

B C

D

H

A

=⇒

Reverse graph Grev:

G

FE

B C

D

H

A

9



=⇒

DFS of reverse graph:

G

FE

B C

D

H

A

=⇒

Pre/Post DFS numbering of reverse
graph:

6][1,

[7, 12]

[9, 10] [8, 11]

[13, 16]

[14, 15]

[2, 5]

[3, 4]

G

FE

B C

D

H

A

2.2.4 Linear Time Algorithm: An Example

2.2.4.1 Removing connected components: 1

Original graph G with rev post numbers:

G

FE

B C

D

H

A

16

11

612

10

15

5

4

=⇒

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

2.2.5 Linear Time Algorithm: An Example

2.2.5.1 Removing connected components: 2

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

=⇒

Do DFS from vertex H, remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

10



2.2.6 Linear Time Algorithm: An Example

2.2.6.1 Removing connected components: 3

Do DFS from vertex H, remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

=⇒

Do DFS from vertex B
Remove visited vertices:
{F,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F,B,E}

2.2.7 Linear Time Algorithm: An Example

2.2.7.1 Removing connected components: 4

Do DFS from vertex F
Remove visited vertices:
{F,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F,B,E}

=⇒

Do DFS from vertex A
Remove visited vertices:
{A,C,D}.

SCC computed:
{G}, {H}, {F,B,E}, {A,C,D}

2.2.8 Linear Time Algorithm: An Example

2.2.8.1 Final result

G

FE

B C

D

H

A

11



SCC computed:
{G}, {H}, {F,B,E}, {A,C,D}

Which is the correct answer!

2.2.9 Obtaining the meta-graph...

2.2.9.1 Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph G = (V,E) show that the
meta-graph GSCC can be obtained in O(m+ n) time.

2.2.9.2 Correctness: more details

(A) let S1, S2, . . . , Sk be strong components in G
(B) Strong components of Grev and G are same and meta-graph of G is reverse of meta-graph

of Grev.
(C) considerDFS(Grev) and let u1, u2, . . . , uk be such that post(ui) = post(Si) = maxv∈Si

post(v).
(D) Assume without loss of generality that post(uk) > post(uk−1) ≥ . . . ≥ post(u1) (renum-

ber otherwise). Then Sk, Sk−1, . . . , S1 is a topological sort of meta-graph of Grev and
hence S1, S2, . . . , Sk is a topological sort of the meta-graph of G.

(E) uk has highest post number andDFS(uk) will explore all of Sk which is a sink component
in G.

(F) After Sk is removed uk−1 has highest post number and DFS(uk−1) will explore all of
Sk−1 which is a sink component in remaining graph G−Sk. Formal proof by induction.

2.3 An Application to make

2.3.1 make utility

2.3.1.1 make Utility [Feldman]

(A) Unix utility for automatically building large software applications
(B) A makefile specifies

(A) Object files to be created,
(B) Source/object files to be used in creation, and
(C) How to create them

12



.

.project

.main.o

.utils.o

.command.o

.main.c

.utils.c

.defs.h

.command.h

.command.c

2.3.1.2 An Example makefile

project: main.o utils.o command.o

cc -o project main.o utils.o command.o

main.o: main.c defs.h

cc -c main.c

utils.o: utils.c defs.h command.h

cc -c utils.c

command.o: command.c defs.h command.h

cc -c command.c

2.3.1.3 makefile as a Digraph

2.3.2 Computational Problems
2.3.2.1 Computational Problems for make

(A) Is the makefile reasonable?
(B) If it is reasonable, in what order should the object files be created?
(C) If it is not reasonable, provide helpful debugging information.
(D) If some file is modified, find the fewest compilations needed to make application consis-

tent.

2.3.2.2 Algorithms for make

(A) Is the makefile reasonable? Is G a DAG?
(B) If it is reasonable, in what order should the object files be created? Find a topological

sort of a DAG.
(C) If it is not reasonable, provide helpful debugging information. Output a cycle. More

generally, output all strong connected components.
(D) If some file is modified, find the fewest compilations needed to make application consis-

tent.
(A) Find all vertices reachable (using DFS/BFS) from modified files in di-

rected graph, and recompile them in proper order. Verify that one can
find the files to recompile and the ordering in linear time.

13



2.3.2.3 Take away Points

(A) Given a directed graph G, its SCCs and the associated acyclic meta-graph GSCC give a
structural decomposition of G that should be kept in mind.

(B) There is a DFS based linear time algorithm to compute all the SCCs and the meta-
graph. Properties of DFS crucial for the algorithm.

(C) DAGs arise in many application and topological sort is a key property in algorithm de-
sign. Linear time algorithms to compute a topological sort (there can be many possible
orderings so not unique).

14


	Directed Acyclic Graphs
	Linear time algorithm for finding all strong connected components of a directed graph
	An Application to make
	make utility
	Computational Problems



